
PowerPC
An Inside View

SG24-4299-00

PowerPC
An Inside View

SG24-4299-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the
general information under “Special Notices” on page xiii.

First Edition (September 1995)

This edition applies to the IBM PC PowerPC hardware and software products currently
announced at the date of publication.

Order publications through your IBM representative or the IBM branch office serving
your locality. Publications are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing
Chapter 1. If the form has been removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JLPC Building 014 Internal Zip 5220
1000 NW 51st Street
Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract with IBM Corp.

Abstract

This document provides technical details on the PowerPC technology. It
focuses on the features and advantages of the PowerPC Architecture and
includes an historical overview of the development of the reduced instruction
set computer (RISC) technology.

It also describes in detail the IBM Power Series product family based on
PowerPC technology, including IBM Personal Computer Power Series 830
and 850 and IBM ThinkPad Power Series 820 and 850.

This book is intended for IBM customers, dealers, systems engineers and
consultants who want a clear understanding of the advantages of the
PowerPC Architecture and the capabilities of the IBM Power Series product
family.

Some knowledge of general PC technology is assumed.

(220 pages)

 Copyright IBM Corp. 1995 iii

iv PowerPC: An Inside View

Contents

Abstract . i i i

Figures . ix

Tables . xi

Special Notices . xii i

Preface . xvii
How This Document Is Organized . xvii
Related Publications . xviii
International Technical Support Organization Publications xviii
ITSO Redbooks on the World Wide Web (WWW) xix
Acknowledgments . xix

Chapter 1. PowerPC Concepts . 1
1.1 What Is an Architecture and Why Do We Need It? 2
1.2 The RISC Story . 3
1.3 The PowerPC Alliance . 5

1.3.1 PowerPC Alliance, Goals and Objectives 6
1.3.2 The History of the PowerPC Alliance 8

Chapter 2. Inside the PowerPC Technology 11
2.1 The POWER Architecture and the RISC System/6000 11

2.1.1 The Driving Factors . 12
2.1.2 POWER - The Design Goals . 12
2.1.3 Inside the POWER Architecture . 14
2.1.4 What Does All That Mean? . 17

2.2 Some General Concepts . 18
2.2.1 Pipelining and Superscalar Dispatch 18
2.2.2 Load/Store Architecture . 22
2.2.3 Cache Coherency and Snooping 23
2.2.4 Cache Write Through and Write Back Policies 26
2.2.5 Physical and Logical Memory . 28
2.2.6 Virtual Memory and Demand Paging 33
2.2.7 Big- and Little-Endian Memory Organization 35

2.3 The PowerPC Architecture . 36
2.3.1 Design Goals of the PowerPC Architecture 36
2.3.2 Levels of PowerPC Architecture 37
2.3.3 The Basic Conceptual Processor Model 39

 Copyright IBM Corp. 1995 v

2.3.4 A Comparison of POWER and PowerPC 41
2.4 Elements of the PowerPC Architecture 42

2.4.1 PowerPC Instruction Set . 43
2.4.2 PowerPC Programming Model . 47
2.4.3 PowerPC Memory Model . 50
2.4.4 PowerPC Exception Model . 58

2.5 The PowerPC Processor Family . 59
2.5.1 The PowerPC 601 . 61
2.5.2 The PowerPC 603 . 61
2.5.3 The PowerPC 604 . 62
2.5.4 The PowerPC 620 . 62

2.6 PowerPC Technology Details . 62
2.6.1 The PowerPC 601 . 62
2.6.2 The PowerPC 603 . 68
2.6.3 The PowerPC 604 . 74
2.6.4 The PowerPC 620 . 79

Chapter 3. RISC versus CISC . 85
3.1 Features of RISC and CISC . 85

3.1.1 Length and Format of Instructions 85
3.1.2 Register-Oriented Operations . 86
3.1.3 Number of Addressing Modes . 86
3.1.4 Size of Register Sets . 87
3.1.5 Size of Instruction Sets . 87

3.2 Advantages and Disadvantages . 88
3.2.1 Execution Time . 88
3.2.2 Pipelining . 88
3.2.3 Optimizing Compilers . 88
3.2.4 Code Compatibility . 89

3.3 RISC and CISC Today . 89
3.4 Feature Comparison of CISC and PowerPC Processors 90
3.5 Performance Comparison CISC versus PowerPC 92

Chapter 4. PowerPC Strategy . 95
4.1 PowerPC Reference Platform Specification 96

4.1.1 Why PowerPC Reference Platform Specification? 97
4.2 PowerPC Reference Platform Specification Technology Details . . . 101
4.3 The New PowerPC Microprocessor Hardware Reference Platform . 103

4.3.1 Current Environment . 104
4.3.2 The Power Macintosh . 104
4.3.3 The New Hardware Reference Platform 105
4.3.4 What the PowerPC Microprocessor Hardware Reference

Platform Offers Users . 107

vi PowerPC: An Inside View

4.3.5 Initial PowerPC Microprocessor Hardware Reference Platform
Implementation . 108

4.3.6 Processor . 108
4.3.7 System Memory (DRAM) . 109
4.3.8 Level 2 (L2) Cache . 109
4.3.9 Read-Only Memory (ROM) . 109
4.3.10 Memory Controller and PCI Bridge 110
4.3.11 I/O Subsystem . 112
4.3.12 ISA Devices . 114
4.3.13 Open Firmware . 115
4.3.14 Summary . 116

Chapter 5. PowerPC Software Environment 117
5.1 Operating Systems for PowerPC . 117

5.1.1 IBM OS/2 Warp Connect (PowerPC Edition) 118
5.1.2 IBM AIX . 122
5.1.3 Microsoft Windows NT . 125
5.1.4 Sunsoft Solaris . 127
5.1.5 PowerPC Operating Systems Comparison 130
5.1.6 Apple System 7 . 131

5.2 PowerPC Application Support . 132
5.2.1 PowerPC Application Compatibility and Porting 134
5.2.2 PowerPC Application Development Tools and Support 137
5.2.3 Development Support . 141

Chapter 6. PowerPC - Hardware and Product Overview 145
6.1 IBM Power Series Hardware Architecture 145

6.1.1 Processor Subsystem . 146
6.1.2 Memory Subsystem . 147
6.1.3 Storage Subsystems . 148
6.1.4 Human Interface Subsystem . 149
6.1.5 Real-Time Clock Subsystem . 150
6.1.6 Connectivity Subsystems . 150
6.1.7 Bus Types . 150
6.1.8 Controllers . 151

6.2 The IBM Power Series Product Line 153
6.2.1 IBM Personal Computer Power Series 830 and 850 154
6.2.2 IBM ThinkPad Power Series 820 and 850 165

6.3 Advanced Function Support . 173
6.3.1 Additional Information on MPEG and Music Synthesis 174

Appendix A. What Is Multiprocessing? . 177

Contents vii

Appendix B. The PowerPC Instruction Set 181

Glossary . 191

List of Abbreviations . 199

Index . 203

viii PowerPC: An Inside View

Figures

 1. The PowerPC Alliance . 7
 2. The Definition of Execution Time . 13
 3. Block Diagram of the POWER Architecture 15
 4. The Instruction Execution Process without Pipelining 19
 5. Basic Pipelining . 20
 6. Pipelining with Superscalar Instruction Dispatch 21
 7. Data Transfer Between CPU And Memory 24
 8. An Incoherent View of Memory . 25
 9. No Immediate Write Back . 27
10. Program Loading into Memory . 29
11. Physical and Logical Addresses . 31
12. Allocation of Free Pages . 32
13. Tracking Page Allocation with Page Tables 33
14. Virtual Memory and Swapping . 34
15. Big- and Little-Endian Byte Ordering 35
16. Levels of the PowerPC Architecture 38
17. PowerPC - The Basic Conceptual Processor Model 40
18. Register Index Addressing Mode . 46
19. Immediate Addressing Mode . 46
20. The PowerPC Programming Model 48
21. How Memory Is Partitioned . 51
22. How Memory Partition Locations Are Stored 52
23. The Address Translation Process . 55
24. The PowerPC Processor Road Map 60
25. The PowerPC 601 Microprocessor Block Diagram 63
26. PowerPC 601 Cache Organization . 66
27. The PowerPC 603 Microprocessor Block Diagram 69
28. PowerPC 603 Data Cache Organization 72
29. The PowerPC 604 Microprocessor Block Diagram 75
30. The PowerPC 604 Data Cache Organization 77
31. The PowerPC 620 Microprocessor Block Diagram 80
32. The PowerPC 620 (L1) Data Cache Organization 82
33. Estimated SPECint92 Figures for PowerPC and Pentium Chips

(Source, PowerPC Development Somerset, Austin TX) 93
34. Estimated SPECfp92 Figures for PowerPC and Pentium Chips

(Source, PowerPC Development Somerset, Austin TX) 94
35. Old Compatibility Model - Software Communicates Directly with

Hardware . 98
36. New Compatibility Model - Abstraction Software Layer Separates

Hardware and Software . 98

 Copyright IBM Corp. 1995 ix

37. PowerPC Reference Platform Specification Design Environment . . 99
38. Typical PowerPC Desktop System . 102
39. PowerPC Hardware Reference Platform - Initial Implementation

Block Diagram . 111
40. The Microkernel Architecture . 121
41. DOS/Windows and Macintosh Applications on AIX 125
42. The Apple System 7 on the Power Macintosh 132
43. The PowerPC Application Support . 135
44. Typical IBM Power Series Design . 146
45. IBM Personal Computer Power Series 830 and 850 154
46. Personal Computer Power Series 830 Design Diagram 158
47. Personal Computer Power Series 850 100MHz Design Diagram . . 160
48. Personal Computer Power Series 850 120MHz Design Diagram . . 161
49. Personal Computer Power Series 850 133MHz Design Diagram . . 162
50. 3-Slot Riser Card . 164
51. 5-Slot Riser Card . 165
52. IBM ThinkPad Power Series 820 and 850 166
53. ThinkPad Power Series 820 Design Diagram 170
54. ThinkPad Power Series 850 Design Diagram 172
55. Relationship between POWER, POWER2, PowerPC and the

PowerPC 601 Instruction Set . 182

x PowerPC: An Inside View

Tables

 1. Elements of the PowerPC Architecture 42
 2. Page Access Protection Levels . 53
 3. What the WIM Settings Mean . 57
 4. PowerPC Processor Overview . 60
 5. 601 Microprocessor Exception Classifications 68
 6. 603 Microprocessor Exception Classifications 73
 7. 604 Microprocessor Exception Classifications 78
 8. 620 Microprocessor Exception Classifications 84
 9. Comparison Between the PowerPC Processor 601/603 and Pentium 90
10. Operating System Comparison . 130
11. Personal Computer Power Series 830 Characteristics 158
12. Personal Computer Power Series 850 Characteristics 162
13. ThinkPad Power Series 820 Characteristics 170
14. ThinkPad Power Series 850 Characteristics 173
15. The PowerPC Instruction Set . 182
16. PowerPC Instructions not Supported by the PowerPC 601

Processor . 188
17. Power Instructions Deleted from the PowerPC Architecture 188

 Copyright IBM Corp. 1995 xi

xii PowerPC: An Inside View

Special Notices

This publication is intended to help IBM customers, dealers, system
engineers and consultants to get a clear understanding on the capabilities of
the IBM Power Series product line. The information in this publication is not
intended as the specification of any programming interfaces that are
provided by OS/2, AIX or any other operating system mentioned in this
publication. See the PUBLICATIONS section of the IBM Programming
Announcement for more information about what publications are considered
to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and
integrate them into the customer′s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

 Copyright IBM Corp. 1995 xiii

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

You can reproduce a page in this document as a transparency, if that page
has the copyright notice on it. The copyright notice must appear on each
page being reproduced.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

AIX AT
C S e t + + CICS
CT DB2/2
IBM IMS
Micro Channel Operating System/2
OS/2 PAL
Personal System/2 PowerPC
Power Series 830 Power Series 820
Power Series Power Series 850
PowerPC 601 PowerPC 603
PowerOpen PowerPC Architecture
PowerPC Reference Platform POWER Architecture
PowerPC 604 POWER Team
PowerPC 603e Presentation Manager
PS/ValuePoint PS/1
PS/2 RISC System/6000
RS/6000 System/360
System/370 ThinkPad
TrackPoint VoiceType
400

xiv PowerPC: An Inside View

The following terms are trademarks of other companies:

A/UX, Apple, Apple Desktop Bus, Finder, GeoPort, LocalTalk, Mac,
Macintosh, and System 7 are trademarks of Apple Computer, Incorporated

Alliance is a trademark of American Telephone and Telegraph Company
ATM is a trademark of Adobe Systems Incorporated
C++ is a trademark of American Telephone and Telegraph Company, Incorporated
Canon is a trademark of Canon Kabushiki Kaisha
C-bus is a trademark of Corollary, Inc.
Centronics is a trademark of Centronics Data Computer Corporation
CORBA is a trademark of Object Management Group, Incorporated
DeskSet, Solaris, Sun, Sun Microsystems, SonOS, SunSoft and Wabi

are trademarks of Sun Microsystems, Incorporated
Direct Access is a trademark of Fifth Generation Systems, Incorporated
Framework is a trademark of Ashton-Tate, Incorporated
Hewlett-Packard and HP are trademarks of Hewlett-Packard Company
Intel,Pentium, and 486 are trademarks of Intel Corporation
Kodak is a trademark of Eastman Kodak Company
Lotus is a trademark of Lotus Development Corporation
Microsoft, Windows, MS, MS-DOS, Windows NT, and Win32

are trademarks of Microsoft Corporation
MIPS is a trademark of MIPS Computer Systems, Incorporated
Motif, Open Software Foundation and OSF are trademarks of

of The Open Software Foundation, Incorporated
Motorola is a trademark of Motorola, Incorporated
NAP is a trademark of Automated Network Management, Incorporated
NetWare and Novell are trademarks of Novell, Incorporated
NuBus is a trademark of Texas Instruments, Incorporated
PC Direct is a trademark of Ziff Communications Company and is

used by IBM Corporation under license.
Philips is a trademark of Philips Electronics N.V.
PIC is a trademark of Pacific Image Communications, Incorporated
POSIX is a trademark of Institute of Electrical and Electronic Engineers
Q & A is a trademark of Symantec Corporation
SoftPC is a trademark of Insignia Solutions, Incorporated
SPEC is a trademark of Systems Performance Evaluation Cooperative
SPECfp92 and SPECint92 are trademarks of Standard Performance Evaluation

Corporation, Incorporated
Symantec is a trademark of Symantec Corporation
S3 is a trademark of S3 Incorporated
Taligent is a trademark of Taligent, Incorporated
UNIX is a registered trademark in the United States and other

Special Notices xv

countries licensed exclusively through X/Open Company Limited.
UNIX System V is a trademark of AT&T Bell Laboratories Incorporated
VESA is a trademark of Video Electronics Standards Association
VL-Bus is a trademark of Video Electronics Standards Association
Western Digital is a trademark of Western Digital Corporation

Other trademarks are trademarks of their respective companies.

xvi PowerPC: An Inside View

Preface

This document is intended to provide technical details on the PowerPC
Architecture and the capability of IBM Personal Computer Power Series and
the IBM ThinkPad Power Series. It contains a detailed description of
features, advantages of the PowerPC technology and the IBM PC product
family based on PowerPC technology.

This document is intended for IBM customers, dealers, systems engineers
and consultants.

How This Document Is Organized
The document is organized as follows:

• Chapter 1, “PowerPC Concepts”

The introduction gives an overview of the personal computer market
today, explains the market needs for PowerPC technology and defines
the term “architecture.” Furthermore, it provides information on the
reduced instruction set computer (RISC) history, and the PowerPC
alliance.

• Chapter 2, “Inside the PowerPC Technology”

This chapter describes the different levels of the PowerPC Architecture
and provides details on the PowerPC technology.

• Chapter 3, “RISC versus CISC”

This provides details on the technology differences between the RISC
and complex instruction set computer (CISC) technology as well as a
road map on available CISC and PowerPC processors and performance
details.

• Chapter 4, “PowerPC Strategy”

The purpose of this chapter is to provide insights into the PowerPC
Reference Platform specification and the PowerPC Microprocessor
Hardware Reference Platform

• Chapter 5, “PowerPC Software Environment”

This chapter discusses the PowerPC software environment including the
different PowerPC operating systems, PowerPC application support and
PowerPC application development tools.

 Copyright IBM Corp. 1995 xvii

• Chapter 6, “PowerPC - Hardware and Product Overview”

This provides detailed technical information on the IBM Power Series
product line including the IBM Personal Computer Power Series and the
IBM ThinkPad Power Series.

• Appendix A, “What Is Multiprocessing?”

This appendix is provided as an overview for readers who are not
familiar with multiprocessing concepts.

• Appendix B, “The PowerPC Instruction Set”

This appendix provides a list of the PowerPC Architecture instruction set.

Related Publications
The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this document.

• Inside the PowerPC Revolution, ISBN 1-883577-04-7

• PowerPC Computing, ISBN 1-56529-625-7

• PowerPC A Practical Companion, ISBN 0-7506-1801-9

• Computer Organization and Architecture, ISBN 0-02-946297-5

• PowerPC Processor Architecture, 52G7487

• PowerPC 601 Microprocessor User′s Manual, 52G7484

• PowerPC System Technical Manual, 52G7490

• PowerPC AIX Hardware Dependencies Reference Guide, 52G7485

• IBM RISC System/6000 Technology, IBM SA23-2619-00

International Technical Support Organization Publications
A complete list of International Technical Support Organization publications,
with a brief description of each, may be found in International Technical
Support Organization Bibliography of Redbooks, GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on
MKTTOOLS as ITSOCAT TXT. This package is updated monthly.

xviii PowerPC: An Inside View

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755
or by faxing 1-800-284-4721. Visa and MasterCard are accepted. Outside
the USA, customers should contact their local IBM office. For guidance
on ordering, send a PROFS note to BOOKSHOP at DKIBMVM1 or E-mail
to bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized
sets, called BOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on the ITSO World Wide
Web home page. To access the ITSO Web pages, point your Web browser to
the following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. The internal
Redbooks home page may be found at the following URL:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Acknowledgments
This project was designed and managed by:

Michael Koerner
International Technical Support Organization, Boca Raton Center

The authors of this document are:

Michael Koerner
IBM Germany

Chak Ming Fai
IBM Singapore

Preface xix

Joe Ruthven
IBM South Africa

This publication is the result of a residency conducted at the International
Technical Support Organization, Boca Raton Center.

Thanks to the following people for the invaluable advice and guidance
provided in the production of this document:

Ricardo Aranda
IBM Austin, TX

Arthur Adkins
IBM Austin, TX

Robert Baker
IBM Boca Raton, FL

Carmen Myers
IBM Boca Raton, FL

Dan Molsberry
IBM Somers, NY

Horst Oehler
IBM Germany

Robert Paneque
IBM Boca Raton, FL

xx PowerPC: An Inside View

Chapter 1. PowerPC Concepts

When we look at the history of computers and, specifically, the personal
computer market, it is not difficult to observe the change. In its short life
span, the PC business has advanced exponentially. As prices have
decreased, performance has continuously increased and advanced.

The microprocessor design has played a very important role in this
technological boom. Ironically, the architecture that controlled all the
hardware and software design was defined long ago. This architecture was
designed for the technology of its time but it still drives most of our personal
computers today. It is for this reason that the term “backward-compatible”
has become part of our day-to-day vocabulary.

For the last decade there has been only one predominant choice of
processor in the personal computer world: the complex instruction set
computer (CISC) technology on which microprocessor design was based.
The market is totally based on the Intel and Motorola technology, which are
not even compatible with each other.

Microprocessor technology was invented in 1970 by Ted Hoff, a young Intel
engineer. His work was done for a Japanese company called Busicom,
which was in the hand-held calculator business. Intel itself thought at the
time that this processor was too limited to be useful.

The breakthrough came when BASIC began to be widely used. BASIC, a
simple programming language, demonstrated that such a microprocessor
could act very well as the central processing unit (CPU) in a computer
system. The real business breakthrough came with Visicalc, the first
spreadsheet application.

Today more than 165 million PCs have been sold, based on Intel and
Motorola microprocessors. New applications and technologies, such as 3-D
graphics and multimedia, require more and more CPU power, and CISC
processors are struggling to provide this.

Today we have:

• Computation (spreadsheets, CAD)
• 2-D graphics
• Video and audio

 Copyright IBM Corp. 1995 1

Tomorrow we will have:

• Even more computation
• 3-D graphics
• Voice and language services
• Collaborative computing

Users today are expecting PCs to improve their productivity, but what we see
is:

• Proliferation of devices with unique functions
• Multiple communication paths
• Restrictive human/system interface

Although today′s personal computers are still driven by an architecture of the
70s, it is not because the field of computer architecture has not kept pace
with technology. John Cocke from the IBM T. J. Watson Research Center
started investigations in the mid-70s on approaches to improve processor
performance. He found out that 80 percent of code was only using 20
percent of the available instructions in the processor. Eighty percent of the
available instructions were either never used or could be replaced by using
instruction strings of the 20 percent normally used.

As a result of this research and other projects of the time, a new approach to
microprocessor design called reduced instruction set computer (RISC)
evolved in the early 1980s.

A resounding testimonial to the importance of RISC is that all new processor
designs over the last five years have been based on RISC technology.

The question today is no longer if personal computers will move to RISC
technology, but when.

1.1 What Is an Architecture and Why Do We Need It?
Computer architecture refers to those attributes of a system that are visible
to a programmer, or those attributes that have a direct impact on the logical
execution of a program.

Historically, computer manufacturers have offered a family of computer
models. These models all have had the same architecture although they
may have had different components, price/performance values, etc.
Architectures typically have survived many years while everything else
around them has changed constantly.

2 PowerPC: An Inside View

One of the most successful systems on the market was the System/360
developed by IBM in the 60s. Revolutionary technology was to use
integrated circuits (ICs); the instruction set was directly installed in the
processor in the form of microcode.

Software compatibility across all System/360 models was the big advantage,
since all System/360s had common instructions.

The System/360 was replaced by the IBM System/370 architecture. This
architecture was first introduced in 1971 and included a number of models.
IBM introduced many models over the years with improved technology
offering the customer greater speed, lower cost or both. These newer
models retained the same architecture as the other 370s so the customer′s
software investment was protected.

The term architecture is used to refer to a broad assortment of things in the
computer industry. In the context of microprocessor architecture, it refers to
the specifications upon which the design of a processor or family of
processors is based. The architecture consists of the instruction set, the
programming model, the exception model and other specifications that
characterize a set of compatible processors. The need for a new
architecture arises from the fact that the microprocessors in most of today′s
personal computers suffer from bottlenecks that are caused from outgrowing
their original design.

In order to prevent the same situation that has happened with the original
IBM Personal Computer, IBM has drawn up a document known as the
PowerPC Reference Platform specification. This document gives guidelines
and requirements for producing personal computer using PowerPC
processors. Apple, IBM and Motorola have joined focus to produce the
PowerPC Microprocessor Hardware Reference Platform. This architecture
combines the Power Macintosh and PowerPC Reference Platform features.
These documents are available free from IBM. For information on obtaining
a copy of the PowerPC Reference Platform specification, refer to 4.1,
“PowerPC Reference Platform Specification” on page 96.

1.2 The RISC Story
Contrary to popular belief, RISC architecture was born from an IBM project
intended to solve a very specific problem. It was not created in an attempt to
solve the fundamental problems of general purpose computing. Nor was it
developed to provide a common architecture for a wide spectrum of
processor requirements.

Chapter 1. PowerPC Concepts 3

What really happened was that in 1974, IBM engineers needed a system to
manage a telephone switching network. The network had to be capable of
executing more than 20,000 instructions per call and 300 calls per second.
No computer available at the time complied with this sort of real-time design
criteria.

The absence of such a computer could cause arithmetic functions to quickly
pile up, waiting to get access to the memory bus. This resulted in the
memory bus becoming a tremendous bottleneck.

In order to meet the project specification, IBM engineers and designers
envisioned a machine with simple instructions and extensive and well-placed
on-chip memory. The latter are two fundamental characteristics of RISC
technology today.

Reduced instruction set computing (RISC) consists of instructions that reduce
operations into simpler tasks. These simple instructions each take
approximately the same time to execute. In other words, reduce the
instruction set and use a fixed length for the instruction so that in each clock
cycle one instruction per computational unit can be executed. This makes it
easier for the processor to interpret instructions, and it speeds up the
execution while greatly simplifying processor design. Furthermore, once you
have simple instructions, the compiler can optimize more easily the code to
utilize the processor fully.

Although the telephone switching system was never built, the processor
designers went on to explore further the possibilities presented by the
project. The idea also created excitement in academic circles, and by the
middle 70s there were several design projects underway:

• IBM 801 minicomputer

Further development of the telephone switching principle led to the
design of the 801. The 801 was developed by John Cocke in the
mid-1970s.

• RISC-I and RISC-II

David Patterson and his colleagues at the University of California
developed the RISC-I and RISC-II processors and coined the term RISC.

• Stanford MIPS

This machine was developed by John Hennessy and colleagues at the
Stanford University.

4 PowerPC: An Inside View

These three projects exploited the principle of IBM′s telephone switching
design by taking advantage of simple, fixed-length instructions. RISC offered
an exciting alternative to the prevailing philosophy of complex instruction set
computing (CISC) processor design.

The success of these projects sparked considerable interest on the part of
major established computer manufacturers. The university projects brought
RISC design principles out of the laboratories and into the research and
development efforts of commercial chip manufacturers.

Today many types of RISC implementations exist. RISC design, however, is
most closely associated with a handful of microprocessor manufacturers
whose products are intended mostly for use in high-end workstations. RISC
design is still maturing and taking hold in more and more environments.
RISC designers are constantly capitalizing on other technological advances,
and as manufacturing processes improve, so do the chips. Transistor
miniaturization has made it possible to have more and more transistors per
square millimeter. The combination of cheaper circuits and simpler
instructions has moved RISC processors from multi-chip designs to
single-chip processors with caches, parallel floating point units (FPUs) and
main memory units (MMUs).

These designs have resulted in the availability of RISC processors on the
desktop. With the development of the PowerPC 603 power-saving processor,
even low-power battery-operated notebook systems and palm-top computers
are now available with RISC technology.

1.3 The PowerPC Alliance
History has proven that being the technology leader does not guarantee a
successful product. Probably the best example of this is Beta and VHS video
recording technology. Beta, clearly the better technology, has lost out to the
strength of marketing and alliance of VHS.

The computer industry has seen its own fair share of alliance and marketing
effects. The best example is definitely Microsoft Windows 3.1. Although it is
seen by few people as a technology leader, it has become a de facto
standard for personal computers. This snowballing effect of its popularity
was achieved with the marketing strength of Microsoft and the alliances it
formed to promote Windows as the default operating system.

Customers are not buying machines anymore for performance only. It is also
important to look at the long-term viability of the chosen architecture. The

Chapter 1. PowerPC Concepts 5

viability of the architecture as a long-term solution relies on the acceptance
of the direction of the technology and the ability of the alliance partners to
promote these ideas in the market.

It is for this reason that the success of the PowerPC-based systems rests as
much on market acceptance, openness and direction of the industry and
alliances supporting the PowerPC initiatives as it does on the exciting
advances embodied in the PowerPC family of processors and, more
specifically, the IBM Power Series.

We will now briefly look at the alliance, its goals and objectives.

1.3.1 PowerPC Alliance, Goals and Objectives
The Somerset Design Center in Austin, Texas was created as a result of the
alliance formed between IBM, Apple and Motorola in October 1991. It was on
this date that the three companies announced they would jointly develop a
new architecture that would form the basis of the next generation of personal
computers.

The alliance recognized that the computer industry is one of the most rapidly
growing industries in the world and that more and more computer power is
required to fulfill customer application requirements.

The alliance set for itself the following objectives:

• Object-oriented technology

• Interconnectivity and networking

• Open system environment

• Microprocessor technology

− Permit broad range of implementations

− Simplify to reduce design cycle time

− Allow for aggressive superscalar implementations

− Support symmetrical multiprocessors (SMP)

− Define a 64-bit superset architecture which provides binary
compatibility for 32-bit POWER applications

The objectives were achieved when the first PowerPC microprocessor, the
PowerPC 601, was announced to the industry in 1992 and began shipment in
early 1993.

6 PowerPC: An Inside View

Figure 1. The PowerPC All iance

The PowerPC alliance provides greater opportunities for compatibility and
more efficient mixed network environments. One product of this
collaboration is an IBM-certified Apple token-ring card. It also inspired the
following joint efforts:

• Kaleida Labs

Kaleida is a new company funded by IBM and Apple to create common
standards for the fast-growing multimedia products.

• Taligent

Taligent is also a new company funded by IBM and Apple that is
developing an object-oriented operating system.

• PowerOpen

PowerOpen is aimed towards developing a new version of the UNIX
operating system that will combine features from IBM′s AIX and Apple′s
A/UX operating systems. This platform will allow users access to AIX
and Macintosh-based applications.

Chapter 1. PowerPC Concepts 7

1.3.2 The History of the PowerPC Alliance
The following section will give chronological descriptions of the events
surrounding and following the announcement of the PowerPC alliance.

In October 1991, IBM, Apple and Motorola jointly announced the formation of
a new alliance. At that time, details were presented for the first time about
the PowerPC Architecture and the PowerOpen environments.

Bull HN Information Systems, Inc., announced adoption of the new PowerPC
Architecture for their server and workstation systems in January 1992.

During April 1992, Thomsonn-CSF CEITIA announced an agreement with IBM
to develop products based on the PowerPC Architecture.

In May 1992, IBM, Apple and Motorola dedicated the Somerset Design Center
in Austin, Texas.

The first processor was manufactured and unveiled by IBM, Apple and
Motorola in October 1992. The chip was called the PowerPC 601.

The Harris corporation announced an agreement with IBM to develop
real-time workstations based on the PowerPC Architecture in November
1992.

In December 1992 Tadpole Technology PLC announced an agreement with
IBM to develop and produce notebook computers based on the PowerPC
Architecture.

Thomson-CSF CETIA announced PowerPC VME systems and Lynx real-time
software in January 1993.

In March 1993, Apple, Bull, Harris, Motorola, Tadpole Technology and
Thomson-CSF announced the formal founding of the PowerOpen Association
with the goal of providing an open system and compatibility.

During April of 1993 SunSoft announced plans to support Solaris on PowerPC
based systems. In the same month Motorola announced general sampling of
the PowerPC 601.

IBM and Motorola announced the availability of the PowerPC 601 tools
catalog in May 1993, together with an announcement from Ford that the next
generation of their Power Train Electronic Controller would be based on
PowerPC Architecture.

8 PowerPC: An Inside View

Kaleida Labs, Scientific Atlanta and Motorola announced plans for interactive
multimedia devices, developed using PowerPC processors in June 1993.

October 1993 was quite a busy month for the PowerPC alliance. An 80MHz
version of the 601 was announced and the PowerPC 603 reached first silicon.
CETIA, a subsidiary of Thomson-CSF, introduced a family of VME
single-board computers and workstation based on the PowerPC 601
processor.

Bull also announced their first PowerPC-based system. Three systems
configurations were made available: a compact desktop server, a desk side
server and a single-user workstation. These systems are based on the
PowerPC 601 processor.

Motorola ′s RISC Microprocessor division also announced in October five
software development packages for optimizing performance of the PowerPC
603.

In the same month Apple announced the commitment from seven additional
software developers. These developers also announced plans to ship
upgraded versions of the software simultaneously with the first PowerPC
systems.

IBM announced the PowerPC Personal System in November 1993. The
PowerPC Reference Platform specification is a non-proprietary standard
developed by the IBM Power Personal Systems Division, with participation
from others in the industry. Operating systems planned to be ported to the
PowerPC Reference Platform specification include AIX, OS/2, Windows NT,
Solaris, and Taligent.

Also, in November 1993, Microsoft and Motorola announced that a port of
Windows NT was jointly being developed with IBM′s Power Personal Systems
Division. The port to Windows NT, which conforms to the PowerPC
Reference Platform specification, operates in Little-Endian mode and takes
advantage of the PowerPC′s Bi-Endian feature. A broad group of computer
subsystem manufacturers announced support for the PowerPC Reference
Platform specification.

In February 1994 Insignia Solutions and Apple announced an agreement to
include SoftWindows in selected configurations of PowerPC-based Macintosh
systems.

In November 1994, Apple, IBM and Motorola announced the PowerPC
Microprocessor Hardware Reference Platform. This platform will combine

Chapter 1. PowerPC Concepts 9

features of the Power Macintosh and PowerPC Reference Platform
specification.

10 PowerPC: An Inside View

Chapter 2. Inside the PowerPC Technology

The PowerPC processor is a third-generation RISC architecture which has
evolved from IBM′s POWER (Performance Optimization With Enhanced RISC)
architecture. Many features and design points of the POWER Architecture,
such as superscalar design, zero-cycle branching and a highly optimized
cache structure, have been retained in the PowerPC Architecture. These
concepts will be explained in the next section, which starts the discussion of
the PowerPC Architecture with a look at the POWER Architecture. Although
the motivating factors that drive the design of the PowerPC Architecture
differ from those for the POWER Architecture in many aspects, the decisions
that were made in the design of the POWER architecture remain the same for
the PowerPC processors. In order to understand the PowerPC, we first have
to understand its heritage.

Next, we will discuss some general concepts of computer architecture that
help us to understand the various features of the PowerPC Architecture.

Section 2.3, “The PowerPC Architecture” on page 36 and 2.4, “Elements of
the PowerPC Architecture” on page 42 will examine the PowerPC
Architecture in general and the elements defined by it.

We will conclude with a look at some current and planned implementations
of PowerPC processors.

2.1 The POWER Architecture and the RISC System/6000
IBM introduced the RISC System/6000 family of products to the market in
1990. The goal then was to offer a series of products that would satisfy
customer requirements for commercial and scientific applications. The first
RS/6000 products were implementations of the POWER Architecture. The
POWER Architecture is a second-generation RISC Architecture which
contained many innovations for its time as well as major advances over
existing RISC architectures. These innovations and advances were
necessary to meet some design goals. These goals were motivated by
various driving factors.

 Copyright IBM Corp. 1995 11

2.1.1 The Driving Factors
The POWER Architecture was designed to address the requirements of a
UNIX-based system family and could effectively support both commercial
application and scientific environments. This key objective arose out of
several driving factors which occurred mainly in the late 1970s and early
1980s:

• A growing market of commercial, engineering and scientific applications
running on UNIX-based systems. In order to participate and lead in this
growing market segment, IBM had to develop a very robust and flexible
architecture on which good products could be built.

• Emergence of RISC designs and implementations from various
manufactures.

• Availability of 1 micron CMOS VLSI circuit technology that allowed
300,000 to one million devices per chip and projected clock cycles of 25
to 30MHz. Clearly, this technology advance could be exploited to
develop a more powerful architecture.

• New developments in the fields of compiler technology and computer
organization and architecture, both within and outside of IBM. Again,
there was an opportunity to exploit these new discoveries to bring to
market more advanced products.

2.1.2 POWER - The Design Goals
The key objective of the RS/6000 family of products was to be able to support
both commercial and scientific application environments effectively. This
implied that the underlying processor architecture had to efficiently fulfill the
unique requirements of processing in both environments. In particular:

• Commercial environments generally feature more integer processing,
transaction processing and file I/O. Therefore, the key components that
would influence performance are the integer processing component of
the CPU and the I/O subsystem.

• Scientific and engineering environments usually require very high
floating-point computation performance. To be able to support these
environments effectively, the architecture must have a scheme to
optimize floating-point performance.

An important goal of any processor architecture design is to minimize
execution time. In the design effort of the POWER Architecture, this was
viewed as the product of three important factors: path length, cycles per
instruction, and cycle time.

12 PowerPC: An Inside View

Figure 2. The Definit ion of Execution Time

• Execution Time is defined as Path Length times Cycles per Instruction
times Cycle Time. An improvement in any of the three variables can
result in a corresponding improvement in execution time.

• Path Length can be roughly defined as the number of instructions which
are needed to perform a certain piece of work. This variable is largely
influenced by the instruction set architecture and how well optimizing
compilers do their job.

• Cycles per Instruction can be viewed as the throughput of the CPU. It is
the average number of clock cycles needed to complete executing one
instruction. Generally, the factors influencing throughput are the
processor architecture and the compiler technology.

• Cycle Time is the clock speed of the processor (the MHz). It is a
measure of how much time the processor takes to complete one clock
cycle. Much of this depends on the chip technology and the processor
architecture.

It is important to note that in the equation above, the three variables are not
independent of each other. There are interactions between the factors that
influence more than one of the three variables. For example, if the
instruction set and processor architecture is very simple, it is probably easier
to make the CPU run at a faster clock speed (reduced cycle time). But with a
simple instruction set, more instructions would be needed to perform a piece
of work compared to an architecture with a more complex instruction set
(longer path length). These interdependences complicated the work of
designing the architecture. Thus, a decision was made to focus the design
work on reduced instruction set cycles, which was defined as the optimal
value of Path Length times Cycles per Instruction. In this way, RISC was
basically redefined to have the objective of reducing the execution time
through reducing the instruction set cycles instead of simply reducing the
instruction set.

Chapter 2. Inside the PowerPC Technology 13

2.1.3 Inside the POWER Architecture
The result of the design process to meet the goals stated above was the
POWER Architecture, a highly concurrent, superscalar enhancement of early
RISC architectures.

The POWER Architecture has many similar features to earlier, more
traditional RISC architectures:

• Register-oriented instruction set

• Simple, fixed-length instructions

• A hardwired, as opposed to microcoded, CPU

• Strong pipelining features

These concepts will be explained in Chapter 3, “RISC versus CISC” on
page 85.

Where POWER differs from first-generation RISC architectures is its use of
advanced features, such as:

• Multiple instruction dispatch

• Multiple execution units, permitting simultaneous execution of different
types of instructions

• Separate instruction and data caches

• Zero-cycle branches

14 PowerPC: An Inside View

Figure 3. Block Diagram of the POWER Architecture

Figure 3 shows a logical view of the basic POWER architecture. There are
three main execution units in the CPU:

• The fixed-point unit (FXU) performs operations on whole numbers without
a decimal point (for example, numbers like 3, 6 and 24) and numeric
representations of text. It contains the general-purpose registers (GPRs)
and the arithmetic logic unit, which does the actual execution. The FXU
also carries out the duty of address translation. Address translation is
the process of calculating the actual address in real memory of a piece
of data from the virtual addresses which are used in programs to point to
data. This process is necessary when the CPU needs to access data
from main memory.

• The floating-point unit (FPU) performs mathematical operations on
numbers with a decimal point. These kinds of numbers are common in
scientific and engineering applications. Unlike typical floating-point
coprocessors, the FPU in the POWER Architecture is closely coupled to

Chapter 2. Inside the PowerPC Technology 15

the rest of the CPU and can execute instructions independently of the
other execution units. A unique feature of the POWER Architecture is
that it implements the multiply-add floating-point instruction (an operation
of the form AxB+C). This instruction is executed with the same delay as
a single multiply or add instruction and is, effectively, two instructions in
one.

• The branch processor is implemented within the instruction cache unit
(ICU). It independently executes all branch and condition register
instructions. Branch instructions are instructions that cause the flow of
the execution to be redirected to some other part of the program.
Condition register operations are instructions that operate on information
about the results of earlier calculations (for example, is A=B or X>Y?).

The basic POWER Architecture has a highly optimized cache structure which
specifies separate instruction and data caches. Cache memory is very
high-speed storage that buffers data and instructions between the slower
main memory system and higher-speed CPU registers.

The instruction cache unit (ICU) reads four instructions at a time from main
memory. This bandwidth is very important, as we will see later. It then
dispatches the instructions to the respective execution units for execution. In
a single cycle, the following mix of instructions can be dispatched
simultaneously:

• One branch instruction (to the branch processor)

• One condition instruction (to the branch processor)

• One fixed-point instruction (to the FXU)

• One floating-point instruction (to the FPU)

It can be seen that a CPU based on the POWER architecture has a potential
throughput of four instructions per clock cycle. This concept of dispatching
multiple instructions per cycle to multiple execution units is called
superscalar design.

An important concept in the design of the POWER architecture is the concept
of zero-cycle branching. Traditionally, when a branch instruction directs the
CPU to jump to a different section of the program code, the CPU wasted
clock cycles getting the new target code from main memory while the
execution units had no work to do. In the POWER Architecture, the branch
processor is implemented in the ICU. It looks ahead to the stream of
instructions which the ICU fetches from main memory, takes out the branch
instructions and executes them, and in a lot of cases (especially
unconditional branches), it can cause the new target instructions to be

16 PowerPC: An Inside View

fetched into the ICU in time to provide the FXU and FPU with an
uninterrupted stream of instructions. This is termed zero-cycle branching.

The architecture also allows for schemes to perform branch prediction.
Generally, these schemes use various methods to try and predict whether a
conditional branch operation (for example, branch if A=B) will result in a
branch or not. If the branch processor can get a correct prediction earlier,
the instruction cache can fetch the necessary instructions from memory to
feed the fixed-point and floating-point units with an uninterrupted stream of
instructions to execute. Branch prediction schemes usually result in an
improvement in execution time by reducing branch delay. Branch delay
occurs when the instruction cache has to fetch instructions from a branch
target area while the execution units are idle.

The set of instructions in the POWER Architecture was designed to have as
much function as possible. This goes against the original spirit of RISC but
the intent here is to optimize as much as possible the path length of
programs. With more function in the instructions, fewer instructions are
needed to do a piece of work. Chapter 3, “RISC versus CISC” on page 85
discusses this architectural decision and its bearing on the RISC versus CISC
debate.

2.1.4 What Does All That Mean?
What aims do the various features of the POWER Architecture serve to
achieve?

 1. The instruction set was designed to optimize the path length of
programs. This was one of the goals which would contribute to reducing
instruction set cycles and hence execution time.

 2. Multiple instructions can be dispatched and executed in the same clock
cycle. This is aimed at reducing the cycles per instruction component.
Together with objective number 1, the objective is to achieve reduced
instruction set cycles which would in turn have a beneficial effect on
execution time.

 3. Zero-cycle branching also improves throughput and is aimed at reducing
the cycles per instruction variable.

 4. A tightly coupled FPU greatly improves performance for scientific and
engineering applications. One important goal of designing the POWER
Architecture was for it to effectively support both commercial and
scientific environments.

Chapter 2. Inside the PowerPC Technology 17

2.2 Some General Concepts
The concepts and ideas below will help you to understand the various
aspects of the PowerPC Architecture and their importance.

2.2.1 Pipelining and Superscalar Dispatch
Typical execution of a computer instruction requires a four-stage process:

 1. Instruction Fetch involves fetching the instruction from main memory.

 2. Dispatch or Decode is the process of decoding the instruction, getting the
operands referred to in the instruction, and passing all these to the
execution unit.

 3. Execution involves the actual computation or execution of the instruction.

 4. Store is the act of storing any results of the computation back into
memory.

Each stage can be considered as taking up one CPU cycle. Of course, in a
real implementation, different types of instructions go through different
variations of the four-stage process and some of the stages may take more
than one CPU cycle. But for ease of explanation, we can generalize here
and say that there is a four-stage process with each stage using up one CPU
cycle.

18 PowerPC: An Inside View

Figure 4. The Instruction Execution Process without Pipelining

Figure 4 shows how an instruction is processed through the four stages.
This process achieves a throughput of one instruction every four cycles; that
is, one instruction is completely processed every four cycles. We can see
that this scheme can be easily made more efficient. While the instruction is
going through one stage, the rest of the four stages are lying idle and not
doing any work. This brought about the idea of pipelining.

Chapter 2. Inside the PowerPC Technology 19

Figure 5. Basic Pipelining

Figure 5 shows the four-stage process with simple pipelining implemented.
This is a much more efficient scheme than the previous one. While one
stage is processing an instruction, the other stages move on to the next
instruction in the stream, like an assembly line. In this way, we can
potentially achieve a throughput of one instruction per cycle.

Basic pipelining by itself can improve the performance of the instruction
execution process. But the POWER and PowerPC Architectures scale this
performance improvement even further with superscalar instruction dispatch.
Superscalar design essentially adds one more dimension to pipelining.

20 PowerPC: An Inside View

Figure 6. Pipelining with Superscalar Instruction Dispatch

Figure 6 illustrates how the instruction execution process works with
superscalar dispatch. There can be any number of independent execution
units, but here we show an implementation with three execution units. Since
up to three instructions can be executed in parallel, three instructions can be
fetched every cycle. These instructions will be dispatched to the three
execution units in parallel. If the execution units can be fed with an
uninterrupted stream of instructions, such an implementation can achieve a
potential throughput of three instructions per cycle.

Chapter 2. Inside the PowerPC Technology 21

The concepts explained above show how the PowerPC Architecture uses
multiple parallel execution units and multiple instruction dispatch to achieve
improved throughput.

2.2.2 Load/Store Architecture
Traditionally, RISC architectures used the load/store method of working with
data instead of the large number of addressing modes favored by CISC
architectures.

Instructions in CISC architectures usually have a large variety of addressing
modes to specify the data which they are referring to (a discussion of these
addressing modes are beyond the scope of this book). In an instruction that
performs a computation on data, the data is usually referred to directly in
their memory location using any one of the addressing modes.

Instructions in RISC architectures tended to have only a few modes of
addressing data. In addition, when operations are performed on data, the
data is usually first loaded into CPU registers. The computation is performed
on the data in the registers and the results are then stored back into
memory.

As an example, the instruction:

A = B + C

in a CISC architecture will be translated by a compiler in a RISC architecture
to:

LOAD B into R1
LOAD C into R2
R3 = R1 + R2
STORE R3 into A

where A, B, C are locations of data in main memory and R1, R2, R3 are
registers.

This method of moving all data between registers and main memory and
only performing operations on data in the registers is called load/store
architecture. The instructions that move data between the registers and
main memory are called load/store instructions.

22 PowerPC: An Inside View

2.2.3 Cache Coherency and Snooping
Cache memory is high-speed memory that is used as a buffer between the
CPU and main memory to speed up memory accesses. It is used because it
is much faster than main memory. In all execution cycles, the CPU has to
access memory at least once to fetch instructions. Usually, it has to access
memory a few more times to fetch and store operands. In this way, memory
access speed became a bottleneck to CPU performance because memory
speed was far slower compared to CPU speed. One solution then was to
build a high-speed buffer between the CPU and main memory. This buffer
was built using more expensive technology than main memory but was also
faster than main memory. This buffer, called cache, works because of what
is known as the principle of locality. Whenever the CPU fetches an
instruction or piece of data from memory, it takes what it wants word by
word. A word is usually a two to four byte piece of data depending on the
architecture. But when a CPU fetches something from memory, there is a
good chance that the next piece of data it needs will be somewhere near the
piece that was read earlier. This is the principle of locality.

Chapter 2. Inside the PowerPC Technology 23

Figure 7. Data Transfer Between CPU And Memory

Figure 7 shows how cache memory takes advantage of the principle of
locality to speed up memory accesses. When the CPU does a memory
reference, entire blocks of data are brought into cache. These blocks can
contain many bytes of data, maybe three or four times what the CPU actually
needs. There is a good chance that the next piece of data that the CPU
wants to access is in this block and already in the cache. Usually, if the data
is to be updated by the CPU, the copy that is in cache is modified.

Cache memory is used widely today in CPU implementations to improve
performance. But complications can arise in the case of multiprocessing.

24 PowerPC: An Inside View

Figure 8. An Incoherent View of Memory

Figure 8 shows what can happen in a multiprocessor implementation. In a
multiprocessor environment, a few CPUs, each with its own cache, share a
single stack of main memory.

Chapter 2. Inside the PowerPC Technology 25

 1. CPUs A and B are processing different instructions but it just happens
that at some point in time they need data from the location in memory
called X. X currently has a value of 123. So, X is brought into the caches
of CPUs A and B.

 2. Now, CPU A performs some operation that changes the value of X to 456
and writes out this value to main memory. We can see that A and B now
have an incoherent view of memory; that is, their views of what X should
be do not tally with each other.

Imagine what would happen if CPU B wanted to perform an arithmetic
operation on X. It would be using the wrong value of X!

This is just a simple example to show what can possibly happen. There are
many other possible scenarios which can occur. The term cache coherency
is used to describe the situation when multiple caches sharing main memory
agree with each other on what is in memory; that is, they all have an
accurate view of memory. It is very important to put in techniques to ensure
cache coherency when designing the cache subsystem. Snooping is one
such technique.

The problem with the cache incoherency scenario above is that the individual
caches are not aware of what each other are doing. If they were allowed to
“see” what all the caches are doing, they could take the necessary action to
maintain coherency. Bus snooping is a technique that allows them to do
this.

When bus snooping is implemented, the caches keep a close watch on the
activity going on along the system bus. In the scenario above, CPU B would
have detected CPU A writing out the new value of X. It would have taken
action to mark its own copy of X as being invalid. There are many other
scenarios of incoherency that can arise and various other ways that bus
snooping prevents incoherency. The important principle to keep in mind is
that all the caches that share memory must watch the bus activity and take
action accordingly to maintain coherency.

2.2.4 Cache Write Through and Write Back Policies
Now, think of what would happen if in the example shown in Figure 8 on
page 25, CPU A did not write the new value of X out to memory immediately.

26 PowerPC: An Inside View

Figure 9. No Immediate Write Back

Figure 9 shows what happens in this case. Even if bus snooping were
implemented, CPU B would not know that the value of X is changed because
there is no activity on the system bus. This introduces two new concepts of
cache behavior - write through and write back. These are policies that can
be implemented to control the behavior of the cache system.

A write through policy states that any copy of data in cache that is modified
by the CPU must be written out to memory immediately. This ensures that
any changes to data in cache are always reflected in main memory as soon
as possible. In addition, writing out of modified data generates system bus
activity, which is useful for other caches that are snooping the bus. The
disadvantage with this policy is the fact that any modification of data always
requires movement of data to main memory. This takes time, generates
additional bus traffic, and is not always necessary.

Chapter 2. Inside the PowerPC Technology 27

A write back policy is intended to overcome the main disadvantage of the
write through policy. The write back method states that modified data can be
kept in cache. It should be written to main memory when it is known that
another processor is accessing or wants to access that piece of data in
memory. In this way, modified data is only written out to memory when it is
necessary.

2.2.5 Physical and Logical Memory
Main memory in most modern computer architectures are usually organized
into small fixed size partitions. These partitions are called pages. The
typical size of a page of memory is 2KB or 4KB.

28 PowerPC: An Inside View

Figure 10. Program Loading into Memory

Figure 10 shows how a program is loaded into memory.

 1. Program X, which occupies three pages, is to be loaded into memory.
The program is stored on disk. There is a list of pages which are not

Chapter 2. Inside the PowerPC Technology 29

occupied in memory. Program Y is already in memory, occupying four
pages.

 2. The three pages of Program X are loaded into three free pages in
memory.

The pages that are loaded into memory contain instructions and data for
Program X. There will be addresses in the code to refer to data and branch
target locations. But Program X may not be loaded into the same location in
memory every time. For example, next time, pages 0, 1 and 2 may be
occupied by some other program and X may have to be loaded into pages 4,
5 and 6. The addresses in the program will have to be changed every time
the program is loaded! How are addresses specified in the program so that
wherever it is loaded, the addresses still point accurately at the correct
locations?

The problem is solved by using two types of addresses - logical addresses
and physical addresses. Logical addresses are used within a program to
refer to other locations within the program. It is expressed as a
displacement relative to the beginning of a program. When a program is
loaded into memory, the physical address of the beginning of the program is
called the base address. While the program is being executed, the CPU
converts the logical addresses in memory into physical addresses. This
process is called address translation. Address translation is done by adding
the base address of the program to the logical addresses. Figure 11 on
page 31 illustrates the difference between logical and physical addresses.

30 PowerPC: An Inside View

Figure 11. Physical and Logical Addresses

In the examples so far, the programs have been loaded into memory into
pages that are directly next to each other, or contiguous pages. In Figure 10
on page 29, the memory subsystem could find three free contiguous pages in
which to load Program X. What would happen if there are not enough free
contiguous pages in memory, as shown in Figure 12 on page 32?

Chapter 2. Inside the PowerPC Technology 31

Figure 12. Allocation of Free Pages

One thing the memory subsystem could do is compact the memory. This
involves rearranging the programs in memory such that all the free pages
are together in one block. But to do this involves a lot of effort and time
spent by the CPU.

A more popular method is to place the pages of the program wherever there
are free pages in memory. There is no need to place them in contiguous
locations. The operating system keeps track of where the pages are by
maintaining a page table.

32 PowerPC: An Inside View

Figure 13. Tracking Page Allocation with Page Tables

Figure 13 shows how Program X can be loaded without having to put it into
contiguous pages of memory. A page table is maintained for X showing the
pages and where they are kept in memory. By maintaining page tables like
this for all the programs, pages can be loaded anywhere in memory.

2.2.6 Virtual Memory and Demand Paging
Physical memory is relatively expensive to implement compared to fixed
disks. Typically, the amount of real memory installed in modern personal
computers amount to no more than tens of megabytes. Fixed disk sizes are
typically hundreds of megabytes or even gigabytes.

Virtual memory is a means of using the cheaper fixed disk space to
overcome the limits of more expensive real memory. It allows the computer
to appear to have more memory than actually installed.

At any instant, execution of program code is confined to only a small section
of the total program. Only the few pages of instructions and data that the
CPU uses at that instant is actually needed in memory. Virtual memory
gives the program the illusion of having a very large memory space. But

Chapter 2. Inside the PowerPC Technology 33

only the few pages that the CPU uses at any instant is loaded into real
memory. The rest of the pages stay on the fixed disk.

When the CPU needs some more pages of code and these pages are not in
memory, they are brought in from disk. This gives rise to the term demand
paging, which means that pages are only brought into memory when it is
needed, or demanded, by the CPU. The principle of locality, mentioned
earlier in 2.2.3, “Cache Coherency and Snooping” on page 23, ensures the
probability that the CPU will only need a few pages of code for a period of
time. This results in acceptable performance most of the time, as pages
brought into memory can satisfy the CPU′s requests for a while before some
more pages must be loaded.

In this way, programs can use a very large memory space - perhaps
hundreds of megabytes or a few gigabytes. But the amount of real memory
is much smaller than that. In fact, even the size of a single program can be
larger than real memory.

Figure 14. Virtual Memory and Swapping

Figure 14 gives an example of how a program larger than the size of real
memory can be stored during execution. Assume that the size of the
program is six pages and the size of real memory only three pages. When
the program begins to execute, the first page is brought from disk storage

34 PowerPC: An Inside View

into real memory. When more pages need to be accessed by the CPU, they
are brought into real memory from disk. Meanwhile, the other pages reside
on the disk. When all the pages in real memory are filled up and another
page is needed in memory, one of the pages that are already in real memory
will be swapped out. The process of swapping out involves:

 1. Deciding which page in real memory to swap out

 2. Writing it back to disk if anything in the page was modified

 3. Bringing in the new page that is needed

2.2.7 Big- and Little-Endian Memory Organization
Data is accessed by programs in data types of different sizes. For example,
character strings are accessed in individual bytes. Numbers such as
integers can be in 32-bit words. Floating-point operands can be in 32-bit
words or 64-bit double words.

These data are stored in memory and accessed in bytes. In the case of
operands that are more than one byte in size, the CPU expects the bytes to
be in a certain order when fetching the data. There are generally two ways
of organizing the bytes in memory. One is called Big-Endian byte ordering
and the other is Little-Endian byte ordering.

Figure 15. Big- and Little-Endian Byte Ordering

In Big-Endian ordering, the data is stored starting with the most significant
byte and ending with the least significant. The order is reversed in
Little-Endian organization. Figure 15 gives an example of how the

Chapter 2. Inside the PowerPC Technology 35

hexadecimal number 1234567890ABCDEF (a 64-bit double word) is stored in
memory in Big-Endian and Little-Endian organizations.

Traditionally, computer architectures and operating systems are designed to
support one of the byte orders. So, an operating system written to support
Little-Endian byte ordering would not be able to run on a CPU built to support
Big-Endian byte-ordering.

2.3 The PowerPC Architecture
The definition of the PowerPC Architecture provides a basic conceptual
model that provides many degrees of freedom for various implementations of
the architecture to suit different needs. This flexibility was one of the
important design goals for the architecture. This and other design criteria
will be outlined in the next section. Next, the layers of the architecture and
the basic processor model will be examined.

2.3.1 Design Goals of the PowerPC Architecture
The PowerPC Architecture was designed with the following goals in mind:

• The architecture should maintain application binary compatibility with the
POWER Architecture. This would enable PowerPC-based machines to
leverage on the existing base of RISC System/6000 applications and
users. As a result, the PowerPC instruction set and programming model
is similar to the one for the POWER Architecture.

• The architecture definition should allow flexibility and variety in
implementation to meet the requirements of different target markets and
uses. It was the intention of the designers to make the PowerPC an
effective platform for a wide range of implementations, from hand-held
devices to powerful mainframe-style machines. This has been achieved
in the design in a number of ways:

 1. Software and hardware can play variable roles in different
implementations. For example, although the basic conceptual model
includes a tightly coupled FPU (like the POWER Architecture),
floating-point operations can be implemented in software instead of a
hardware FPU. This will be useful for lowering cost in machines
where floating-point performance is not important. The architecture
definition is not rigid in these cases and it makes for a much more
flexible architecture.

 2. The layered definition described in 2.3.2, “Levels of PowerPC
Architecture” on page 37 above provides the PowerPC Architecture

36 PowerPC: An Inside View

with much of its flexibility. Implementations need not comply with all
the layers of the architecture.

 3. Implementers can add their own instructions, registers or exceptions
which are specific to their requirements. This can allow, for example,
special-purpose devices to be built which use instructions and
registers not found in the normal PowerPC instruction set and
programming model.

 4. Many hardware-specific details are not prescribed by the PowerPC
architecture or are only described in a very general sense. For
example, the bus signals are not specified. The size and type of
cache and whether there should be separate instruction and data
caches is not specified. It is also not specified which execution units
should execute which instructions.

It can be seen that there are many degrees of freedom for
implementations which optimize the basic PowerPC Architecture to suit
various uses.

• The PowerPC Architecture should provide support for both uniprocessor
and multiprocessor systems. The storage control subsystem of the
PowerPC Architecture has been designed to support multiprocessing.

• The architecture should support 64-bit instruction operation in the future
while providing upward compatibility for the current 32-bit architecture.
To achieve this aim, a set of 64-bit extensions were defined that ensures
software compatibility between the current 32-bit architecture and the
next generation of 64-bit processors. Implementations can comply with
either the base 32-bit architecture or the extended 64-bit architecture.

2.3.2 Levels of PowerPC Architecture
The PowerPC Architecture consists of different layers. Adherence to the
PowerPC Architecture can be measured according to which of the following
levels of the architecture is implemented:

Chapter 2. Inside the PowerPC Technology 37

Figure 16. Levels of the PowerPC Architecture

2.3.2.1 PowerPC User Instruction Set Architecture
The PowerPC user instruction set architecture (UISA) defines the base
user-level instruction set, user-level registers, data types, floating-point
exception model, memory models for a uniprocessor environment and the
programming model for uniprocessor environment.

2.3.2.2 PowerPC Virtual Environment Architecture
The PowerPC virtual environment (VEA) describes the memory model for a
multiprocessor environment, defines cache control instructions and describes
other aspects of virtual environments. Implementations that conform to the
PowerPC virtual environment architecture also adhere to the PowerPC user
instruction set architecture, but may not necessarily adhere to the PowerPC
operating environment architecture.

38 PowerPC: An Inside View

2.3.2.3 PowerPC Operating Environment Architecture
The PowerPC operating environment architecture (OEA) defines the memory
management model, supervisor-level registers, synchronization requirements
and the exception model. Implementations that conform to the PowerPC
operating environment architecture also adhere to the PowerPC user
instruction-set architecture and the PowerPC virtual environment architecture
definition.

2.3.2.4 PowerPC Chip Implementation Specific Details
Underneath the OEA are the details of the PowerPC Architecture that are
specific to each individual processor implementation and are not defined in
the general PowerPC Architecture.

2.3.3 The Basic Conceptual Processor Model
Although the PowerPC Architecture has been designed to be flexible and
much hardware detail was omitted from the definition (as mentioned in 2.3.1,
“Design Goals of the PowerPC Architecture” on page 36), there is a basic
conceptual model defined. The aim of this model is to ensure that the core
identity of the architecture and features, such as superscalar instruction
dispatch and processing, are defined.

Chapter 2. Inside the PowerPC Technology 39

Figure 17. PowerPC - The Basic Conceptual Processor Model

Figure 17 shows the basic conceptual processor model. If this diagram looks
familiar, it is because it is largely similar to Figure 3 on page 15. The
POWER Architecture was used as the starting point for the design of the
PowerPC Architecture and there are many common features in the two
designs which will be summarized in the next section.

The processor model features three main execution units which can execute
in parallel with each other:

• The branch processor is tightly coupled to the instruction unit. This is to
facilitate the implementation of branch look-ahead schemes which, as we
have seen earlier in 2.1.3, “Inside the POWER Architecture” on page 14,
helps to achieve zero-cycle branching. The architecture also allows for
the implementation of branch prediction schemes.

• The fixed-point unit (FXU) which handles processing of integer operations
and address translation. It includes the general-purpose registers (GPRs)

40 PowerPC: An Inside View

which are used for calculating addresses in the address translation
process.

• The floating point unit (FPU) which handles processing of floating point
operations. In the conceptual model, the floating-point registers (FPRs),
which contain the operands for floating point instructions, are
incorporated in the FPU. However, they can be implemented outside the
FPU, which could be the case if multiple FPUs were to be implemented.

Although the model specifies an FXU and a tightly coupled FPU, it is flexible
on the implementation of these units. For example, the FPU can be
implemented using software emulation instead of a hardware unit.
Additional FXUs and FPUs can be implemented for better performance in
high-end machines. Other types of execution units, such as load/store units,
can be implemented in hardware. Load/store units handle load/store
instructions which are instructions commonly found in RISC instruction sets
to move data between the registers and main memory.

The model defines separate instruction and data caches - what is known as a
Harvard-style cache subsystem. This is by no means a restriction and
unified caches can be implemented. In fact, the first PowerPC chip
implementation, the 601 processor, uses a unified cache structure, that is, a
combined data and instruction cache. Additionally, certain cache control
schemes are defined to enable multiprocessing. These schemes will be
discussed in the next section on the various elements of the PowerPC
Architecture.

2.3.4 A Comparison of POWER and PowerPC
The PowerPC Architecture, as a modification of the POWER Architecture,
inherits many characteristics of its predecessor.

• A branch processor that is closely coupled to the instruction unit to
facilitate branch look-ahead.

• Multiple execution units and parallel execution.

• Multiple instruction dispatch.

Besides that, the instruction sets of the two architectures are similar.

There are also some important differences that distinguish the two
architectures:

• The PowerPC Architecture is defined to support 64-bit operation.

Chapter 2. Inside the PowerPC Technology 41

• The PowerPC supports single-precision floating-point operations.
POWER supports only double-precision operations.

• The PowerPC Architecture is enabled for multiprocessing. There are
some important modifications to the storage control structure to support
multiprocessing.

• The PowerPC Architecture is designed to support both Big- and
Little-Endian modes of byte-ordering.

2.4 Elements of the PowerPC Architecture
The following elements are defined in the PowerPC Architecture:

Table 1. Elements of the PowerPC Architecture

Category What Is Defined

Instruction Set

• Instruction size

• Addressing modes

• Instruction set and functionality

Programming
Model

• Register set

• Functionality of the registers

• How data is stored

Memory Model

• Size and attributes of addressable memory

• Cache architecture

• Address translation

Exception Model
• The PowerPC exceptions

• Exception conditions

There is no one-to-one mapping between the elements listed above and the
layers outlined in 2.3.2, “Levels of PowerPC Architecture” on page 37.
Aspects of the architecture can fall into one or more layers. For example,
user-level instructions would fall into the UISA or VEA and supervisor-level
instructions would be defined under the OEA.

2.4.1, “PowerPC Instruction Set” on page 43 to 2.4.4, “PowerPC Exception
Model” on page 58 will go into brief detail about the various aspects of the
general architecture.

42 PowerPC: An Inside View

2.4.1 PowerPC Instruction Set
This section looks at the attributes of the PowerPC instruction set and
addressing modes as defined in the general PowerPC Architecture.

2.4.1.1 Instruction Set
The following categories of instructions are defined in the PowerPC
architecture:

• Integer instructions

These instructions operate on integer operands. They include
instructions that perform arithmetic on integer operands and instructions
that perform logical operations (such as negating a number). Examples
include:

− Integer arithmetic instructions

− Integer compare instructions

− Integer logical instructions

− Integer rotate and shift instructions

• Floating-point instructions

These instructions operate on floating-point numbers. Examples include:

− Floating-point arithmetic instructions

− Floating-point multiply-add instructions (of the form A+BxC)

− Floating-point compare instructions

• Load/Store instructions

These instructions are used to move data between main memory and
CPU registers and are necessary to support the load/store character of
the PowerPC Architecture.

Note that the order in which data is actually transferred from memory
may not be the same as the program order because of caching. For
example, if the two instructions:

Load X into R1
Load Y into R2

(where X, and Y are locations in memory, and R1 and R2 are registers)
are in program order, the second one may complete first if Y is already
in cache and X is not. This could cause difficulties if programs needed
data to be loaded in a certain order. This can be solved by memory
synchronization instructions which are under the category of processor
control instructions.

Chapter 2. Inside the PowerPC Technology 43

The set of load/store instructions includes:

− Integer load and store instructions

− Floating-point load and store instructions

• Flow control instructions

These are instructions that affect the instruction flow. They include
branch instructions and logical operations on the condition register.

• Memory control instructions

This set of instructions can be used for control of the cache subsystem
and other aspects of the memory subsystem. There is a small group of
cache control instructions in this set which can be used by user-level
programs. These instructions allow programs to pre-load into cache the
next set of data while processing the current set. This overlapping of
loading and processing may be used by programs to improve efficiency
and execution time.

• Processor control instructions

This is a group of mostly supervisor-level instructions that allow access
to special control registers. These registers control the operation of the
processor and generally a certain level of privilege is required to access
these registers.

Another set of instructions in this category allow synchronization of
memory accesses. As mentioned earlier in the load/store instructions
category, memory access synchronization is sometimes necessary to
maintain a certain order when accessing data. Synchronization
instructions help to maintain the correct program order. Using
synchronization instructions, the example given in the section on
load/store instructions can be rewritten as:

Load X into R1
Synchronize
Load Y into R2

The synchronize instruction will ensure that all outstanding memory
accesses are completed.

PowerPC instructions have the following attributes:

• All instructions are of a fixed-length (32-bits) and consistent format. This
allows the instruction decoding mechanism to be kept simple and
efficient. An efficient decoding system permits easier implementation of
pipelining and superscalar dispatch.

44 PowerPC: An Inside View

• Integer instructions operate on byte, half-word and word operands (a
word in the PowerPC Architecture is defined as 32-bits).

• Floating-point instructions operate on either single-precision (one word)
or double-precision (double word) floating-point operands.

• Instructions that perform computation do not work directly on operands in
memory. The PowerPC Architecture uses the load/store method of
working with data. Operands must be loaded from memory to registers
using load instructions, worked on and then, if modified, stored back to
memory using store instructions.

• Instructions use a non-destructive format when working with operands.
Normally, computational instructions are of the form R1 = R2 operation
R3. This ensures that operands in the registers R2 and R3 are not
destroyed by the computation.

2.4.1.2 Addressing Modes
Addresses are used in instructions to specify the location of operands in
memory. They are used by the CPU to tell the memory subsystem where to
get the data. An addressing mode is a method of specifying the address of
an operand. There is more than one addressing mode and computer
architectures usually employ a few.

The PowerPC Architecture specifies two basic and very simple addressing
modes. Both methods use a base address, taken from a register and a
displacement. The two values are added together to produce the 32-bit
effective address. The effective address is what the CPU presents to the
memory subsystem to locate the data. The two addressing modes differ on
the source from which the displacement is taken.

Chapter 2. Inside the PowerPC Technology 45

Figure 18. Register Index Addressing Mode

Figure 19. Immediate Addressing Mode

• Register Index

Effective Address = Base Register + Index Register

• Immediate Addressing

Effective Address = Base Register + Offset Value

46 PowerPC: An Inside View

The offset value in immediate addressing is specified directly in the
instruction.

Note that because of the load/store characteristic of the PowerPC
architecture, these addressing modes are not used in a computational
instruction to address operands. Instead, they are used in load/store
instructions to refer to memory locations to put/take data. They are also
used in branch instructions to refer to target locations for branching.

2.4.2 PowerPC Programming Model
This section starts by discussing the PowerPC register set - what registers
are available for programs that run on the PowerPC Architecture and what
are their functions. We will then take a brief look at the types of data storage
organization supported by the PowerPC Architecture.

2.4.2.1 PowerPC Register Set
This section looks at the register set defined by the PowerPC architecture
and the functions of some of the register sets.

The programming model defines 32 general-purpose registers (GPRs), 32
floating-point registers (FPRs), some special-purpose registers (SPRs), and a
few other miscellaneous registers.

PowerPC processors operate at two privilege levels - supervisor level and
user level. The supervisor mode of operation is typically used by the
operating system or extensions to the operating system. The user mode of
operation is usually used by user-level applications. Having different levels
of privileges allows the operating system to control the environment while
protecting critical system resources from being misused.

Chapter 2. Inside the PowerPC Technology 47

Figure 20. The PowerPC Programming Model

Figure 20 shows the register set in the PowerPC programming model and
the division between the supervisor and user programming models. Some of
the registers defined in the architecture are:

48 PowerPC: An Inside View

• General-Purpose Registers

GPRs are used as user-level, general-purpose data registers. They are
32 bits wide in a 32-bit PowerPC implementation and 64 bits wide in a
64-bit implementation. The programming model defines a set of 32 such
registers.

• Floating-Point Registers

There are 32 64-bit FPRs defined in the model. These registers serve as
data source or target registers for floating-point computations.

• Condition Register (CR)

The CR is a 32-bit user-level register that contains eight 4-bit fields.
These fields reflect the results of certain operations, such as integer and
floating-point, compare and arithmetic computations. These fields are
accessed using condition register instructions for testing and conditional
branching.

• Floating-Point Status And Control Register (FPSCR)

This register contains fields that show information on floating-point
computations. Some of the fields can be set by user-level programs to
control the behavior of floating-point operations (for example, how much
rounding should be performed on floating-point numbers).

• Machine State Register (MSR)

The MSR is a critical supervisor-level register. The fields in the register
define the state of the processor. Examples of these fields include
whether the processor is operating in user or supervisor mode and
whether the CPU is handling an exception or performing normal
processing.

• Segment Registers (SRs)

The entire map of logical memory is divided into sixteen 256MB
partitions. Each partition is called a segment. The 16 segments are
identified by the 16 SRs.

• Special-Purpose Registers (SPRs)

The programming model defines numerous SPRs. Some of these can be
accessed at the user level while most require supervisor privileges.
SPRs serve a variety of functions, ranging from indicating status and
allowing the operating system to control and configure the system to
performing special operations. Besides the SPRs defined in the basic
model, PowerPC implementations can add on additional SPRs to perform
special functions.

Chapter 2. Inside the PowerPC Technology 49

2.4.2.2 Bi-Endian Support
The PowerPC Architecture supports both Big- and Little-Endian modes of
data storage. PowerPC implementations should be able to run in both Big-
and Little-Endian modes (but not both at the same time). This means that
potentially any operating system, whether it operates in Big- or Little-Endian
mode, should be portable to a PowerPC machine.

When a PowerPC system is first started up, it operates in Big-Endian mode
by default. At that point, an operating system can switch the system to
Little-Endian mode if needed. The architecture defines a 2-bit field in the
MSR that specifies whether the system is operating in Big- or Little-Endian
mode. The mode can be changed by changing the contents of the field.
Note that PowerPC processors may implement a different way of mode
switching. For example, the PowerPC 601 implements the mode switch in
another 601-specific SPR called the HID0 instead of the MSR.

The PowerPC Reference Platform contains a specification of the Endian-mode
switching process for operating systems.

2.4.3 PowerPC Memory Model
The memory model defines the size and attributes of addressable memory,
how memory is managed and the cache architecture.

2.4.3.1 How Memory Is Partitioned
The 32-bit PowerPC Architecture allows up to 232 bytes (4GB) of logical
address space. The virtual address space is 252 bytes. This means that
logical addresses are 32 bits wide and virtual addresses are 52 bits wide.

The 64-bit architecture allows for 264 bytes of logical address space and 280

bytes of virtual memory.

The logical address space is divided into segments of 256MB. Each segment
is divided into pages of 4KB.

A mechanism called block address translation (BAT) gives quick address
translation for specially defined blocks in memory. These blocks are defined
as entries in BAT registers which are part of the set of SPRs. The blocks can
be set to be between 128KB and 256MB in size. Blocks are special areas in
memory which may be frequently accessed. Examples are areas in memory
representing some I/O devices or graphics devices. They are specially
defined to allow for faster address translation. Figure 21 on page 51
illustrates how memory is partitioned.

50 PowerPC: An Inside View

Figure 21. How Memory Is Partit ioned

2.4.3.2 How the Partitions Are Accessed
2.4.2.1, “PowerPC Register Set” on page 47 described a set of segment
registers. Each of these registers store the location of one segment. Page
tables store the locations of pages, with each entry in the table (called a
page table entry or PTE) storing the location of one page. Entries in a BAT
register store the location of a block.

Chapter 2. Inside the PowerPC Technology 51

Figure 22. How Memory Partition Locations Are Stored

Figure 22 shows where the locations of the various memory partitions are
stored.

2.4.3.3 Memory Protection
Various areas of memory contain code and data for many programs, both at
user and supervisor levels. Some areas of memory represent I/O devices -
programs access the devices by using the addresses of these areas of
memory. This is called memory-mapped I/O.

All these areas must be protected from unauthorized or invalid accesses by
other programs. The job of enforcing this protection lies with the memory
management unit (MMU). Memory areas can be protected either at the page
or block partition level.

Pages are protected by fields in the page table entry. There is one PTE for
each page and these entries contain some special fields that describe the

52 PowerPC: An Inside View

page. One of the fields is for page access protection. The following levels of
protection can be set for a page:

Table 2. Page Access Protection Levels

Protection Level
Supervisor-Level Programs User-level Programs

Read Write Read Write

Supervisor-only Yes Yes No No

Supervisor Write-only Yes Yes Yes No

Supervisor/User Yes Yes Yes Yes

Read-only Yes No Yes No

Table 2 shows the various levels of protection which can be set in the PTE
and what it means to supervisor- and user-level programs. Note that
wherever user-level programs are allowed to access a page, by default
access is allowed to supervisor-level programs too. In fact, any page that is
accessible by user-level programs must offer at least the same level of
access by supervisor programs.

Blocks are protected by setting fields in the BAT register entries. Since each
entry defines one block, each block can be configured as accessible by user
or supervisor-level programs.

2.4.3.4 Address Translation
The MMU′s primary responsibility is to translate logical addresses to
physical addresses. Address translation is needed in the following events:

• Instruction accesses

This occurs when the CPU needs instructions fetched from memory.

• Data accesses

Data accesses to memory are generated by load and store instructions.
This category includes I/O accesses that use memory-mapped I/O. As
we recall, memory-mapped I/O allows programs to access I/O devices by
using normal load/store instructions and addressing the device as if it
were an area in memory.

The address translation process for memory-mapped I/O is almost the
same as that for normal data loads/stores to and from memory. The only
difference is that, for memory-mapped I/O, the device must be accessed
to get the data.

Chapter 2. Inside the PowerPC Technology 53

• I/O controller interface accesses

This is an alternative way of accessing I/O devices. Messages are
passed to and from the processor and the I/O controller for the device.
This communication is used to provide control over the whole process as
well as to transfer data. The messages are in the form of load/store
instructions and replies, which are the messages that the I/O controller
passes to the processor. I/O controller interface accesses are identified
by a field in the segment register.

There are different address translation processes for the various types of
memory partitions.

54 PowerPC: An Inside View

Figure 23. The Address Translation Process

Chapter 2. Inside the PowerPC Technology 55

Figure 23 summarizes the various methods of address translation. There
are basically four types of address translation processes:

• Direct Address Translation

This is used if address translation is disabled. Address translation can
be disabled by setting some bits in the machine state register (MSR).
When translation is disabled, the logical address is used directly as the
physical address.

• Block Address Translation

In this process, the BAT registers are checked to see if the logical
address refers to a defined block. If it does, the BAT register entry is
used to generate a physical address.

• Page Address Translation

The segment registers are used to generate the virtual address. The
virtual page table is then accessed to map the virtual address to a
physical address. This process is run in parallel with block address
translation.

• I/O Controller Interface Translation

When a field in the segment register indicates that it is an I/O controller
interface access, page address translation is not used. Instead, the
logical address is used to generate the messages that are used to
communicate with the I/O controller.

This process is also run in parallel with block address translation. If
block address translation succeeds (that is, the address is in a defined
block), this process is ignored.

After the physical address is generated, the cache unit is checked to see
whether the requested code is in cache. If not, the address is put on the bus
to access main memory or the I/O controller.

2.4.3.5 Cache Arch itecture
The PowerPC Architecture does not define the hardware aspects of cache
implementations. It does not dictate whether there should be separate data
and instruction caches or a unified cache. It does not restrict the size or
organization of caches.

It does, however, define a method to control the caching of memory. This
control works at the page and block levels. There are three bits known as
the W, I and M bits (or collectively as WIM bits) in page table entries and

56 PowerPC: An Inside View

BAT register entries. By setting or clearing WIM bits, the caching modes of
that particular page or block can be controlled.

The bits have the following meanings:

• W bit - Write through/Write back

Setting the W bit means that the page or block follows a write through
policy.

Clearing the W bit means that the page or block follows a write back
policy.

• I bit - Cache Inhibition

Setting the I bit means that the page or block is cache-inhibited, that is, it
is not to be cached at all. This is usually the case when the page or
block represents an I/O device.

Clearing the I bit means that the page or block can be cached as normal.

• M bit - Coherency Control

When the M bit is set, coherency is enforced for the page or block. This
involves the cache snooping discussed in 2.2.3, “Cache Coherency and
Snooping” on page 23.

When the M bit is cleared, coherency is not enforced for that page or
block.

Table 3 summarizes the WIM bit settings and what they mean. Note that
when the I bit is set, caching is turned off and it does not matter what the W
and M bits are set at.

Table 3. What the WIM Settings Mean

W I M Write through/Write back Cache Coherency

0 0 0 Write back On No

0 0 1 Write back On Yes

1 0 0 Write through On No

1 0 1 Write through On Yes

X 1 X - Cache inhibited -

Chapter 2. Inside the PowerPC Technology 57

2.4.4 PowerPC Exception Model
Exceptions are external signals, errors or unusual events that cause the CPU
to switch to supervisor state. When the CPU is notified of an exception, it
saves the state of the system in some registers and begins executing code
found at some predefined location. This location is called an exception
vector or exception handler. Exception handlers are defined for the types of
exceptions which can be identified or foreseen. Exception vectors are
executed in supervisor mode.

The various types of exceptions are defined by two characteristics -
synchronous/asynchronous and precise/imprecise.

• Synchronous exceptions are caused by the instructions that the CPU is
processing at a particular moment.

• Asynchronous exceptions are caused by external events or other
conditions not connected to whatever the CPU is processing at the time
that the exception occurred.

• Precise exceptions are exceptions where the exact cause of the
exception is known and the machine state at the time of exception is
known. They are usually recoverable.

• Imprecise exceptions are usually caused by a very serious failure or
non-recoverable condition. They may cause the CPU to halt processing
or stop execution of some program.

The combination of these two characteristics gives rise to four types of
exceptions:

• Synchronous, precise exceptions

These are exceptions caused by instructions. An example is an invalid
address in the instruction. At the time these exceptions occur, the state
of the machine is known. The CPU can save the state of the machine,
handle the exception, and then continue with processing of other
instructions.

• Synchronous, imprecise exceptions

These are generally not supported in the PowerPC Architecture.
Although there are some floating-point exceptions defined as
synchronous imprecise in some implementations, they are handled as
synchronous precise exceptions.

• Asynchronous, precise exceptions

58 PowerPC: An Inside View

These are non-disastrous exceptions that are not caused by the
instructions being processed by the CPU. Examples are external
interrupts, which are signals from external devices to tell the CPU to
handle something. A clock device may send signals to the CPU at
regular intervals to keep time, for example.

• Asynchronous, imprecise exceptions

An example of this type of exception is a system reset, which causes the
CPU to stop processing, reset everything in the system and restart
processing.

2.5 The PowerPC Processor Family
A PowerPC is a microprocessor designed to meet the standard developed by
the alliance of IBM, Apple and Motorola. This standard specifies a common
instruction-set architecture allowing to design and manufacture PowerPC
processors, which then will be able to run the same code. The PowerPC
Architecture is based on the POWER technology used in IBM′s RS/6000
systems.

Chapter 2. Inside the PowerPC Technology 59

Figure 24. The PowerPC Processor Road Map

Figure 24 shows a road map of the PowerPC family as planned for the near
future. Features of the various processors which are in production as well as
those planned for release are summarized in the table below.

Table 4 (Page 1 of 2). PowerPC Processor Overview

Processor MHz Watt
Data
width

Bus
width

Cache
Transistor

million
Technology

601

50 5.6 32 64 32 2.8 0.65µ CMOS

60 6 32 64 32 2.8 0.65µ CMOS

66 7 32 64 32 2.8 0.65µ CMOS

80 8 32 64 32 2.8 0.65µ CMOS

100 4 32 64 32 2.8 0.5µ CMOS

603
66 2.5 32 32 8/8 1.6 0.5µ CMOS

80 3 32 64 8/8 1.6 0.5µ CMOS

60 PowerPC: An Inside View

Table 4 (Page 2 of 2). PowerPC Processor Overview

Processor MHz Watt
Data
width

Bus
width

Cache
Transistor

million
Technology

604 100 10 32 64 16/16 3.6 0.5µ CMOS

604E 150 11-12 32 64 32/32 tbd. 0.5µ CMOS

620
133 30 64 64 32/32 est. 6.9 0.5µ CMOS

150 35 64 64 32/32 est. 6.9 0.5µ CMOS

620+ 200 30 64 64 32/32 tbd. 0.5µ CMOS

The features of PowerPC 601, 603 and 604 processors are summarized in
2.5.1, “The PowerPC 601” through 2.5.3, “The PowerPC 604” on page 62.

2.5.1 The PowerPC 601
The PowerPC 601 microprocessor is the first member of the family and is
responsible for bringing PowerPC to the market as early as possible. It is a
32-bit implementation of the PowerPC Architecture and achieves its
performance through concurrent execution of up to three instructions per
cycle in its three parallel execution units:

• The fixed point unit
• The floating point unit
• The branch processing unit

The PowerPC 601 microprocessor clocks at speeds of up to 100MHz. At
66MHz, its estimated 60 SPECint92 and 80 SPECfp92 make it an excellent
high-performance, low-cost solution for desktop systems. A detailed
description of the PowerPC 601 microprocessor is given in 2.6.1, “The
PowerPC 601” on page 62.

2.5.2 The PowerPC 603
The PowerPC 603 microprocessor is a 32-bit implementation, intended for
use in uniprocessor applications, such as notebook computers and low-end
desktop computers. High performance is achieved through concurrent
execution of up to three instructions in five parallel execution units:

• The fixed point unit
• The floating point unit
• The branch processing unit
• The system unit
• The load/store unit

Chapter 2. Inside the PowerPC Technology 61

The Power PC 603 microprocessor incorporates low-power design and power
management features to offer competitive advantage in cost sensitive and
portable applications. 2.6.2, “The PowerPC 603” on page 68 describes the
PowerPC 603 microprocessor in detail.

2.5.3 The PowerPC 604
The PowerPC 604 microprocessor is designed to deliver exceptional
performance for high-end desktop systems, midrange server and
high-performance graphics workstations. It is a superscalar, multiprocessor
enabled chip that issues four instructions in parallel every clock cycle to six
execution units. Its three stage double precision floating point unit allows the
end user to take advantage of increasingly graphics oriented software
packages, as well as multimedia applications, providing tremendous
performance capabilities that were previously available only through
expensive add-on hardware. 2.6.3, “The PowerPC 604” on page 74
describes the PowerPC 604 microprocessor in detail.

2.5.4 The PowerPC 620
The PowerPC 620 microprocessor is designed to deliver the maximum
performance achievable with the current available half-micron CMOS
process technology. This superscalar design implements the full 64-bit
PowerPC architecture and includes an embedded L2 cache controller that
interfaces to standard SRAM chips. The design is targeted at high-end
desktop systems, workgroup server and transaction processing-based
systems.

2.6 PowerPC Technology Details
We will now take a closer look at each of the processor implementations.
We will briefly examine the internal processor architecture and focus on how
it differs from the general PowerPC Architecture.

2.6.1 The PowerPC 601
The 601 processor probably differs from the general PowerPC architecture
more than any other current implementation. This is due to its goal of being
a “bridge” processor for the transition between POWER and PowerPC
processor families. It allows most of the existing POWER applications to run
unmodified. This gives application vendors time to recompile their software
to take full advantage of the other PowerPC processors.

62 PowerPC: An Inside View

Figure 25. The PowerPC 601 Microprocessor Block Diagram

Figure 25 shows the block diagram of the 601 processor. The various
aspects of the processor architecture will be discussed next.

Chapter 2. Inside the PowerPC Technology 63

2.6.1.1 Instruction Queue and Dispatch Unit
The instruction unit (IU) contains an eight-instruction queue. Its job is to
dispatch the instructions in the queue to the execution units in the CPU, as
well as keep track of which instructions to fetch next.

The IU can fetch eight instructions per clock cycle from the cache. Eight
instruction words is actually the size of a cache block. The large number of
instructions that can be fetched each cycle offsets the 601′s disadvantage of
not having a separate instruction cache. To fetch the instructions, the IU
generates the effective addresses of the instructions and hands them to the
memory management unit.

The IU allows dispatch of integer instructions from the top four positions in
the queue. Floating-point and branch instructions can be dispatched from
the last four positions in the queue.

The IU benefits from the RISC attributes of the PowerPC instruction set:
fixed-length instructions with simple format. This allows a simple
fixed-length queue and easier decoding of instructions.

2.6.1.2 Branch Processor (BP)
The branch processor has an important job to perform. It constantly looks
into the instruction queue, takes out the branch instructions and tries to
predict whether the branch will be taken or not.

For conditional branches, the 601 architecture implements a mechanism
called static branch prediction. When coding programs, the programmer can
specify in the operand of a conditional branch whether or not the branch is
likely to be taken. The BP works according to this “prediction”. Branch
prediction schemes generally improve the performance of the CPU when
handling branch instructions.

The BP does its job by working with registers, such as the condition register
(which was discussed in 2.4.2.1, “PowerPC Register Set” on page 47). These
registers are implemented within the BP itself.

2.6.1.3 Fixed-Point Unit (FXU)
The FXU executes all the integer computation instructions which are
dispatched to it by the IU. It has specialized units, such as a divider, a
multiplier and an arithmetic logic unit, to perform this work. In addition, it
has the responsibility of calculating effective or logical addresses for memory
accesses. Any instruction that contains a memory address would require an
address calculation by the FXU. This includes integer and floating-point

64 PowerPC: An Inside View

load/store instructions. The FXU interfaces with the memory management
unit to send out the logical addresses that have been calculated.

32-bit general-purpose registers (GPRs) are implemented in the FXU.
These store the operands for integer computations.

2.6.1.4 Floating-Point Unit (FPU)
The FPU executes all the floating-point computations. It contains a
multiply-add array which allows it to efficiently perform floating-point
operations, such as add, multiply, divide and multiply-add.

The FPU also contains 32 64-bit floating-point registers (FPRs) as well as the
floating-point status and control register (FPSCR). These registers were
described in 2.4.2.1, “PowerPC Register Set” on page 47. The 601 FPU fully
supports all the IEEE 754 data types in hardware.

2.6.1.5 Memory Management Unit (MMU)
The 601 is an implementation of the 32-bit PowerPC Architecture, which
means that it supports up to 4 petabyte of virtual memory and 4 gigabyte of
real memory. The MMU ′s job is to translate the logical addresses given to it
by the FXU and BP to physical addresses which it presents to the cache unit.
The address translation process works as outlined in 2.4.3.4, “Address
Translation” on page 53. It has to be performed every time there is an
instruction fetch or exchange of data between the CPU and memory.

The MMU makes use of translation lookaside buffers (TLBs) to do its job.
TLBs are small, fast buffers that contain the most recent physical addresses
that were translated. Because of the principle of locality, it is quite likely that
an address that the MMU is looking for has just been translated recently. If it
is found in the TLBs, the MMU just takes the physical address in the buffer.
It does not have to go through the whole process of translation.

2.6.1.6 Cache Unit
The cache unit in the 601 is a 32KB unified instruction and data cache. It
uses eight-way set associative mapping.

Chapter 2. Inside the PowerPC Technology 65

Figure 26. PowerPC 601 Cache Organization

The cache is organized in eight sets of 64 lines. This operation is very
efficient because a 601 cache line is the same size as eight instruction
words. Each line contains the address tag, which is used to address and
identify the contents of that line. Sixteen words of data can be stored on
each line. This is divided into two sectors of eight words each. The sector is
the cacheable unit in the 601 processor. This means that each sector can be
individually loaded into the cache, flushed out from cache or marked as
invalid.

When data is loaded from memory to cache, the words that the CPU is
actually asking for are always transferred first, regardless of its position in
the sector. After that the rest of the sector is transferred. This ensures that
the cache unit can satisfy the CPU′s request as fast as possible. This
method of cache loading is called critical word first.

The cache unit is designed to follow a write back policy, but the 601
implements cache control using WIM bits as described in 2.4.3.5, “Cache
Architecture” on page 56.

66 PowerPC: An Inside View

To enforce cache coherency in multiprocessor or multi-cache systems, the
601 cache unit uses snooping together with the MESI protocol. The MESI
protocol uses 2 bits in the address tag lines to keep track of the state of a
cache sector. This adds up to 4 bits per cache line. The 2 bits indicate
which of the four states that the cache sector is in:

• Modified

The data in the cache has been modified and, therefore, the copy in
memory is invalid.

• Exclusive

The data in this sector is identical to the copy in memory and no other
cache has a copy of this data.

• Shared

The data in this sector is identical to the copy in memory but at least one
other cache unit also has a copy of this data.

• Invalid

The data in this sector is invalid.

The 601 cache has a dedicated port for snooping. This means that there are
separate interfaces for data transfer and snooping and the two activities can
happen simultaneously without interfering with each other.

2.6.1.7 Instruction Set
The 601 was intended to provide total application binary compatibility with
the POWER Architecture. It implements all the user-level instructions of the
POWER architecture as well as some of the supervisor-level instructions.

Some of the instructions in the PowerPC Architecture are not implemented in
the 601 or are implemented differently. For example, some of the cache
control instructions in the general architecture are meant for separate
instruction and data caches. Since the 601 implements a unified cache,
these instructions operate differently.

2.6.1.8 Register Set
The 601 implements some registers that are not part of the general PowerPC
Architecture:

• Real-time clock registers (RTC)

An RTC register to provide clocking is implemented in the 601 as part of
the set of special-purpose registers. They can be read by user-level
programs but only written to by supervisor-level programs.

Chapter 2. Inside the PowerPC Technology 67

• MQ register

The MQ register is a 32-bit user-level SPR that is used to hold the
product for multiply instructions and the dividend for divide instructions.
It is only implemented on the 601.

2.6.1.9 Exception Model
The PowerPC 601 defines the following classifications of exceptions:

Table 5. 601 Microprocessor Exception Classifications

Precise Imprecise

Synchronous • Instruction-caused
exceptions

None

Asynchronous • External interrupt

• Decrementer

• Machine check

• System reset

2.6.2 The PowerPC 603
The 603 is a 32-bit, low-power implementation of the PowerPC family. It
provides four software-controllable power-saving modes. This feature allows
the 603 to be used in systems, such as mobile workstations, where power
consumption needs to be as low as possible.

Up to three instructions can be dispatched per clock cycle to the five
execution units in the 603. As many as five instructions can be executed in
each cycle.

The 603 also supports a 32-bit or 64-bit data bus for developing lower-cost
systems.

Figure 27 on page 69 shows the block diagram of the 603 processor. The
various components of the processor will be examined next.

68 PowerPC: An Inside View

Figure 27. The PowerPC 603 Microprocessor Block Diagram

Chapter 2. Inside the PowerPC Technology 69

2.6.2.1 Instruction Queue and Dispatch
The instruction unit fetches up to two instructions per clock cycle from the
instruction cache. It contains an instruction queue which can contain up to
six instructions. Instructions for each of the execution units are dispatched
from this queue.

2.6.2.2 Branch Processor (BP)
The BP is similar to the one implemented in the 601. It looks into the stream
of instructions fetched by the instruction unit, takes out the branch
instructions and executes them. It makes use of branch prediction schemes
to handle conditional branches. The BP has its own set of registers to work
with, including the condition register.

2.6.2.3 Fixed-Point Unit (FXU)
Unlike the FXU in the 601, the FXU implemented in the 603 performs only
integer computation operations. It is not involved in the job of calculating
effective addresses. This is left to another execution unit.

Like the 601, the 32-bit GPRs in the 603 are implemented within the FXU.

2.6.2.4 Floating-Point Unit (FPU)
The FPU implemented in the 603 is similar to the one in the 601.

2.6.2.5 Load/Store Unit (LSU)
The 603 implements a specialized load/store unit that handles all the
load/store instructions. It provides an interface for data transfers between
the data registers (GPRs, FPRs) and the memory subsystem. It does this by
doing the calculation of effective addresses, which it then presents to the
data memory management unit. It also performs sequencing for load and
store instructions.

2.6.2.6 System Register Unit (SRU)
This special execution unit handles some supervisor-level instructions, such
as operations involving the special-purpose registers. Because some of the
supervisor-level instructions affect the system state, the SRU must make sure
that they are executed in strict order to preserve the integrity of the system.

70 PowerPC: An Inside View

2.6.2.7 Completion Unit (CU)
The CU′s job is to watch all instructions being dispatched and executed and
ensure that they are retired correctly in program order. Because of the
superscalar dispatch and parallel execution features of the PowerPC,
instructions may not complete in program order. For example, if instruction
A, which is before instruction B in the program order, is dispatched to the
FPU and instruction B to the FXU, B may complete execution before A.

The CU uses a five-instruction buffer to make sure that instructions are
completed in the proper order, despite the out-of-order execution.

2.6.2.8 Memory Management Units (MMUs)
The 603 implements two separate MMUs - the instruction MMU (I-MMU) and
the data MMU (D-MMU). Each of the two MMUs work with the respective
caches. As a 32-bit implementation of the PowerPC Architecture, the 603
supports up to 4 petabyte of virtual memory and 4 gigabytes of real memory.

The instruction unit performs the address calculation for instruction fetches
and presents the effective addresses to the I-MMU. The LSU performs the
address calculation for data loads and stores and presents the logical
addresses to the D-MMU. The MMUs then translate the addresses to
physical addresses and checks with the respective caches to see if the
requested instructions or data are in cache. If not, external memory is
accessed to bring in the required code or data.

Each MMU also has TLBs and BAT arrays implemented within the unit to
speed up the work of address translation.

2.6.2.9 Cache Units
The 603 implements separate instruction and data caches. Each is 8KB in
size and uses two-way set-associative mapping. Both caches are organized
in a similar manner.

Chapter 2. Inside the PowerPC Technology 71

Figure 28. PowerPC 603 Data Cache Organization

Figure 28 shows the organization of a 603 data cache unit. The cache unit is
divided into 128 sets of two lines each. Each line or block consists of 32
bytes or eight words, which is the cacheable unit. The line also contains an
address tag and two state bits.

The two state bits implement the MEI protocol for cache coherency
enforcement. The MEI protocol is similar to the MESI protocol described in
2.6.1.6, “Cache Unit” on page 65, except that there is no shared state. So
the only states allowed are modified, exclusive and invalid.

The instruction cache unit is organized in a similar manner to the data cache
- 128 sets of 2 lines, with each line holding eight words. The only difference
is that, with the data cache, instead of two state bits, each line in the
instruction cache has only one valid bit. The instruction cache is not
snooped, and cache coherency must be enforced by software.

72 PowerPC: An Inside View

Cache loading transfers blocks of eight words at one time. This applies to
both cache units. The eight-word block transfer is divided into four cycles of
64 bits each. The transfer is always performed with the critical double word
first, that is, the two words actually required by the CPU are always
transferred first regardless of their position in the cache line.

Snooping is implemented on the data cache but, unlike the 601 cache unit, it
does not have a dedicated port for snooping. It has one port which is used
for both data transfer and snooping.

2.6.2.10 Power Management
The 603 implements certain fields in the machine state register (MSR) that
can select the power mode that the processor operates at. Software can
manipulate these bits at supervisor-level to control the power mode settings.

There are four power-saving modes in the 603. The first three (doze, nap
and sleep) progressively reduce the power consumed by the processor by
disabling more and more functional units of the CPU. The fourth mode,
called dynamic power management mode, minimizes power consumption
during full operation. It does this by detecting any functional unit that is idle
and putting this unit in a low-power state. This does not affect the
operational performance or software execution process of the system.

2.6.2.11 Instruction Set
The 603 supports all the 32-bit PowerPC Architecture instructions in
hardware.

2.6.2.12 Register Set
The 603 implements all the registers in the user-level programming model of
the PowerPC Architecture. Some additional registers to help in the process
of address translation are implemented in the supervisor-level SPR set of the
603.

2.6.2.13 Exception Model
The PowerPC 603 defines the following classifications of exceptions:

Table 6 (Page 1 of 2). 603 Microprocessor Exception Classifications

Precise Imprecise

Synchronous • Instruction-caused
exceptions

None

Chapter 2. Inside the PowerPC Technology 73

Table 6 (Page 2 of 2). 603 Microprocessor Exception Classifications

Precise Imprecise

Asynchronous • External interrupt

• Decrementer

• System management
exception

• Soft system reset

• Machine check

• Hard system reset

2.6.3 The PowerPC 604
The PowerPC 604 microprocessor features six different execution units:

• The branch processor execution unit
• Load/store execution unit
• Floating-point execution unit
• Three separate integer execution units

− Two for all integer operations that can be executed in one single
clock cycle and

− one to execute all integer operations requiring more than one clock
cycle

The PowerPC processor 604 can execute up to four instructions in one single
clock cycle. The processor features zero-cycle capability as well as support
for multiprocessing.

 Figure 29 on page 75 shows a block diagram of the PowerPC 604 processor.
The various components of the processor will be examined next.

74 PowerPC: An Inside View

Figure 29. The PowerPC 604 Microprocessor Block Diagram

2.6.3.1 Instruction Queue ″Fetch ″ and Dispatch
The instruction unit fetches up to four instructions per clock cycle form the
instruction cache. It contains an instruction queue that can contain up to
eight instructions. Instructions for each of the execution units are dispatched
from this queue.

Chapter 2. Inside the PowerPC Technology 75

2.6.3.2 Branch Processor Unit (BPU)
The BP is similar to the one implemented in the 603. It looks into the stream
of instructions fetched by the instruction unit, takes out the branch
instructions and executes them. It makes use of branch prediction schemes
to handle conditional branches. The BP has its own set of registers to work
with, including the condition register.

All branches, including unconditional branches, are placed in a reservation
station until conditions are resolved and they can be executed. At that point
branch instructions are executed in order and the completion unit is notified
whether the prediction was correct.

2.6.3.3 Completion Unit (CU)
The CU retires executed instructions and updates register files and control
registers. The CU can quickly remove instructions from a mispredicted
branch, and the Branch Processor unit begins dispatching from the correct
path. The CU guarantees a sequential programming model by monitoring all
dispatched instructions and retiring them in order. The CU retires as many
as four instructions per cycle.

2.6.3.4 Rename Buffers
To avoid contention for a given register location, the 604 provides rename
registers for storing instruction results before the completion unit commits
them to the architected register. Twelve rename registers are provided for
the GPRs, twelve for the FPRs, and eight each for the condition register.

2.6.3.5 Fixed-Point Unit (FXU)
The 604 has three FXUs to improve cycle times. It has two single-cycle
integer units (SCIU) and one multiple-cycle integer unit (MCIU). The one
MCIU executes all integer instructions, such as integer multiply, divide, and
all move to/from special-purpose registers. The two SCIUs execute all other
register-to-register instructions in one cycle. Each SCIU and MCIU has one
two-entry reservation station to minimize calls.

The 604 FXU has 32 general-purpose registers (GPR) for integer operands.

2.6.3.6 Floating-Point Unit (FPU)
The FPU implemented in the 604 as the one in the 603 is IEEE 754-1985
compliant for both single- and double-precision operations. It also supports
non-IEEE mode for time-critical operations. The 604 FPU has a two-entry
reservation station to minimize stalls and thirty-two 64-bit floating point
registers (FPR).

76 PowerPC: An Inside View

2.6.3.7 Load/Store Unit (LSU)
The LSU implemented in the 604 is similar to the one in 603.

2.6.3.8 Memory Management Units (MMUs)
The MMUs implemented in the 604 are similar to the ones in 603.

2.6.3.9 Cache Units
The 604 implements separate instruction and data caches. Each is 16KB in
size and uses four-way set-associative mapping. Both caches are organized
in a similar manner.

Figure 30 shows the organization of a 604 data cache unit.

Figure 30. The PowerPC 604 Data Cache Organization

The parity checked cache unit is divided into 128 sets of four lines each. Each
line or block consists of 32 bytes or 8 words, which is the cachable unit. The
line also contains an address tag and two state bits.

The two state bits implement the MESI protocol for cache coherency
enforcement. (See 2.6.1.6, “Cache Unit” on page 65 for MESI details.)

The instruction cache unit is organized in a similar manner to the data
cache: 128 sets of 4 lines, with each holding eight words. The only difference

Chapter 2. Inside the PowerPC Technology 77

is that, with the instructions cache, instead of two state bits, each line has
only one valid bit. The instruction cache is not snooped, and cache
coherency must be enforced by software.

Cache loading transfers blocks of eight words at one time. This applies to
both cache units. The transfer is always performed with the critical double
word first, that is, the two words actually required by the CPU are always
transferred first regardless of their position in the cache line.

The cache is programmable on a per page or per block basis for write back
or write through. It can also be disabled or locked via software.

2.6.3.10 Power Management
The 604 provides one power savings mode, called NAP mode, in which all
internal processing and bus operation is suspended. Software initiates NAP
mode by setting the MSR. NAP mode is cleared when any asynchronous
interrupt is detected.

2.6.3.11 Instruction Set
The 604 supports all the 32-bit PowerPC Architecture instructions and most
optional PowerPC instructions in hardware.

2.6.3.12 Register Set
The 604 implements all the registers in the user instruction set architecture
(UISA), the virtual environment architecture (VEA) and the operating
environment architecture (OEA) (that is, supervisor-level) plus some 604
specific registers, such as Performance Monitor and Cache Control.

2.6.3.13 Exception Model
The PowerPC 604 defines the following classification of exceptions:

Table 7 (Page 1 of 2). 604 Microprocessor Exception Classifications

Type Exception

Asynchronous/nonmaskable • Machine check

• System reset

Asynchronous/maskable • External interrupt

• Decrementer

• System management interrupt(not defined
by the PowerPC Architecture)

78 PowerPC: An Inside View

Table 7 (Page 2 of 2). 604 Microprocessor Exception Classifications

Type Exception

Synchronous / precise Instruction-caused

Synchronous / imprecise Floating-point (imprecise nonrecoverable
mode)

2.6.3.14 Performance Monitor
The 604 incorporates a performance monitor facility that designers can use
to help bring up, debug, and optimize software performance, especially in
multiprocessing systems. These are software-accessible registers that
provide detailed information concerning the dispatch, execution, completion,
and memory access of the PowerPC instructions.

2.6.4 The PowerPC 620
The 620 is an implementation of the PowerPC family of RISC
microprocessors. The 620 implements the PowerPC Architecture as it is
specified for 64-bit addressing, which provides 64-bit effective (logical)
addresses, integer data types of 8, 16, 32, and 64 bits, and floating-point data
types of 32 and 64 bits (single and double precision). The 620 is software
compatible with the 32-bit version of the PowerPC microprocessor family.

The 620 is a superscalar processor capable of issuing four instructions per
cycle. As many as six instructions can finish execution at the same time. The
620 has six execution units:

• Floating-point unit
• Branch processing unit
• Load/store unit
• Three integer units

− Two for all integer operations that can be executed in one single
clock cycle

− One to execute all integer operations requiring more than one clock
cycle

 Figure 31 on page 80 shows a block diagram of the PowerPC 620 processor.
The various components of the processor will be examined next.

Chapter 2. Inside the PowerPC Technology 79

Figure 31. The PowerPC 620 Microprocessor Block Diagram

2.6.4.1 Instruction Queue ″Fetch ″ and Dispatch
The instruction unit fetches up to four instructions per clock cycle from the
instruction cache. Instructions for each of the execution units are dispatched
from this queue.

80 PowerPC: An Inside View

2.6.4.2 Branch Processor Unit (BPU)
The BPU is similar to the one implemented in the 603. It looks into the
stream of instructions fetched by the instruction unit, takes out the branch
instructions and executes them. It makes use of branch prediction schemes
to handle conditional branches. The BPU has its own set of registers to work
with, including the condition register.

All branches, including unconditional branches, are placed in a reservation
station until conditions are resolved and they can be executed. At that point
branch instructions are executed in order; the completion unit is notified
whether the prediction was correct.

2.6.4.3 Completion Unit (CU)
The CU retires executed instructions and updates register files and control
registers. The CU can quickly remove instructions from a mispredicted
branch, and the Branch Processor unit begins dispatching from the correct
path. The CU guarantees a sequential programming model by monitoring all
dispatched instructions and retiring them in order. The CU can retire several
instructions per cycle.

2.6.4.4 Rename Buffers
To avoid contention for a given register location, the 620 provides rename
registers for storing instruction results before the completion unit commits
them to the architected register. Eight rename registers are provided for the
GPRs, eight for the FPRs, and eight each for the condition register.

2.6.4.5 Fixed-Point Unit (FXU)
The 620 has three FXUs to improve cycle times. It has two single-cycle
integer units (SCIU) and one multiple-cycle integer unit (MCIU). The one
MCIU executes all integer instructions, such as integer multiply, divide, and
all move to/from special-purpose registers. The two SCIUs execute all other
register-to-register instructions in one cycle. Each SCIU and MCIU has one
two-entry reservation station to minimize calls.

The 620 FXU has 32 general-purpose registers (GPR) for integer operands.

2.6.4.6 Floating-Point Unit (FPU)
The FPU implemented in the 620 as the one in the 603 is IEEE 754-1985
compliant for both single- and double-precision operations. It also supports
non-IEEE mode for time-critical operations. The 620 FPU has a two-entry
reservation station to minimize stalls and thirty-two 64-bit floating point
registers (FPR).

Chapter 2. Inside the PowerPC Technology 81

2.6.4.7 Load/Store Unit (LSU)
The LSU implemented in the 620 is similar to the one in 603.

The LSU includes a 64-bit adder dedicated for EA calculations.

2.6.4.8 Memory Management Units (MMUs)
The MMUs implemented in the 620 are similar to the ones in 603 except that
the 620 supports up to one heptabyte (280) of virtual memory and one
terabyte (240) of physical memory.

2.6.4.9 Cache Units (L1)
The 620 implements separate instruction and data caches. Each is 32KB in
size and uses eight-way set-associative mapping. Both caches are organized
in a similar manner.

Figure 32 shows the organization of a 620 (L1) data cache unit.

Figure 32. The PowerPC 620 (L1) Data Cache Organization

The parity checked cache unit is divided into 64 sets of eight lines each. Each
line or block consists of 64 bytes or 16 words, which is the cachable unit. The
line also contains an address tag and two state bits.

82 PowerPC: An Inside View

The two state bits implement the MESI protocol for cache coherency
enforcement. (See 2.6.1.6, “Cache Unit” on page 65 for MESI details.)

The instruction cache unit is organized in a similar manner to the data
cache: 64 sets of 8 lines, with each holding 16 words. The only difference is
that, with the instructions cache, instead of two state bits, each line has only
one valid bit. The instruction cache is not snooped, and cache coherency
must be enforced by software.

Cache loading transfers blocks of 16 words at one time. This applies to both
cache units. The transfer is always performed with the critical double word
first, that is, the two words actually required by the CPU are always
transferred first regardless of their position in the cache line.

The cache is programmable on a per page or per block basis for write back
or write through. It can also be disabled or locked via software.

2.6.4.10 Level 2 Cache Interface (L2)
The 620 provides an integrated L2 cache controller that supports L2
configurations from 1MB to 128MB, using the same block size (64 bytes) as
the internal cache (L1). The L2 cache is a direct mapped, error correction
code (ECC) protected, unified instruction and data secondary cache that
supports the use of single- and double-register synchronous static RAM.

2.6.4.11 Power Management
The 620 provides two power savings mode, called NAP mode and DOZE
mode. Software initiates both NAP and DOZE mode by setting the MSR.

In the DOZE mode, all internal activity stops except for decrementer, time
base, and interrupt logic and the 620 does not snoop bus activity unless the
system asserts the WAKE-UP input signal

In the NAP mode, there is nothing in the caches subject to snoop activity.
Assertion of the WAKE-UP signal will cause the 620 to awaken, process a
snoop miss in the data cache, and return to the NAP mode.

2.6.4.12 Instruction Set
The 620 support all the 64-bit PowerPC Architecture instructions and most
optional PowerPC instructions in hardware.

Chapter 2. Inside the PowerPC Technology 83

2.6.4.13 Register Set
The 620 implements all the registers in the user instruction set architecture
(UISA), the virtual environment architecture (VEA) and the operating
environment architecture (OEA) (ie. supervisor-level) plus some 620 specific
registers, such as Performance Monitor and Cache Control.

2.6.4.14 Exception Model
The PowerPC 620 defines the following classification of exceptions:

Table 8. 620 Microprocessor Exception Classifications

Type Exception

Asynchronous/nonmaskable • Machine check

• System reset

Asynchronous/maskable • External interrupt

• Decrementer

• System management interrupt (not defined
by the PowerPC Architecture)

Synchronous / precise Instruction-caused

Synchronous / imprecise Floating-point

2.6.4.15 Performance Monitor
The 620 incorporates a performance monitor facility that designers can use
to help bring up, debug, and optimize software performance, especially in
multiprocessing systems. These are software-accessible registers that
provide detailed information concerning the dispatch, execution, completion,
and memory access of the PowerPC instructions.

84 PowerPC: An Inside View

Chapter 3. RISC versus CISC

Much debate has been carried out over whether RISC chip architectures are
better than CISC architectures. Traditionally, there were features that
strongly differentiated RISC architectures from CISC. These features gave
each type of architecture particular strengths and weaknesses. This chapter
will begin by summarizing the debate and the features that identified each
architecture.

Things have been changing very fast since the birth of RISC. Today, if we
look at modern CISC and RISC implementations, we will find that they have
borrowed many features and techniques from each other. In section 3.3,
“RISC and CISC Today” on page 89, we will discuss these features that have
crossed over from one type of architecture to the other. We will also
examine what is left to distinguish CISC and RISC architectures. While doing
this, we will emphasize on examples from the latest RISC and CISC
implementations such as the PowerPC and the Intel Pentium.

Finally, we will make a comparison between some members of the PowerPC
processor family and the Intel Pentium chip.

3.1 Features of RISC and CISC
The following sections describe the features of traditional RISC architectures
and contrast them with CISC.

3.1.1 Length and Format of Instructions
A computer program is a very long series of small steps. Each of the steps
is called an instruction, represented by a binary number between 1 and 15
bytes long. The binary instruction is loaded from memory into the
microprocessor, which decodes and executes it. After execution the
instruction is no longer needed and another instruction is loaded into the
microprocessor for execution.

Each instruction consists mainly of two parts - the opcode and the operands.
The opcode is the part of the instruction that tells the CPU what operation
should be performed. The operands are the data items on which the
operation is performed. For example, the operands of an integer add
operation are two integers, which the CPU adds together with perhaps a third
operand telling the CPU where to store the result. The operand of a branch

 Copyright IBM Corp. 1995 85

instruction is the target location where the instruction flow jumps to, with
perhaps a condition which must be fulfilled for the branch to occur.

In RISC architectures, the instructions are usually of a fixed length, with a
simple format. The opcodes are of a fixed length and usually aligned on a
word boundary. The simplicity and fixed-length nature of the instructions
makes the instruction decoding mechanism much simpler than in a CISC
architecture.

CISC architectures usually have variable length instructions. The decoding
mechanism in the CPU has to determine the length of the opcode, decode
the opcode and then determine the length of the whole instruction and the
number of operands following the opcode. This needed more complex
instruction decoding mechanisms. More importantly, this meant that the
instruction fetch and decoding process took a variable number of CPU cycles.
The first fetch of an instruction may not bring the whole instruction. The
opcode must be decoded before the CPU knows how long the whole
instruction is.

CISC architectures have a mix of register-to-register, register-to-memory,
and memory-to-memory operations. In some cases, there will be variations
of the same operation with these different modes in the same instruction set.

3.1.2 Register-Oriented Operations
RISC architectures use register-to-register operations in most instructions,
with only the load and store instructions accessing memory. This is the
load/store architecture described in 2.2.2, “Load/Store Architecture” on
page 22. It is partly the reason why most RISC instructions can execute in
one clock cycle. Instructions other than the load and store instructions do not
have to handle memory accesses.

3.1.3 Number of Addressing Modes
RISC instructions sets usually contain only a few simple addressing modes.
Most of the instructions will use simple register addressing because of the
load/store architecture. The only instructions that have to reference memory
are the load and store instructions. They usually use no more than two or
three simple addressing modes.

In contrast, CISC instruction sets usually contain a larger variety of
addressing modes. These addressing modes are used in instructions to
access the operands in memory. Typically, the same operation will be

86 PowerPC: An Inside View

implemented in a few instructions, with the different types of addressing
modes to access the operands.

3.1.4 Size of Register Sets
RISC architectures usually have many more registers than CISC
architectures. While a typical CISC architecture may have eight user-level
general-purpose registers, a RISC architecture may have four times that
number. In fact, some of the first RISC implementations contained more than
500 registers.

3.1.5 Size of Instruction Sets
The original intent of RISC was to keep the instruction set very small. The
first RISC implementations had a set of less than 50 instructions. The
instruction set was kept small by removing the complex instructions found in
CISC instructions sets. These complex operations were performed in RISC
computers by software that emulated a complex instruction with multiple
simple instructions.

A small instruction set with simple operations makes it easier to implement
all the instructions in hardware. This is called a hardwired CPU.

In a CISC technology-based microprocessor, the instruction set consists of
hundreds of instructions. A large number of these instructions are not
implemented in hardware but broken down into a series of simpler
instructions called microinstructions. The entire set of microinstructions in a
CPU is called microcode. Microcode is stored in a functional unit called the
control unit in the CPU. The control unit takes all the instructions to be
executed and translates them to microinstructions, which the CPU then
executes. The use of microcode allows the system designer to conserve
space on the chip by allowing a large number of instructions to be
implemented by combining a far smaller number of microinstructions.

Instructions implemented in microcode create overhead when executed. An
instruction would execute faster if hardwired than if translated to
microinstructions. But the complexity of many CISC instructions and the
state of chip technology at the time RISC was born meant that CISC
architectures had to be microcoded.

Chapter 3. RISC versus CISC 87

3.2 Advantages and Disadvantages
The features of traditional RISC and CISC architectures give them certain
advantages and disadvantages over each other.

3.2.1 Execution Time
The original motivation for RISC came from studies that showed that a large
majority of code in software (about 80%) consists of simple instructions -
operations such as add, subtract and assign. Removing the overhead of
complex instructions and microcode and implementing the simple
instructions in hardware should speed up the execution time of most
software.

3.2.2 Pipelining
In 2.2.1, “Pipelining and Superscalar Dispatch” on page 18, we saw how
implementing pipelining can improve the throughput of the CPU. Pipelining
is especially suited to RISC architectures. The fixed-length simple format
instructions allow for instruction fetching and decoding in a fixed, regular
number of clock cycles. Execution of most instructions can be completed in
one cycle because of the simple instructions and hardwired implementation.
Because of the simpler, more regular execution process for RISC
instructions, pipelining can be more efficiently deployed.

In contrast, imagine implementing pipelining in a CISC CPU. The instruction
fetch and decode sequence takes a variable number of clock cycles,
depending on the instruction. Some instructions may go through more than
one fetch and decode sequence. Memory accesses have to be made to
gather the operands for computational instructions. Execution of instructions
take a variable number of clock cycles, depending on the number of
microinstructions needed to complete the operation.

3.2.3 Optimizing Compilers
Instructions in CISC architectures became more and more complex because
the designers were trying to make them look and behave like high-level
programming languages. One advantage of having only simple, primitive
instructions in RISC architectures was that it would be easier for compilers to
optimize code. Compilers perform optimization after compilation. One of the
things they do is reorganize the code to try to keep all parts of the processor
equally busy. It is easier to reorganize the code if it is made up of simple,
primitive instructions than complex instructions that resemble high-level
languages.

88 PowerPC: An Inside View

3.2.4 Code Compatibility
The success of systems based on CISC technology is mainly due to the fact
that most applications are compatible on an object code level. The same
application can be used across different processor generations. This is
because the microcode can be retained from the previous processor with
microinstructions added to support the new instructions.

RISC technology provides compatibility not on an object code level but on
source code level. Different RISC processors with a different instruction set
would require a new compiler.

3.3 RISC and CISC Today
The number of transistors on a single chip in 1980 was limited to only a few
thousands. Today, hardware designers can already put between three and
four million transistors on a single chip. Because of this advancement in
chip technology, today′s RISC (PowerPC) and CISC (Pentium)-based
processors have more in common than before.

The original intent of reducing the instruction set was to remove the
overhead of microcode translation and implement the instructions on
hardware to execute faster. The advances in VLSI technology allowed chip
designers to implement more complex instructions in hardware. This is the
reason why RISC designers can now implement larger and more complex
instruction sets without violating the spirit of RISC.

Instructions are what a microprocessor needs to get the work done, and a
very high number of instructions directly implemented on a single chip adds
immense power to a microprocessor. With today′s manufacturing technology
there is no longer any need to reduce the instruction set on the
microprocessor, as long as there is space available to implement them
efficiently.

On the other hand, CISC architectures have also taken advantage of the
advances in chip technology to incorporate features that were previously
only identified with RISC architectures. For example, the Intel Pentium chip
implements simple, single-cycle RISC-style instructions in hardware. These
instructions have priority over the microcoded complex instructions during
execution. The Pentium also makes heavy use of features such as
pipelining, superscalar instruction dispatch, and branch prediction schemes.

Although the two types of architectures have borrowed heavily from each
other, there are still some features that can distinguish them:

Chapter 3. RISC versus CISC 89

• The fixed-length nature of RISC instructions versus the variable-length
CISC instructions.

For example, the PowerPC instructions are fixed at 32 bits in length. The
Intel x86 instructions vary from 1 to 15 bytes in length.

• Number of addressing modes.

• Size of register sets.

While the PowerPC has 32 GPRs and 32 FPRs, the Pentium has only 8
GPRs.

3.4 Feature Comparison of CISC and PowerPC Processors
Table 9 compares the various features of the PowerPC 601 and 603 chips
and the Intel Pentium chip.

Table 9 (Page 1 of 2). Comparison Between the PowerPC Processor 601/603 and Pentium

PowerPC 601 PowerPC 603 Pentium

Instruction
architecture

RISC RISC CISC/RISC

Cache 32KB unified
8KB data
8KB instruction

8KB data
8KB instruction

Cache - write
policy

Write back or write
through

Write back or
through (data)
Write through
(instruction)

Write back or
through (data)
Write through
(instruction)

Cache organization
8-way set
associative

2-way set
associative (both)

2-way set
associative (both)

Cache parity Parity in cache No Parity in Cache

Parity
Parity on all data
and address
transfers

Parity on all data
and address
transfers

Parity on all data
and address
transfers

Superscalar
instruction
dispatch

3 instructions total
per cycle (branch,
integer, floating
point)

3 instructions total
per cycle (branch,
integer, floating
point)

2 integer per cycle
or 2 floating point
per cycle

90 PowerPC: An Inside View

Table 9 (Page 2 of 2). Comparison Between the PowerPC Processor 601/603 and Pentium

PowerPC 601 PowerPC 603 Pentium

Superscalar
execution

3 instructions total
per cycle (branch,
integer, floating
point)

5 instructions total
per cycle (each
execute unit)

2 integer per cycle
or 2 floating point
per cycle

Execution units

1 fixed point unit,
1 floating point
unit,
1 branch
processing unit

1 fixed point unit,
1 floating point
unit,
1 branch
processing unit,
1 load/store unit,
1 system register
unit

2 fixed point units,
1 floating point
units

External data bus 64-bit 64-bit 64-bit

External address
bus

32-bit 32-bit 32-bit

Word size 32-bit 32-bit 32-bit

User registers 32 GPRs, 32 FPRs 32 GPRs, 32 FPRs 8 GPRs, FP stack

Cache line size
64 bytes (two
32-byte sectors)

32 bytes 32 bytes

Out-of-order
instruction
execution

Yes Yes No

Branch prediction Static Static Dynamic

Voltage 3.6 volts 3.3 volts 5.0 volts

Power
Consumption

8/9.2 watts; 80MHz,
4 for 100MHz

2/3 watts (80MHz)
13/16 watts (P5);
4/10 watts (P54C)

Number of
Transistors

2.8 mil l ion 1.6 mil l ion 3.1 mil l ion

Clock Frequency 50, 66, 80, 100MHz 66, 80MHz
60, 66MHz (P5),
100/66MHz,
90/60MHz (P54C)

Chapter 3. RISC versus CISC 91

3.5 Performance Comparison CISC versus PowerPC
There are several benchmark standards available for evaluating CPUs, but
the most widely used standard is the Standard Performance Evaluation
Cooperative (SPEC92), a consortium formed by HP, Apollo, MIPS and Sun, to
evaluate and compare the performance of CPUs. The consortium designed a
set of floating point and integer tests in 1989 that were known as SPEC89
standard. In 1992, these early tests were revised to more accurately reflect
the capabilities of newer RISC processors.

SPECint92 and SPECfp92 are benchmark suites that measure integer and
floating-point performance of processors.

Figure 33 on page 93 shows the estimated SPECint92 benchmark figures for
integer performance for the Pentium chip and some of the members of the
PowerPC family. Figure 34 on page 94 shows the estimated SPECfp92
figures for floating-point performance. Higher figures mean better
performance.

Proper use of the performance estimates is very important. In conjunction
with Motorola and Apple, IBM publishes estimated SPECint and SPECfp
benchmark results for PowerPC processors when the first silicon milestone is
achieved. The SPEC organization allows publishing of reasonable estimated
performance results, which are derived from simulation and other
techniques. These estimated results are helpful to position the PowerPC
processors against rival processors. In combination with other features, such
as size and power characteristics, they are useful in indicating the kinds of
customers with a preview of the technical capabilities of the PowerPC
processor. They do not accurately represent the performance that would be
achieved when the PowerPC processor is used in a future system. Actual
system performance is dependent on many design characteristics - such as
I/O, memory, bus, compilers and cache - that may not be reflected in the
SPEC benchmark suite or in simulations. Because of this, actual system
performance, especially in low-end, high-volume systems, can be, and often
is, lower than estimated performance, especially in low-end, high-volume
systems that do not include high performance memory. PowerPC processor
performance estimates can not be used in lieu of this to describe future
system performance.

92 PowerPC: An Inside View

Figure 33. Estimated SPECint92 Figures for PowerPC and Pentium Chips (Source, PowerPC
Development Somerset, Austin TX)

Chapter 3. RISC versus CISC 93

Figure 34. Estimated SPECfp92 Figures for PowerPC and Pentium Chips (Source, PowerPC
Development Somerset, Austin TX)

94 PowerPC: An Inside View

Chapter 4. PowerPC Strategy

This chapter provides details on the PowerPC Reference Platform
specification and the PowerPC Microprocessor Hardware Reference Platform.
The PowerPC Reference Platform specification Version 1.1 released in
October 1994 is an open specification for building PowerPC-based computer
systems. It is sponsored by IBM, Motorola, and other companies. There are
two important aspects of this specification. First, the specification provides a
description of the devices, interfaces, and data formats required to design
and build a compliant computer system. It describes methods to abstract
hardware details from operating system software. Multiple operating systems
can then run on a compliant system.

Second, the specification provides a reference implementation that describes
in detail the design of a compliant system, to encourage other system
vendors to build and market PowerPC-based systems. A reference
implementation is a fully disclosed design with known operating system
support. Reference implementations allow vendors to build
hardware-compatible systems while operating systems move to a hardware
abstraction model. The reference implementation described in the October
1994 specification was intended to run to PowerPC ported versions of AIX,
OS/2, Solaris and Windows NT. The PowerPC Reference Platform
specification is explained in more detail in 4.2, “PowerPC Reference Platform
Specification Technology Details” on page 101.

The PowerPC Microprocessor Hardware Reference Platform will replace the
PowerPC Reference Platform specification in the future. The PowerPC
Microprocessor Hardware Reference Platform is a system design
architecture that allows a PowerPC-based computer designed to that
architecture to run operating systems from Apple Computer, IBM, Motorola,
and others. The goal of the PowerPC Microprocessor Hardware Reference
Platform is to let the customer choose computer hardware independently of
choosing the software they will run on it. The PowerPC Microprocessor
Hardware Reference Platform is explained in more detail in 4.3, “The New
PowerPC Microprocessor Hardware Reference Platform” on page 103.

 Copyright IBM Corp. 1995 95

4.1 PowerPC Reference Platform Specification
When IBM launched the original IBM Personal Computer in 1981, there was
no standard Personal Computer design. It took other companies about two
years to copy the IBM PC design by simply re-engineering what IBM had
developed. This was the start of a market which grew to a size beyond
everyone ′s belief. The fact that there was no official specification available to
which a Personal Computer could be built led to many compatibility
problems. The majority of PCs on the market today are called “IBM
compatible”, but when you are trying to copy something the result will be a
hit or miss. To ensure 100% compatibility always requires well-defined,
documented specifications. With the PowerPC microprocessor technology
IBM provides system designers the opportunity to build systems based on
PowerPC microprocessor technology and the technology described in the
PowerPC Reference Platform specification.

The goals of the PowerPC Reference Platform are:

• To create an open industry standard to be used for the implementation of
PowerPC-based systems and to support the hosting of operating systems
and applications on the PowerPC Reference Platform.

This specification itself is available to the industry and can be used by
any hardware or software vendor to develop PowerPC system products.

• To provide a specification that covers most traditional computing
environments, from portables to servers.

• To leverage the high-volume personal computer component market for
chip sets, devices and subsystems whenever possible.

Many parts of a computer system can be the same as we use for today′s
personal computer systems. Certain system attributes, such as
low-speed communication ports, can be easily implemented with
off-the-shelf parts. Being able to use readily available personal computer
components minimizes system costs, development time, expense,
provides multiple suppliers, and simplifies porting of many operating
systems, firmware and device drivers.

• To leverage existing and future industry-standard buses and interfaces
(that is, ISA, VME, Micro Channel Architecture, NuBus, etc.), and provide
an established base of adapters that are well understood by card and
system designers.

These existing bus architectures have a proven level of performance and
functionality. Also, established industry-standard interfaces and protocols
(for example, SCSI, IDE, LocalTalk, Ethernet, etc.) and newer bus

96 PowerPC: An Inside View

architectures, interfaces, and protocols (for example, PCI, PCMCIA,
Serial SCSI, ATM, etc.) provide higher levels of performance or usability
not achievable by previous standards. The PowerPC Reference Platform
Specification, coupled with software abstractions of hardware and device
drivers, allows the system designer to determine which buses, interfaces,
and protocols best suit the target system environment.

• To provide address map relocation.

Another key attribute of the PowerPC Reference Platform specification is
the relocation of devices and subsystems within the PowerPC address
space. Subsystem address information, which defines where I/O devices
reside, is stored by the system designer and passed to the operating
systems. The architecture also allows the use of multiple and identical
buses and adapters in the same system without address conflicts. This is
very important in computing environments requiring a significant amount
of I/O.

• To place control of power management in the operating system.

It is important that the combination of hardware and software systems be
designed to minimize power consumption through automatic power
saving methods. For environmental and cost reasons, systems not being
actively used should minimize their power consumption. The goal is for
all PowerPC Reference Platform systems to be power conscious and to
conserve energy whenever possible.

4.1.1 Why PowerPC Reference Platform Specification?
Computer systems today span a wide spectrum of size, price, performance,
and features, and also a wide range of environments, from hand-held
portables to room-size mainframes. The largest percentage of systems are
based on the IBM AT and Apple Macintosh or a variety of workstation-level
RISC architectures.

These machines cover the needs of personal productivity, entry engineering
design, entry commercial data management, information analysis, and
database, file and application servers. There has been a tremendous
increase in the performance of these systems over the last ten years,
enabling them to run very sophisticated operating systems and applications.

Today, despite their high levels of performance and functionality, existing
architectures limit the system designer′s ability to add innovative new
features without jeopardizing operating systems or applications. Many times,
system designers must carry obsolete hardware structures to maintain
compatibility.

Chapter 4. PowerPC Strategy 97

Figure 35. Old Compatibil i ty Model - Software Communicates Directly with Hardware

Figure 35 shows the old compatibility model. The software communicates
directly with the hardware. Changes to the hardware require changes to
software and vice versa.

This tight coupling of hardware and software ultimately restricts both
hardware and software innovation. The challenge for new computer
architectures will be to make use of new technologies as soon as they are
developed. The key to meeting this challenge is abstracting the hardware
from the operating system kernel and application without sacrificing
compatibility or performance.

Figure 36. New Compatibil i ty Model - Abstraction Software Layer Separates
Hardware and Software

98 PowerPC: An Inside View

Figure 36 shows the PowerPC Reference Platform specification compatibility
model. An abstraction layer separates the hardware from the software.

The advantage of the new compatibility model is that the hardware designers
now have room to innovate without jeopardizing the ability of their platform
to run as many operating systems as possible.

Figure 37. PowerPC Reference Platform Specification Design Environment

Figure 37 shows that the hardware innovation can be much more rapid than
in the PC environment today. Changing the hardware, for example, from a
hardware level 1 to hardware level 2 only requires a change in the
abstraction software layer. No changes are required on the operating
system or the application itself. This compatibility model requires one
different abstraction layer for all different hardware or operating system
products.

Chapter 4. PowerPC Strategy 99

Software, from power on self test (POST) and diagnostics to operating
systems and applications, drives the usability and acceptance of a computer
system. The computer user judges the effectiveness of a system by its user
environment, responsiveness, functionality and reliability. The system
software controls these attributes by leveling the hardware features and
performance to provide a total system solution.

Independent software vendors need the promise of a large installed base of
hardware systems to justify the development expense of today′s operating
systems and applications. To create such a large installed base of systems,
an industry-standard computer architecture is required. This computer
system architecture must yield systems for the personal computer and
workstation industry that include the latest digital technologies. The key
features of the architecture must be its ability to do the following:

• Allow hardware vendors to differentiate from each other

• Use industry-standard components and interfaces

• Support optimization of operating system and interfaces

• Support optimization of application performance

This type of open system architecture allows hardware system vendors to
develop different yet compatible systems. Each system is able to run any of
the compatible operating systems, as well as applications written to these
operating systems and the system architecture.

The PowerPC Reference Platform specification provides a description of
these devices, interfaces and data formats required to design and build a
PowerPC-based industry-standard computer system. It is written to provide a
hardware standard which, when coupled with the hardware abstraction
software provided by the operating system or hardware system vendors,
allows the computer industry to build PowerPC systems that all run the same
shrink-wrapped operating systems and applications for those operating
environments.

The PowerPC Reference Platform specification defines a system design
framework which covers most traditional computer systems, from portables
to servers. It gives system developers the freedom to choose the level of
market differentiation and enhanced features required in a given computing
environment without carrying obsolete interfaces or losing compatibility.

The PowerPC Reference Platform specification defines the minimum
functional requirements needed for a compliant PowerPC Reference Platform
specification implementation. It also provides a list of recommended

100 PowerPC: An Inside View

hardware subsystems, devices, and interfaces that, if used in a PowerPC
Reference Platform specification implementation, yield a level of functionality
required by most operating environments.

The PowerPC Reference Platform specification also describes a reference
implementation that is a fully functional PowerPC Reference Platform
specification system design. Various operating systems have been ported to
this design.

4.2 PowerPC Reference Platform Specification Technology Details
The PowerPC Reference Platform specification covers these main areas:

• Hardware Configuration
The hardware configuration describes the minimum and
recommended hardware standards and capacities required to be
PowerPC Reference Platform compliant and compatible with targeted
operating environments.

• Architecture
The system architecture defines the minimum and recommended
hardware system attributes required to design a compatible
computer system.

• Machine abstraction
The machine abstractions define in general the approaches that
software should take to bridge differences among PowerPC
Reference Platform subsystems.

• Boot Process and Firmware
Details on the PowerPC Reference Platform boot architecture which
supports all targeted operating systems, including the boot structure
used for loading operating systems from diskette, hard file, CD-ROM
or networks.

• Reference Implementation
Examples of PowerPC Reference Platform-compliant systems. These
examples may be used as a high-level design for vendors who want
to produce a compatible system, or they may be used as an example
for vendors who want to produce a different system.

See Figure 38 on page 102 for an example implementation of a PowerPC
Reference Platform specification system.

Chapter 4. PowerPC Strategy 101

Figure 38. Typical PowerPC Desktop System

Whenever possible, industry-standard components are used. A PowerPC
Reference Platform specification system may be implemented differently from
the one shown above.

102 PowerPC: An Inside View

4.3 The New PowerPC Microprocessor Hardware Reference Platform
The PowerPC family of microprocessors is the foundation for an established
and rapidly expanding market for RISC-based hardware and software. Apple
Computer has shipped well over one million Power Macintosh computers
since introducing them in March 1994. A number of companies have also
announced Power Macintosh-compatible systems. IBM has introduced a full
line of PowerPC systems, and Motorola has recently introduced a range of
desktop and server systems. Other companies such as Bull, Canon, and
FirePower have announced or shipped PowerPC-based systems.
PowerPC-based computers today outsell all other RISC-based computers
combined.

The PowerPC systems shipped by Apple retain many legacy characteristics
of the Macintosh hardware and software. The PowerPC systems shipped by
IBM, Motorola, and others provide the benefits of the PowerPC Architecture
yet retain many legacy characteristics of IBM-compatible PC designs.
Applications have been written for both environments. However, the
operating systems on which the applications run are not compatible with the
other type of hardware platform. This forces computer users to choose
among incompatible hardware configurations, instead of focusing on what
applications they need to solve their problems.

This incompatibility also causes hardware manufacturers and software
developers to have to choose platform families. Thus, PowerPC-based
development is fragmented, and availability of hardware and software is
inhibited, limiting the options available to users.

To correct these problems facing customers and developers, Apple, IBM, and
Motorola looked into various ways of combining the two hardware
architectures into a common system architecture. In November 1994, the
three companies announced agreement to develop a common hardware
architecture that supports operating systems ported to the PowerPC family of
processors. With the introduction of the new architecture, software vendors
can anticipate a large, compatible hardware base and are motivated to
create or modify their code for PowerPC processors.

The three companies agreed to create a PowerPC Microprocessor Hardware
Reference Platform. The specification will be released to the industry in the
near future.

Under the initial PowerPC Microprocessor Hardware Reference Platform
agreement, Apple is responsible for porting Mac OS to the PowerPC

Chapter 4. PowerPC Strategy 103

Microprocessor Hardware Reference Platform, IBM is responsible for porting
AIX and OS/2 for the PowerPC, and Motorola is responsible for porting
Windows NT. Sunsoft and Novell have announced plans to port Solaris and
NetWare as well. The goal is to port these operating systems to run in native
binary form on any platform that conforms to the PowerPC Microprocessor
Hardware Reference Platform architecture. Additionally, the PowerPC
Microprocessor Hardware Reference Platform architecture is designed to
allow applications that run today on these operating systems to run
unchanged from their existing code.

4.3.1 Current Environment
To gain an even broader acceptance of PowerPC-based designs among
hardware vendors, software vendors, and system users, Apple, IBM and
Motorola have a strong desire to make it easy to run multiple, binary
compatible operating systems on PowerPC platforms, particularly in the
personal computing desktop marketplace. The companies originally took
different approaches to accomplish this common goal.

IBM created the PowerPC Reference Platform, an architecture designed to
coexist with IBM-compatible personal computers. The PowerPC Reference
Platform specification is described in detail in 4.1, “PowerPC Reference
Platform Specification” on page 96. On the other hand, Apple built their
Power Macintosh to replace the Motorola 68000-based Macintoshes. Apple ′s
first priority was to provide its customers with a seamless transition to the
PowerPC Architecture.

4.3.2 The Power Macintosh
In March 1994, Apple started using the PowerPC microprocessor in its
Macintosh family of desktop computers, replacing the Motorola 68000 series
of processors. Built-in emulation software lets programs compiled to the
68LC040 instruction set continue to run in the PowerPC environment. The
first generation of Power Macintosh products uses a version of the PowerPC
bus (called the Apple RISC bus, or ARBus) to connect built-in I/O devices,
and uses NuBus to connect plug-in expansion cards.

The second generation of Power Macintosh desktop products uses the PCI
bus to connect both internal ASICs and expansion cards. They also include
Open Firmware that implements IEEE Standard 1275 for Boot Firmware.

104 PowerPC: An Inside View

4.3.3 The New Hardware Reference Platform
The PowerPC Microprocessor Hardware Reference Platform is a new, unique
architecture that combines elements of both the PowerPC Reference Platform
architecture and the Power Macintosh architecture. It is a system
architecture design that allows hardware developers to build computers that
will run to PowerPC ported versions of AIX, Mac OS, NetWare, OS/2, Solaris,
and Windows NT. These are referred to as the six native operating systems.
As they do today, DOS/Windows programs written in Intel x86 code can also
run on these systems through emulation or hardware coprocessing. Please
refer to Chapter 5, “PowerPC Software Environment” on page 117 for more
information about application compatibility.

This architecture defines the hardware and firmware interfaces, data formats,
and minimum functionality that software expects to see in a hardware
implementation. With this information, a third party can design a computer
that performs the same functions and runs the same system software and
applications as a machine produced by Apple, IBM, or Motorola.

The discussion in the rest of this chapter focuses on both the PowerPC
Microprocessor Hardware Reference Platform architecture and an initial, or
reference, implementation of it currently being developed by Apple, IBM, and
Motorola.

An implementation of this architecture must provide for the address maps
and register mappings and definitions required by all operating systems that
run on that PowerPC Microprocessor Hardware Reference Platform system. It
should also support as much common I/O equipment as possible, consistent
with cost and size targets for the system.

One of the goals of the developers of the PowerPC Microprocessor Hardware
Reference Platform was to minimize the trauma to the various operating
systems of having to support new functions from other environments.
Several cases had to be considered:

• Unique architectural features: a company had a function unique to its
native environment (Power Macintosh or PowerPC Reference Platform).
For example, the Apple Desktop Bus (ADB) is unique to the Power
Macintosh environment, while the 8042 keyboard interface is used in the
PC environment.

• Implementation: a company had its own implementation of a common
function, such as audio.

Chapter 4. PowerPC Strategy 105

• Growth and evolution: all companies agreed to extend PowerPC
Microprocessor Hardware Reference Platform to include new or better
functions or implementations of functions.

In the first case, deciding whether to include a function in the PowerPC
Microprocessor Hardware Reference Platform architecture was based on
whether its function would be useful in the PowerPC Microprocessor
Hardware Reference Platform environment. That is, would customers still
expect or want it? This was particularly true in the I/O area, where, for
example, there are different mouse/keyboard and different serial port
architectures between the original PowerPC Reference Platform and Power
Macintosh. Also, PowerPC Reference Platform systems support plug-in ISA
adapters, which do not exist in the Power Macintosh architecture. To provide
broad compatibility, the PowerPC Microprocessor Hardware Reference
Platform architecture specifies a minimum set of required functions that
supports key features from both environments. In the case of I/O, this means
a PowerPC Microprocessor Hardware Reference Platform platform will
support I/O from both the Power Macintosh and the original PowerPC
Reference Platform environments.

In the second case, factors such as projected market requirements and
product cost helped decide which implementation of a function to include in
the initial PowerPC Microprocessor Hardware Reference Platform system
design. Examples of common functions for which implementation decisions
had to be made include the audio subsystem, the storage subsystem (hard
disk, floppy, CD-ROM), and the graphics subsystem. The PowerPC
Microprocessor Hardware Reference Platform architecture generally does
not mandate which particular implementation of a subsystem is required, but
it does provide mechanisms to maximize compatibility. For example, IDE or
SCSI interfaces are both acceptable for hard disk and CD ROM, and Open
Firmware and device drivers will make them compatible in a PowerPC
Microprocessor Hardware Reference Platform system. An implementation
decision was usually based on the total effort, both hardware and software,
required to develop and build a particular implementation. Thus, all other
factors being equal, an implementation was chosen to minimize the porting
effort of the majority of operating systems that are planned to run on the
PowerPC Microprocessor Hardware Reference Platform. That porting effort
usually consists of writing new device drivers.

In the third case, architecture decisions will be based on market
requirements and industry standards and trends. Implementation decisions
will also consider schedule and cost. As technology and market
requirements evolve over time, the PowerPC Microprocessor Hardware

106 PowerPC: An Inside View

Reference Platform can change to include these new functions. For example,
new infra-red (IR) technology for wireless communication or new serial bus
standards can be added to the PowerPC Microprocessor Hardware
Reference Platform. Emerging multimedia standards are another example.

It should be noted that the inclusion of the PCI bus architecture in the
second-generation Power Macintosh computers was a big step in helping
Apple, IBM, and Motorola complete the definition of a common architecture
and implementation. The current PowerPC Microprocessor Hardware
Reference Platform architecture specifies PCI headers for various functions
in an PowerPC Microprocessor Hardware Reference Platform system and
could someday be updated to include other bus architectures. The
architecture defines how operating systems are informed of the presence of
other bus interfaces.

The PowerPC Microprocessor Hardware Reference Platform architecture also
specifies the use of the IEEE Standard 1275 for Open Firmware, a technology
that makes the computer′s hardware configuration process independent of
any operating system. The role of Open Firmware in the PowerPC
Microprocessor Hardware Reference Platform environment is discussed later
in this chapter.

The PowerPC Microprocessor Hardware Reference Platform architecture
specification is meant to be an open, industry-standard architecture that will
facilitate the rapid growth of PowerPC-based hardware and software.

4.3.4 What the PowerPC Microprocessor Hardware Reference
Platform Offers Users

The PowerPC Microprocessor Hardware Reference Platform offers computer
users a much more flexible operating environment. They can now buy a
computer based on the problems they want to solve, not based on the
computer ′s hardware architecture. The creators of the PowerPC
Microprocessor Hardware Reference Platform believe that software, from
power-on self-test (POST) and diagnostics to operating systems and
applications, drives the usability and acceptance of a computer system. A
computer user judges a computer system by its user environment,
responsiveness, functionality, and reliability. System software controls these
attributes by leveraging the hardware features and performance to provide a
total system solution.

All the native operating systems ported to the PowerPC Microprocessor
Hardware Reference Platform provide users with their traditional strengths
and features. On a single hardware platform a user can now experience

Chapter 4. PowerPC Strategy 107

superior ease of use and installation of hardware and software, install many
industry-standard applications and hardware adapters, and enjoy enhanced
networking options.

A customer can buy a PowerPC Microprocessor Hardware Reference
Platform and preserve his or her investment in I/O peripherals such as
keyboards, displays, printers, telecommunications, etc. As the industry
standardizes on PowerPC Microprocessor Hardware Reference Platform,
customers will have a wider choice of peripherals and connectivity options. A
fundamental goal of the PowerPC Microprocessor Hardware Reference
Platform specification is that existing applications that run today on Power
Macintosh and PowerPC Reference Platform specification systems will run
unchanged on a PowerPC Microprocessor Hardware Reference Platform.
Thus, the customer′s software investment is also preserved.

4.3.5 Initial PowerPC Microprocessor Hardware Reference Platform
Implementation

This section presents a description of the hardware elements in the initial
implementation of the PowerPC Microprocessor Hardware Reference
Platform. Note that this is only one example of a system design that
complies with the PowerPC Microprocessor Hardware Reference Platform
architecture. It is not a definition of the architecture, and other
implementations may be significantly different. The design of the initial
implementation is still under development and can change from that
described here.

Detailed information on the initial hardware design will be released by the
three companies at a later date. The first customer shipments of compliant
hardware are planned to be made in the second half of 1996.

A block diagram of the initial system is shown in Figure 39 on page 111

4.3.6 Processor
The processor in this system is a PowerPC microprocessor. In this
implementation it will be the latest model of the PowerPC 604. It has a 32-bit
address bus, providing addressability up to 4 GB. It has a 64-bit data bus.

108 PowerPC: An Inside View

4.3.7 System Memory (DRAM)
Minimum memory size is 8 MB. Design options are being explored to try to
achieve a maximum memory size of 1 GB. 3.3-volt asynchronous DRAMs are
planned to be used. The data path is 64 bits with either 8 bits of parity, or
ECC, or no protection.

4.3.8 Level 2 (L2) Cache
This implementation supports up to a 1 MB of L2 cache. It has a 64-bit data
path with optional 8-bit parity, attached to the processor bus in a ″lookaside″
configuration. ″Lookaside″ means that both the L2 cache and the memory
controller decode CPU addresses in parallel. The L2 cache can be used in
either a write-through or copy-back mode.

Industry-standard cache memory chips will be used. Initial versions of the
PowerPC Microprocessor Hardware Reference Platform reference
implementation will use asynchronous SRAM. Other versions can use burst
SRAM for higher performance. The L2 data and tag SRAMs will be on a
card, mounted on a 182-pin ELF connector to simplify upgrades.

The card supports both 5-volt and 3.3-volt components. The motherboard
contains 5-volt-tolerant, 3.3-volt buffers for the data SRAM outputs. The tag
SRAMs have 3.3-volt drivers. The card will also contain an EEPROM with a
serial interface, which will contain presence-detect and other L2
configuration information.

4.3.9 Read-Only Memory (ROM)
The PowerPC Microprocessor Hardware Reference Platform architecture
specifies a region for ROM address space. In the initial implementation it is
located in the top 16MB of the 4GB address space. The OS ROM is an
optional, socketable ROM which is present if the system runs Mac OS. It is
64-bits wide and up to 4MB in size. The system ROM contains boot code,
Power-On-Self-Test (POST) code, system Open Firmware code, diagnostics,
and other code unique to the hardware configuration in the system. It is
8-bits wide and up to 1MB in size. It is implemented using Flash ROM.

Both ROMs are addressed in the top 16MB of the 4GB address space. The
ROMs do not support parity or Error Correction Code (ECC). They are
currently 5-volt parts, and the use of 3.3-volt parts is being investigated.

Chapter 4. PowerPC Strategy 109

4.3.10 Memory Controller and PCI Bridge
The memory controller and PCI bridge chip in the initial implementation is a
follow-on to an existing Motorola part, MCPC105 Eagle. This chip is the
interface between the processor bus and the PCI bus and is also the
controller for the memory, second level cache (L2), and ROM (processor
bus). The processor bus interface is 64 data bits and 32 address bits. The PCI
interface is 32 data/address bits. PCI bus speeds of up to 33MHz are
supported. The chip uses 3.3 volts. The new functions this ASIC supports for
the PowerPC Microprocessor Hardware Reference Platform include:

• A new address map compliant with the PowerPC Microprocessor
Hardware Reference Platform architecture. Some legacy address maps
from previous architectures may be supported to allow software time to
migrate.

• ECC for system memory (DRAM). Controls and checking/generation for a
SEC/DED code are provided on the chip.

• ROM controls to handle the two types of ROM present in this
implementation.

• Miscellaneous other functional enhancements.

110 PowerPC: An Inside View

Figure 39. PowerPC Hardware Reference Platform - Init ial Implementation Block Diagram

Chapter 4. PowerPC Strategy 111

4.3.11 I/O Subsystem
As discussed previously, an important goal of the PowerPC Microprocessor
Hardware Reference Platform is to support I/O peripherals from both the
Power Macintosh environment and the PowerPC Reference Platform
specification environment. The following section will discuss some of the
hardware and software implications of this goal.

4.3.11.1 PCI Devices
The PCI bus is the backbone of the I/O subsystem. There is one PCI bus in
the initial implementation. It is compliant with Revision 2.1 of the PCI
Standard. The following functions are connected to the PCI bus:

• Graphics subsystem. This implementation has a 64-bit DRAM-based
graphics accelerator chip with at least 2 MB of EDO DRAM, which
provides high-resolution true color and multimedia capabilities. It has a
Bi-Endian frame buffer, controlled by aperture addresses. The chip is a
commercially available part and is mounted on the motherboard. In
general, a PowerPC Microprocessor Hardware Reference
Platform-compliant platform need only ensure that the graphics
subsystem support several standard pixel formats and dual-aperture
mode for Bi-Endian operations.

• Ethernet. The initial implementation uses a commercially available PCI
bus-master Ethernet controller that is mounted on the motherboard.

• Two or three PCI expansion card slots.

• System I/O chip. This chip is mounted on the motherboard and contains
general I/O functions. Although the initial implementation supports these
functions, not all of them are required by the PowerPC Microprocessor
Hardware Reference Platform architecture:

− Up to 33 MHz PCI bus interface that supports master and slave
transactions.

− PCI Arbiter for six PCI masters plus the CPU.

− Bus master Enhanced IDE controller. This controller supports two IDE
channels (primary and secondary), and supports up to four devices
(two per channel). The controller has PCI bus master capability with
scatter/gather functions. It also supports PIO modes 0-4 and DMA
modes 0- 2. Any operating system that runs on a PowerPC
Microprocessor Hardware Reference Platform can boot from the IDE
hard drive or CD-ROM. It is also capable of booting from the SCSI
hard disk or CD-ROM.

112 PowerPC: An Inside View

− PCI/ISA bridge, for 8- and 16-bit ISA devices. This bridge allows ISA
mastering by forwarding ISA-master memory references to the PCI
bus.

− Seven-channel DMA between ISA devices and PCI memory,
compatible with an 8237 DMA controller. 32-bit DMA addresses are
supported.

− 16-channel (cascaded) 8259 interrupt controller function. This
controls interrupts from timers and ISA devices. It can be configured
with the open programmable interrupt controller (Open PIC) logic on
the system I/O-2 chip (see below) so that the combined interrupt
structure is compatible with either Intel-based software (for example,
Windows) or Mac OS.

− Timer (82C54) functions.

− Miscellaneous decodes and support logic.

• System I/O-2 chip. This chip is mounted on the motherboard and
provides the following functions, most of which are related to controlling
I/O transfers associated with Mac OS environment. Although the initial
implementation supports these functions, not all of them are required by
the PowerPC Microprocessor Hardware Reference Platform architecture:

− Up to 33 MHz PCI bus interface that supports master and slave
transactions.

− Controller for 5 Descriptor-Based DMA (DBDMA) channels. This
function performs scatter/gather and process synchronization
operations based on control words and a buffer list in main memory.

− Integrated 85C30 Serial Communications Controller (SCC) cell which
supports GeoPort and LocalTalk operations. There are two SCC
channels. Each is allocated one DBDMA channel for input and one for
output.

− Apple Desktop Bus (ADB) hardware interface. This is the interface to
the Power Macintosh-compatible keyboards, mice, tablets, and other
ADB devices.

− Integrated Versatile Interface Adapter (VIA) cell. In this
implementation of the PowerPC Microprocessor Hardware Reference
Platform, the VIA cell is used for compatibility with earlier Macintosh
interrupt processing.

− Integrated SCSI-2 controller. One DBDMA channel is allocated.

− Open programmable interrupt controller (Open PIC) that supports two
processors and up to 16 external and I/O interrupts. It can be

Chapter 4. PowerPC Strategy 113

configured with the 8259 interrupt controller logic on the System I/O
chip so that the combined interrupt structure is compatible with
either Intel-based (for example, Windows) interrupt-handling
software or Mac OS software.

− Controller for a serial bus used to obtain internal system data for
configuration and diagnostics firmware.

4.3.12 ISA Devices
This initial PowerPC Microprocessor Hardware Reference Platform
implementation contains an ISA subsystem to maintain compatibility with the
many PC style plug-in devices. The bus carries 16 bits of data, 24 bits of
addressing, and provides for up to three ISA expansion slots. The System I/O
chip described previously is the interface for the ISA subsystem to the PCI
bus. The functions in the initial implementation provide the following
services, which are either required or supported by the PowerPC
Microprocessor Hardware Reference Platform architecture:

• Audio Subsystem. SoundBlaster compatibility is provided by a
commercially available chip mounted on the motherboard. The system
provides separate DMA channels for stereo recording and playback.

• Power Management Chip. This chip is mounted on the motherboard and
provides hardware control and interfaces to support the various system
power-managed states, including hibernate and Mac OS SoftPower
function. The chip is a microcontroller that responds to activities such as
modem rings and mouse or keyboard signals. It provides power
management interrupts and power supply control. The controller is
powered by a separate 5 V auxiliary power supply which is powered on
whenever AC is applied.

• Super I/O Chip. In the initial implementation, this chip provides interfaces
for:

− Floppy Disk interface equivalent to the NS82077 controller.
Auto-sense and auto-eject are supported for 1.44 MB (formatted)
MFM drives. GCR disk format is not supported by the PowerPC
Microprocessor Hardware Reference Platform architecture nor by this
implementation. One ISA DMA channel is allocated for the floppy
device.

− Parallel Port. IEEE 1284 EPP and ECP are supported. One ISA DMA
channel is allocated for the parallel port.

− Two serial ports, software-compatible with PC16550. The controller
decodes COM ports 1-4.

114 PowerPC: An Inside View

− PC-compatible keyboard and mouse control is provided by Intel
8042-compliant logic.

− Real Time Clock (RTC) PC-compatible functions.

− Infra-red controller (IrDA, HP).

• NVRAM, implemented as an 8K x 8 discrete chip.

• Three ISA slots.

4.3.13 Open Firmware
The PowerPC Microprocessor Hardware Reference Platform architecture
requires all compliant systems to implement the Open Firmware startup
process defined by IEEE 1275-1994 Standard for Boot (Initialization,
Configuration) Firmware, and the PCI Binding to IEEE 1275-1994 specification.
These standards evolved from the OpenBoot firmware architecture
introduced by Sun Microsystems. The Open Firmware startup process is
driven by startup firmware, also called boot firmware, in system ROM and in
ROM chips on expansion cards. While the startup firmware is running, the
computer will power up and configure its hardware (including peripheral
devices) independently of any operating system. The computer will then find
an operating system on a mass storage device or in ROM, load it into system
memory, and terminate the Open Firmware startup process by giving that
operating system control of the PowerPC processor. The six native operating
systems mentioned earlier are planned to run on a PowerPC Microprocessor
Hardware Reference Platform-compliant system with Open Firmware.

The startup firmware includes these specific features:

It is written in the Forth language, as defined by IEEE Standard 1275.
Firmware code is stored in an abbreviated representation called FCode.
The computer′s startup firmware includes a loader and interpreter that
will install FCode in system memory. Firmware in expansion card ROMs
can modify the Open Firmware startup process by supplying
device-specific FCode that the computer′s firmware loads and runs
before launching an operating system.

• The startup process creates a data structure of nodes called a device
tree, in which the characteristics of the hardware system and of each
peripheral device are described by property lists. The device tree is
stored in system memory. The operating system that is ultimately
installed and launched will search the device tree to determine the
nature and characteristics of available hardware. The device tree can
also store runtime drivers, written in the PowerPC instruction set, for
various combinations of devices and operating systems.

Chapter 4. PowerPC Strategy 115

• System firmware includes a basic set of device drivers and associated
resources such as fonts, written in FCode, that are required during
system startup before an operating system is running. Plug-in expansion
cards that are used during startup may also contain driver code. The
firmware in system ROM installs these drivers in system memory so they
can be executed on the PowerPC processor.

• Firmware in system ROM may also contain debugging facilities for both
FCode and some kinds of operating system code.

4.3.14 Summary
The PowerPC Microprocessor Hardware Reference Platform will effectively
bring together the two worlds of PowerPC-based systems, namely the
PowerPC Reference Platform specification-compliant systems and the Apple
Power Mac-compliant systems. PowerPC Microprocessor Hardware
Reference Platform will replace the PowerPC Reference Platform
specification and ultimately define an open standard for PowerPC
processor-based personal computers.

116 PowerPC: An Inside View

Chapter 5. PowerPC Software Environment

Technology, as everyone knows, is advancing rapidly. Microprocessors are
getting faster and faster, actually doubling the performance every 14 to 18
months. Additionally, every new generation of microprocessors is offered at
a better price/performance ratio. In the area of communications, bandwidths
are increasing to the point where handling multimedia data streams
becomes practical.

Mobile and wireless communications are gaining presence in the market,
and interactive TV and the information highway are not far behind. The
digitization of data is changing the way we manage information. CD-ROM
technology is improving the storage capabilities and decreasing the cost of
information distribution. Mixing data types of speech, pen and video in the
same document or the same application is now feasible.

As the technology and the power of personal systems have increased, so has
the complexity of developing operating systems and applications. This
complexity has created a new set of issues and challenges, in particular for
independent software developers (ISVs), and for end users. In Chapter 4,
“PowerPC Strategy” on page 95 we discussed the PowerPC strategy - a
strategy that will provide an open environment and simplify the development
of new operating systems and applications. This chapter provides an
overview of PowerPC operating systems and application development tools.

5.1 Operating Systems for PowerPC
IBM is creating an open standard. The microprocessors are from a
collaboration between IBM, Apple and Motorola. The PowerPC Reference
Platform specification is open to all manufacturers. The option cards fit in
industry-standard open buses, and systems are designed to run a wide range
of operating systems.

The goal is to support a wide range of applications. Applications written for
the major 32-bit operating systems, such as OS/2, UNIX and Windows NT are
supported natively. Available 16-bit applications (for example, DOS and
Windows applications) are supported via various compatibility techniques on
these 32-bit operating systems.

 Copyright IBM Corp. 1995 117

The initial operating systems being ported to the PowerPC Reference
Platform specification include OS/2 Warp Connect (PowerPC Edition), AIX,
Windows NT, and Solaris.

5.1.1 IBM OS/2 Warp Connect (PowerPC Edition)
The strategic operating system for the IBM Personal Computer Power Series
and the IBM ThinkPad Power Series product line is OS/2 Warp Connect
(PowerPC Edition).

OS/2 Warp Connect (PowerPC Edition) will continue the OS/2 tradition of
providing the most flexible, integrated, reliable and usable client environment
for personal productivity applications. The IBM Power Series will provide the
best price/performance platforms in the industry for these applications.
Wordprocessing, spreadsheets, electronic mail, office functions, and many
other productivity applications will be supported, as will leading-edge
implementations of multimedia. OS/2 Warp Connect (PowerPC Edition) will
also provide a powerful environment for interactive education and training
applications at all levels, and will be a superior high-end platform for the
home computing environment.

In combination with products such as LAN Server, Communication
Manager/2, DB2/2, CICS/2, IMS/2, and TCP/IP, OS/2 Warp Connect (PowerPC
Edition) will also function as a server for file and device sharing, database
transactions, application sharing and gateways.

OS/2 Warp Connect (PowerPC Edition) will operate as a full-function,
high-performance client system, running 16-bit DOS and DOS/Windows
applications, as well as 16-bit and 32-bit OS/2 applications. OS/2 32-bit
applications will run natively after being recompiled using a cross-compiler.
Applications with 16-bit calls will employ a conversion tool that identifies the
16-bit calls and, optionally, converts them to 32-bit.

5.1.1.1 Endian Mode and Multiprocessing
OS/2 Warp Connect (PowerPC Edition) runs in Little-Endian mode and is
currently not multiprocessing enabled.

5.1.1.2 Application Base
Applications for OS/2 Warp Connect (PowerPC Edition) are written at several
levels:

• OS/2 32-bit PowerPC native applications

• DOS and Windows 16-bit Intel emulation applications

118 PowerPC: An Inside View

32-bit applications written for Intel X86 versions of OS/2 are source-level
compatible with the OS/2 Warp Connect (PowerPC Edition). Such
applications can make full use of the machine′s graphics capabilities using
Presentation Manager.

Existing Intel X86-architecture DOS and DOS/Windows-based applications can
be run in DOS mode using an instruction set emulator (ISE). Emulation
capabilities are available for 80486 ring 3, DOS 6.3, Windows 3.11, and
WIN32s. OS/2 Warp Connect (PowerPC Edition) also provides a full
emulation of both DOS and Windows.

OS/2 Warp Connect (PowerPC Edition) supports the FAT (DOS), HPFS, and
ISO 9660 file systems.

5.1.1.3 Microkernel Strategy and OS/2
IBM ′s intention is to create operating systems independent of any specific
hardware platform, so that any operating system can run on any hardware
architecture. The hardware independence will lead to operating systems that
are portable between different hardware architectures.

The operating system consists of software components and application
frameworks. These are modular and designed to be taken apart and put back
together in different combinations across different platforms.

Following are the different components:

• IBM Microkernel

The IBM Microkernel is based on the Mach 3.0 Microkernel developed at
the Carnegie Mellon University. The IBM Microkernel is the basic
building block from which operating systems can be built.

• Operating System Personalities

Personalities are environments that run given sets of applications on top
of the IBM Microkernel. The personality contains the elements that users
recognize as a particular operating system today. This includes the look
and feel of the system (user interface) and the ability to run a specific set
of applications (programming interface). Multiple operating system
personalities can co-exist on the IBM Microkernel. For example, there
could be an operating system personality that runs OS/2 applications,
another one that runs DOS/Windows applications. Other operating
system personalities can be added in a modular way.

• Shared Services

Chapter 5. PowerPC Software Environment 119

Each shared service provides functions that are not bound to a particular
personality but may be required by an application running in any
personality. Thus they can be provided for use by multiple personalities.
Examples of functions that could be provided as shared services are:

− Device drivers

− Default paging mechanism

− File access

− Multimedia support

− Network communications

− Database engine

Several of these services are shipped along with the IBM Microkernel.
Additional services are optional and can be added and deleted as
deemed necessary by the user.

The personality could of course provide these functions itself, but by
delegating these tasks to other shared services, dedicated to those
functions, will result in a number of important advantages.

− The dedicated shared services can be used by multiple personalities.

− The dedicated shared services can be independently maintained and
upgraded.

− The complexity of the personality is reduced.

An example of the shared services is the file system. This service
provides the core functions of opening, closing, reading from and writing
to files. This service is provided to all personalities. This significantly
simplifies the OS/2 or DOS file support. From an application point of
view, the existence of these services are hidden by the personality′s
application programming interface.

120 PowerPC: An Inside View

Figure 40. The Microkernel Architecture

Figure 40 shows the structure of an IBM Microkernel-based operating
system. The underlying hardware is managed by the IBM Microkernel. All
the other components are user-level processes (shared services) such as
device drivers, file system, default pager, and the operating system
personalities. Applications are written to the interfaces provided by the
personality. This structure allows to easily support multiple hardware
platforms while ensuring portability of the operating system and user
applications.

5.1.1.4 Hardware Abstraction Layer - IBM Microkernel
The IBM Microkernel-based technology enables the operating system to be
independent of the type of hardware architecture. This is accomplished by
rearranging the functions of the traditional operating system into simplified
modular building blocks. The most essential functions of the operating
system are contained in the Microkernel module, and only a small part of

Chapter 5. PowerPC Software Environment 121

that module is hardware-dependent. Other operating system services are
contained in separate modules and are not hardware-platform dependent.

5.1.1.5 Device Driver Model
Traditionally, device drivers are loaded into the kernel at boot time and then
run as part of the kernel at supervisor level. Since the device drivers act as
kernel extensions, they are not portable to other operating systems and other
hardware platforms. This requires a new device driver for each operating
system. Furthermore a software failure in a device driver has the same
catastrophic effect as a software failure in the kernel. This has significant
implications for the robustness of the system.

In the Workplace OS architecture, device drivers are provided as common
services running at user-level. In other words, device drivers are shared
across all the personalities and their applications.

User-level device drivers gain access to devices using IBM Microkernel
functions which grant them rights to specific memory resources. A small
piece of the device driver is injected into the IBM Microkernel as an interrupt
handler. The interrupt handler has a very restricted set of functions it can
perform.

By isolating the drivers into independent tasks, they can be developed and
debugged using standard development tools. They have access to the full
function set, and are no longer in a position to corrupt the kernel with a bug
in driver code. This is a significant enhancement to the integrity of the
system. Making user-level device drivers into normal tasks also makes it
easier to add and delete device drivers without re-booting the system.

A device driver development kit is available from IBM. It contains all the
documentation and sample code needed to develop device drivers. In
addition, DOS device drivers may be used to access devices from a virtual
DOS session.

5.1.2 IBM AIX
AIX, the IBM version of the UNIX operating system, is a scalable, robust and
reliable operating system designed to meet stringent system requirements
while also implementing all prevalent open systems standards. Perhaps the
most important aspect of AIX is that it is offered on the widest range of
systems in the industry. It provides a common operating environment
look-and-feel, a common programming environment, and a single application
binary interface across a broad range of computing power from notebooks to
teraflop systems.

122 PowerPC: An Inside View

Since AIX is such a high-capacity operating system, it normally appears on
systems that can support extremely large amounts of data and very high
rates of computation. Additionally, it has significant communications
capabilities as it supports - in addition to TCP/IP - the SNA and OSI protocol
and it is an integral part of IBM′s Network Blueprint and Open Blueprint.

The market acceptance of UNIX on workstations has not been as widespread
as the personal computer operating systems such as DOS/Windows and
OS/2. This was mainly due to two reasons:

• UNIX required relatively more investment in hardware.

• The traditional user interface was considered too difficult to learn for
general users to accept.

These barriers are disappearing because of recent developments:

• New low-cost processors will make it possible to develop UNIX
workstations that are more affordable. For example, IBM will offer AIX on
the IBM Power Series family. This range of machines will be very
cost-effective as personal UNIX workstations.

• Graphical-user interfaces such as COSE desktop are now standard
components of popular versions of UNIX, such as AIX. This greatly
increases the ease of use of UNIX.

5.1.2.1 Endian Mode and Multiprocessing
AIX runs in Big-Endian mode and is designed to support symmetric
multiprocessing (SMP) with no limit on the number of processors supported.

5.1.2.2 Hardware Abstraction Layer
The AIX kernel has a modular structure and a formalized and
well-documented set of interfaces. These attributes will persist across
operating system releases and can achieve many of the same goals as the
abstraction software.

The routines in the kernel that interfaces to hardware components are
provided by a set of services to perform a requested function independent of
the underlying hardware platform.

The main components of the AIX kernel fall into the categories of services
that account for differences in the processor, I/O, and platform-specific
implementations. Typical services provided under this framework are
memory management services (cache and DMA), access to bus controllers
and system I/O (I/O services), boot/configuration services (hardware

Chapter 5. PowerPC Software Environment 123

initialization), interrupts, device drivers and RAS (access to NVRAM and
system error registers).

The kernel hardware services make the underlying hardware accessible to
the kernel, device drivers, and subsystems in an abstract manner. The
service invoked by the routines within the system components remains the
same for any hardware platform.

5.1.2.3 Device Driver Model
Device drivers run in a privileged state as AIX kernel extensions, and have
access to a number of functions that are unavailable to normal application
programs. They shield the user from device-specific details and provide a
common I/O model for accessing the devices for which they provide support.

Device drivers can play two roles in AIX: the device head role and the device
handler role.

A device head is a device driver or a portion of a device driver that provides
an interface to application programs via the standard open, close, read, write,
and related system calls. A device driver acting in this role takes I/O
requests from application programs and communicates them to a device
handler. The interface between application programs and a device head is
rigidly defined by the AIX kernel itself.

A device handler is the portion of a device driver that communicates with the
actual device or adapter. The device handler takes requests from a device
head and implements the request on real hardware. The interface between
a device head and a device handler is essentially undefined by AIX, though a
large number of primitive functions are provided by AIX to assist in
constructing the interface. The details are left to the device driver author.
The interface between the device handler and device itself is naturally
dependent on the hardware being manipulated, though AIX again provides a
set of functions which assist in performing the hardware interface.

Most simple device drivers will in fact act as both device head and device
handler, but other configurations are possible. Vendors who offer a system
with components different from those in the reference implementation must
support this differentiation with a device driver.

124 PowerPC: An Inside View

5.1.2.4 Application Base
Powerful emulation services are provided for users who want to move to AIX
while still having the opportunity to use their current applications and
computer knowledge. The benefit of this approach is that users have a
choice between different environments (DOS, Windows, Macintosh, or UNIX)
as well as the multitude of applications that exist within those environments.
Figure 41 conceptually shows the emulation strategy of AIX. WabiPlus and
MAS will be covered in 5.2, “PowerPC Application Support” on page 132.

Figure 41. DOS/Windows and Macintosh Applications on AIX

5.1.3 Microsoft Windows NT
Windows NT is a full, 32-bit, preemptive multitasking operating system. It will
run existing MS-DOS and Windows applications as well as new 32-bit
applications being developed by independent software vendors on the
PowerPC Reference Platform specification. It is capable of fully utilizing the
advanced capabilities of the PowerPC microprocessors, from today′s 601/603
versions to those of the future.

Chapter 5. PowerPC Software Environment 125

Windows NT and the IBM Power Series will provide the reliability required by
information systems professionals and power users to run demanding
business applications. The advanced microkernel design of Windows NT,
combined with integrated security, manageability and quality of the IBM
Power Series, will meet the needs of corporations deploying business critical
applications.

Windows NT is designed to be a portable operating system capable of
running on all popular microprocessor architectures. This provides the
ability to deploy Windows NT/IBM Power Series solutions that integrate fully
and have the same user interface as other systems in the enterprise. This
results in lower training investment while also protecting customer
investment of existing systems and applications until they are supplemented
with newer and more powerful solutions.

5.1.3.1 Endian Mode and Multiprocessing
Windows NT runs in Little-Endian mode and is capable of supporting up to
two microprocessors in SMP mode.

5.1.3.2 Operating System Configuration
Windows NT is a multi-user system which operates either as stand-alone or
as a client in a network. Windows NT Workstation is a full implementation
including the base operating system, file systems, and the C2 security
features. It can also act as a file/print resource on a network.

Several utilities are included such as performance/event monitoring, backup,
remote access, network client support, disk maintenance and a user
configuration/account profile utility. In addition, the product includes
electronic mail and personal/workgroup scheduling applications. The
Windows NT Workstation version is capable of supporting up to two
microprocessors in SMP mode.

5.1.3.3 Hardware Abstraction Layer
This layer resides between the NT executive and the hardware platform on
which Windows NT is running. It hides hardware-dependent details such as
I/O interfaces, interrupt controllers, and multiprocessor communication
mechanisms from the rest of the operating system.

126 PowerPC: An Inside View

5.1.3.4 Device Driver Model
There is a separate Device Driver Development Kit (DDK) available from both
Microsoft and Motorola. It contains all the documentation and sample code
needed to develop device drivers.

5.1.3.5 Application Base
Windows NT supports native applications conforming to Microsoft′s 32-bit
Windows API.

At a source level, the APIs provided by NT are identical across all
architectures supported by NT (MIPS, Alpha, X86, PowerPC). Applications
written to these APIs are independent of the underlying hardware, and
require only recompilation to generate executable code that will run on
Windows NT across all supported architectures.

At a binary level, applications built to run on Windows NT will run unchanged
across all PowerPC platforms supported by NT.

In addition to Win32 applications, Windows NT runs existing DOS and 16-bit
Windows applications as well as some 16-bit OS/2 text applications and all
POSIX-conforming (IEEE1003.1) applications.

5.1.4 Sunsoft Solaris
Solaris is a 32-bit UNIX operating system, owned and marketed by SunSoft,
Inc., a software division of Sun Microsystems Computer Corporation (SMCC).
As a fully compliant implementation of Systems V Release 4 UNIX (SVR4),
Solaris provides access to the most powerful and advanced solutions
available, including an open, networked environment. Solaris also unites the
world ′s largest installed base of CISC and RISC hardware, SPARC, Intel X86,
and PowerPC.

The SunOS 5.x operating system is the foundation of Solaris. The innovative
technology it contains - including the industry′s leading implementation of a
multithreading operating system - brings a new level of performance to
Solaris users. SunOS 5.x builds on SVR4 and extends it by introducing new
features, including symmetric multiprocessing with a multithreaded kernel,
real-time functionality, advanced internationalization, and increased security
features.

Solaris features OpenWindows, SunSoft′s X11 network-based windows
system. With its windows, pull-down menus, buttons and drag-and-drop
operations, OpenWindows provides a consistent easy-to-use environment for
all types of users. The DeskSet desktop productivity tools feature integrated

Chapter 5. PowerPC Software Environment 127

distributed tools, from basic time-management applications through
sophisticated workgroup communications tools. SunSoft′s ToolTalk
interapplication communication solution facilitates information exchange
between applications on a single machine, or on multiple machines on a
network.

Large companies looking to right size their operations will find Solaris is a
good solution for supporting heterogeneous hardware environments, ranging
from notebooks to high-end multiprocessor servers using X86, SPARC and
PowerPC architectures.

5.1.4.1 Endian Mode and Multiprocessing
Solaris runs on the PowerPC Reference Platform specification in Little-Endian
mode and is designed to support symmetric multiprocessing with no fixed
limit to the number of processors. Platform-specific modules may need to be
written to support a particular multiprocessing platform. Specifications for
writing such modules are available from SunSoft.

5.1.4.2 Operating System Configuration
Solaris is offered in the following three configurations:

• Desktop

This configuration is targeted at end users and desktop developers for
use as clients on a network or as stand-alone workstations.

• Workgroup Server

This configuration is targeted at departmental servers for use as print,
file, database, or application servers on a small network with up to 100
users. The license allows unlimited use but is restricted to platforms
with a maximum of two CPUs.

• Enterprise Server

This configuration supports high-end multiprocessor servers. There is no
limit to the number of processors, but the configuration is targeted
primarily at MPs with no more than 20 processors. It supplements the
basic Solaris functionality with additional components for disk
management (RAID), network backup, and advanced network system
administration.

128 PowerPC: An Inside View

5.1.4.3 Hardware Abstraction Layer
The Solaris kernel can be dynamically tailored by means of
platform-independent modules (PIMs), which provide a common support for
all platforms on a processor architecture that implements a particular
feature. For example, a loadable module might support a particular device
or controller, a particular bus (for example PCI), a particular file system
format such as ISO 9660, a particular scheduling class or a particular
networking protocol. Such loadable modules are usually generated from
source code that is common across all processor architectures.

Platform-specific modules (PSMs), on the other hand, support functions
whose implementation differs from one platform to another. The kernel
binary interface (KBI) spells out the interface to which independent hardware
providers code platform support modules. The KBI is an extension and
formalization of the technology that has been successfully employed for
multiprocessor platform support on both SPARC and X86.

A generic distribution of Solaris from Sunsoft supports one or more base
system configurations. It contains a kernel, a set of device and bus interface
modules, a complete UNIX System V Release 4 environment, Solaris Deskset
tools, system administration software, and subroutine libraries.

5.1.4.4 Device Driver Model
The Solaris Device Driver Interface (DDI) provides a well-documented and
stable base for device driver development. The DDI consists of a common
base interface with minor extensions for each of the various processor
architectures. Most drivers written for devices that work under Solaris on
X86 can be recompiled without source change and run on PowerPC systems.
The DDI is supported by a Driver Development Kit (DDK), which consists of
descriptions and technical documentation of the interfaces as well as sample
drivers.

5.1.4.5 Application Base
Solaris supports native applications conforming to the System V Interface
Definition (SVID), the generic System V Application Binary Interface (gABI),
and the PowerPC processor supplement to the System V ABI (PowerPC
psABI).

At a source level, the APIs provided by Solaris are identical across all
architectures supported by Solaris (SPARC, X86, PowerPC). Applications
written to these APIs are independent of the underlying hardware, and
require only recompilation to generate binaries that will run on Solaris
across all supported architectures.

Chapter 5. PowerPC Software Environment 129

At a binary level, applications built to run on Solaris/PowerPC will run
unchanged across all PowerPC platforms supported by Solaris.

Emulation programs which are not part of the operating system are expected
to be available to run applications from other environments, such as
Windows, DOS, or Macintosh.

Solaris supports the executable and link format (ELF) object module format
as defined in the SVR4 PowerPC ABI.

Solaris can import non-native file systems such as High Sierra (ISO 9660),
FAT (DOS), and S5 (UNIX System V).

5.1.5 PowerPC Operating Systems Comparison
The following table provides a comparison between the different operating
systems for the PowerPC Personal System based systems:

Table 10 (Page 1 of 2). Operating System Comparison

OS/2 Warp
Connect

(PowerPC
Edition)

AIX
Windows

NT
Solaris System 7

PowerPC
Reference
Platform

specification

Yes Yes Yes Yes No

RS/6000 No Yes No No No

PowerMac No No No No Yes

Endian
mode

Little Big Little Little Big

GUI
Workplace

Shell
CDE

AIXWindows
Program
Manager

CDE/Motif Finder

Mult i
Processing

Model
no SMP SMP SMP no

Multi-tasking
Model

Preemptive Preemptive Preemptive Preemptive Cooperative

No. of
CPUs

supported
N/A unlimited 2/4 unlimited N/A

DOS/Win16
Applications

Support

MVM
Server

WabiPlus
SoftWindows

SoftWindows
Wabi or

WabiPlus
SoftWindows

SoftWindows

130 PowerPC: An Inside View

Table 10 (Page 2 of 2). Operating System Comparison

OS/2 Warp
Connect

(PowerPC
Edition)

AIX
Windows

NT
Solaris System 7

680x0 Mac
Application

Support
No Yes (MAS) No Yes (MAS) Yes

Vendor IBM IBM Microsoft SunSoft Apple

5.1.6 Apple System 7
IBM was the first computer company offering workstations based on
PowerPC technology, while Apple introduced the first personal computer
systems using this technology. The Power Macintosh systems ship with
System 7, which can be summarized as follows:

• Version 7.1.2 of System 7 can make some native calls to the PowerPC.
Subsequent releases of System 7 will take more advantage of native
calls to the PowerPC processors.

• A ROM-based emulation chip (called the 68LC040) is installed to support
running the existing 680X0-based software without recompiling.

• In order to support 16-bit DOS and Windows applications, System 7
contains emulation products from Insignia, SoftWindows.

• Power Macintosh is not PowerPC Reference Platform specification
compliant. It comes with Apple′s proprietary NuBus expansion slot.

Figure 42 on page 132 shows the System 7 on the Power Macintosh. System
7 for PowerPC relies on built-in emulation not only for compatibility with
680X0-based Mac applications, but also for its own Toolbox routines that are
not ported yet.

Chapter 5. PowerPC Software Environment 131

Figure 42. The Apple System 7 on the Power Macintosh

5.2 PowerPC Application Support
Supporting many operating systems creates the ability to run an
exceptionally wide range of applications, spanning both the personal
computer and workstation worlds. On the PowerPC platform, applications
written for the major 32-bit operating systems, such as UNIX, OS/2 and
Windows NT can be supported natively. 16-bit applications, such as DOS,
Windows and Macintosh, will be supported via various compatibility
techniques on these 32-bit systems.

• DOS applications will be supported on OS/2 Warp Connect (PowerPC
Edition) through the same type of multiple virtual DOS machines as on
OS/2. On AIX, DOS applications are supported via WabiPlus and
SoftWindows. Windows NT support for DOS applications on the IBM
Power Series is the same as for any other version of NT.

• Windows applications will be supported on OS/2 Warp Connect (PowerPC
Edition) as they are currently supported under OS/2 2.1. Both AIX and

132 PowerPC: An Inside View

Solaris employ Wabi SoftWindows, the Windows application binary
interface. Windows NT support for Windows applications is the same as
for all other versions of NT.

• Macintosh applications will be supported on AIX using a Macintosh
emulator called Macintosh Application Support (MAS).

• OS/2 16-bit applications will need to be converted to 32-bit and
recompiled. OS/2 32-bit applications can run natively after being
recompiled using a cross-compiler. For applications with 16-bit calls, a
conversion tool will be made available that identifies the 16-bit calls and
optionally converts them to 32-bit.

Performance is always an important item. The best performance will, of
course, be achieved by native applications that fully exploit the PowerPC′s
inherent RISC performance advantages. These includes existing AIX
applications as well as OS/2, Solaris and NT applications recompiled or
newly developed for the PowerPC Reference Platform specification.

Wabi employs a mixture of native execution and emulation technologies for
Windows applications running on AIX and Solaris. Most portions of these
Windows programs will benefit from the so-called Wabi Effect, that is, native
RISC-level performance

Macintosh and DOS applications on UNIX, as well as DOS and Windows
applications on OS/2 Warp Connect (PowerPC Edition), will initially run at PC
speeds. The individual operating systems vendors are hard at work to
further improve the performance of the various compatibility technologies.

In addition to the operating systems vendors who have already announced
support, IBM is working with producers of other 32-bit operating systems,
and there is interest on the part of a number of them to announce support for
the PowerPC Reference Platform specification.

Likewise, an increasing number of independent software vendors are
planning to recompile or otherwise port their applications to run natively on
the Platform. This number will continue to grow. Exciting new applications
from ISVs and from IBM will take advantage of such innovations as
embedded multimedia devices, higher bandwidth networks, and higher
resolution graphics.

The IBM Power Series will provide strong support for existing 16-bit
applications as well as a platform of growth for the personal computer and
workstations of the future. Software and application support plays a critical
role in the future success of the PowerPC. It is the single most important

Chapter 5. PowerPC Software Environment 133

factor ensuring the success of IBM′s new endeavor in the field of personal
desktop computing.

5.2.1 PowerPC Application Compatibility and Porting
Compatibility with existing application products is a key factor for acceptance
of new technology. The market would not accept new technology if the users
could not run their favorite software, or had to spend additional money for a
new license. Software compatibility is a complicated subject. Generally
speaking, application compatibility refers to an operating system′s ability to
execute application programs written for other operating systems or for
earlier versions of the same operating systems.

There are actually two levels of compatibility:

• Binary Compatibility

This is achieved when an executable program (binary code) can be run
on a different operating system.

• Source-level compatibility

This level requires recompiling programs before running them on the
new system.

Binary compatibility is not easy between processors based on different
architectures. Compatibility in this situation is normally provided by using
software emulation programs. Without an emulator, all applications must be
recompiled (see source-level compatible), or rewritten.

To run software on different platforms, be it a different processor architecture
or a different operating system, requires changes.

There are four methods of porting an application:

• Manual Re-coding

Rewriting platform-dependent portions of a program is the surest way to
future maintainability. Compiler optimization from original, intelligently
structured sources assure superior performance. However, the effort
required to manually re-code programs depends upon the portability of
the source language and the degree of modularity.

• Automated Source Translation

Employing a source-level translation tool may assist in the manual
re-coding of large projects. Their use should be limited to smaller
straightforward modules. If exercised on complex code, manual

134 PowerPC: An Inside View

intervention may be necessary, and generated results are normally
cryptic.

• Static Binary Translation

Static optimizations tend to be more thorough and elaborate than what is
possible by run-time emulation. The translation effort is greater and may
need human management. Resultant binaries are not maintainable.

• Binary Emulation

Products such as Wabi or SoftWindows and operating systems such as
OS/2 and Windows NT attempt to mimic the program′s original operating
environment as well as translate instructions ″on-the-fly″. Little or no
human intervention is necessary, since both the program′s platform and
code are being emulated. However, performance penalties for dynamic
translation have to be considered.

Figure 43. The PowerPC Application Support

Since the majority of desktop applications are written for DOS and Windows,
several emulation solutions are available from various vendors to run these
16-bit applications on the new 32-bit PowerPC operating systems:

• DOS, Windows on OS/2 Warp Connect (PowerPC Edition)

Chapter 5. PowerPC Software Environment 135

The multiple virtual machine (MVM) environment is part of the OS/2 Warp
Connect (PowerPC Edition) and responsible for providing
DOS/Windows/DPMI program compatibility. OS/2 Warp Connect
(PowerPC Edition) provides DOS 6.3 and Windows 3.1 compatibility on a
PowerPC. OS/2 provides an almost perfect environment for DOS and
Windows applications on the PowerPC platform. This is done in the
following way:

− Boot a DOS emulation kernel in a virtual machine.

− Boot raw DOS (DR-DOS, DOS V3.3 and above) in a virtual machine.

− Run multiple DOS applications concurrently in the system.

− Run DOS applications full screen or windowed.

− Provides LIM EMS 4.0, LIMA XMS 2.0, and DPMI 1.0 host support.

− Provides support for Windows 3.0 and 3.1 applications by running
WIN-OS/2.

− Provides support for network redirection of drives in a virtual
machine or a DOS application.

− Provides user configuration support for the MVM environment on a
per virtual machine basis.

− Support for Win32 applications may be added as the marketplace
matures.

IBM ′s Instruction Set Translator (IST) technology is used here. The
IST translates Intel instructions on non-Intel machines, such as the
PowerPC. It provides 486 ring 3 protected-mode and real-mode
instructions. The IST is the only module that understands Intel
instructions, and provides services that the rest of MVM depend on to
run DOS and Windows applications on a PowerPC.

• DOS, Windows on UNIX

Insignia Solutions′ SoftWindows or IBM/Sunselect′s WabiPlus are the
emulation choices for UNIX on the PowerPC (AIX and Solaris). Both
support the installation and execution of shrink-wrapped Windows 3.1
applications under UNIX, and operate as separate UNIX processes.

− SoftWindows, a re-engineered and recompiled version of SoftPC 3.1,
is essentially a source-code port of Microsoft Windows with a
proprietary 286-level emulator. It is a very good emulation of MS
Windows, but performance suffers somewhat, since some Windows
internals are emulated. Another consideration is its memory
requirement. SoftWindows requires at least 9MB of memory to

136 PowerPC: An Inside View

operate, and 12MB to support Windows multitasking at a reasonable
speed.

− Wabi provides API-level compatibility with Windows and relies on a
portable emulation engine. This engine will be replaced with IBM′s
Instruction Set Translator in WabiPlus. Since Wabi does not duplicate
the internal structure of Windows, it tends to perform better than
SoftWindows for graphics-oriented programs. However, certain
undocumented API nuances and behaviors are not emulated, which
prevent some ill-behaved applications from running atop of Wabi.
WabiPlus, an enhanced version of Wabi, has additional features:

- IBM ′s high performance IST (instruction set translator)

- DOS and DOS application support

• IBM ′s PCHE (PC hardware environment)

− VGA and SVGA (256 color VESA standard)

− Keyboard, disk and diskette controller

− Timer, speaker, serial and parallel ports

− Virtual 86 with DPMI, LIM, and XMS

• PC DOS 6.x and MS DOS 6.x support

• Common configuration of DOS and Windows environment

• DOS, Windows on System 7

Insignia Solutions′ SoftWindows is also available on the Power
Macintosh.

5.2.2 PowerPC Application Development Tools and Support
This section provides details on the available development tools and
established support organizations for software developers who want to
develop or port applications to the PowerPC platform.

5.2.2.1 PowerPC Application Development Tools
PowerPC Compiler: A compiler translates source code written in a high
level languages such as C, C++, Fortran, or Pascal into executable object
code. Object code is often subsequently linked to other objects or support
libraries before being loaded into memory.

A cross compiler differs from a native compiler in that the compiler itself runs
on a different platform than that of the target object. For example, a
PowerMac cross compiler produces code for a PowerPC Macintosh, but the

Chapter 5. PowerPC Software Environment 137

compiler itself runs on a 680X0 Macintosh. A native compiler executes on
and generates code for the same platform. A cross compiler can be very
useful to an application developer who does not yet have a target platform.
This allows applications to be ported to a new platform before the new
platform is generally available.

Compilers are often bundled along with tools including assemblers,
debuggers and linkers in a framework with an editor and GUI. This is
referred to as either an integrated development environment (IDE) or a
software development kit (SDK).

Object code is produced in different formats, depending upon the platform.
Some terms you may see include XCOFF(AIX/UNIX), PEF(APPLE), ELF,
extended ELF and DWARF.

Following is a list of available and soon-to-be-announced compilers:

• C / C + +

− IBM: C Se t ++

− Motorola: Optimizing C Compiler for the PowerPC 6XX
Microprocessor

− Absof t : C/C++ Compi ler

− Apple : C/C++ Compi le r

− Metrowerks: C/C++ Compi ler

− Symantec: C++ 7.0 Compi ler

− DiabData: C/C++ Compi ler

− Metaware: C/C++ Cross Compi ler

− Watcom: C/C++ 10.0

• Fortran

− IBM: XL Fortran Compiler

− Motorola: Optimizing Fortran Compiler for the PowerPC 6XX
Microprocessor

− Absoft: Fortran 77 Compiler

− LS: Fortran

− DiabData: Fortran Compiler

• Pascal

− IBM: XL Pascal Compiler

138 PowerPC: An Inside View

− Metrowerks: Pascal

− LS: Pascal

Debugger: Debuggers can generally be classified according to the type of
source code they inspect and by the framework they use to interact with the
target debugger.

• By Source Code Inspection

− Source-Level Debugger

The symbolic debugger allows a software developer to set
breakpoints, step execution, examine and alter data according to
type, and trace control flow for source code written in a high-level
language such as C and C++. It provides an effective way for
isolating errors in C/C++ coded portions of the operating system,
translators, and applications.

− Register-Level Debugger

The register-level debugger is the assembly equivalent of symbolic
debugging for C/C++ sources. All programmer-visible resources,
such as all registers and memory, are accessible using this
debugger. As in the symbolic debugger, breakpoints, execution
single step, control trace and formatted data are provided. Here,
however, instructions are disassembled to a mnemonic
representation rather than mapped back to corresponding source
code lines.

• By Debugger Interaction Framework

− Native Debugger

A native debugger itself executes on the same platform as that of its
target debugger.

− Remote Target Debugger

A symbolic or register-level debugger which resides on a stable host
system and controls code through a software monitor executing on a
remote victim system is considered a remote target debugger.
Typically, these debuggers assume communications services are
present and stable on both systems such as a serial link or network
protocol. They are thus distinguished from umbilical debuggers,
which do not require the victim to provide communications services
or sufficient stability to run monitor.

Chapter 5. PowerPC Software Environment 139

Following is a list of debuggers available in the market or planned for
release:

• IBM: RiscWatch Debugger

• Absoft: FX Multi-Language Debugger

Debuggers are usually included in compilers or SDKs.

PowerPC Software Development Kits: Software development kits are most
often used by application developers in order to either port code or develop
new code to run on PowerPC systems. These developers typically write
code in a high-level language, although portions may be rewritten in
assembly language for maximum performance. The developer then uses a
compiler, assembler, and linker to produce modules which are loaded by the
operating system and executed on the system. The debugger aids in
isolating errors in the code, and the code profiler can be used to study the
performance of the applications.

An SDK is a framework in which individual software development tools are
often bundled. Typical components of an SDK include one or more
compilers, an assembler, linker, debugger, code profiler, browser, and a text
editor. SDKs customarily provide a uniform interface to access all
components, and may add inter-tool communication so that, for example, a
compiler syntax error would be reflected by placing the text editor at the
source code line of the offending statement.

A compiler is used to translate high-level language source code to object
code.

An assembler translates machine instructions represented by mnemonics
(assembly language) to object code. It facilitates access to the full processor
instruction set. It is frequently used to code routines which access
architectural features which are not visible from a high-level language, and
to manage performance-critical routines. Both assemblers and compilers
can exist in native or cross form. A cross assembler differs from native
assembler in that the assembler itself runs on a platform which is different
from the platform of its target object. A native assembler or compiler
generates code for the same platform that it runs on.

A linker supports the assembler and compiler by resolving symbols external
to the object modules generated. This allows programs to utilize libraries
and make calls to external routines.

140 PowerPC: An Inside View

A debugger allows a software developer to set breakpoints, step execution,
examine and alter data, and trace control flow through a program. This can
be done at the source code level with a symbolic debugger, or at the
assembly level using a register-level debugger.

A code profiler provides statistical analysis of program execution. Typical
measurements that are provided for each subroutine invoked include the
number of calls made, percentage of total program execution time spent in
the function body, and an estimate of average time spent for each call.

A browser is a post-compilation static analysis tool that a developer can use
to view the relationship between source code entities such as classes,
functions, and files.

Following is a list of available or soon-to-be-announced software
development kits:

• IBM: POWERbench

• IBM: C Se t ++

• Apple: SDK on RISC

• Metrowerks: Codewarrior

• Symantec: C++ Cross Development Toolkit

• DiabData: C/C++ Compi ler

• Cardence: System Workbench

5.2.3 Development Support

5.2.3.1 IBM Power Series Developer ′s ToolBox Program
This program is designed for qualified U.S. commercial developers who plan
to port products to or develop and market products for IBM Power Series and
operating systems. This program is also intended for internal developers
who plan to port internally used software or hardware to or develop
internally used software or hardware for IBM Power Series and operating
systems. Those operating systems include IBM OS/2 Warp Connect
(PowerPC Edition), AIX Version 4 for clients, Solaris, and Windows NT
Workstation operating system.

Chapter 5. PowerPC Software Environment 141

Contact point

IBM Corporation
IBM Developer′s ToolBox Program, 3200 Windy Hill Road - WG14C,
Atlanta, GA 30339
• 1-800-627-8363, Fax : (404)835-9444

5.2.3.2 Porting Center
A Windows NT porting center is available to help developers who are
interested in porting their products to this platform. The center provides:

• Technical support to OEMs, IHVs, and ISVs who are producing systems
and products for the Windows NT on the PowerPC Reference Platform
specification environment

• Assistance in evaluating and correcting performance issues

• Monitors performance of Windows NT on the PowerPC vs. other
platforms

Contact point

• 1-800-803-0110 or 1-206-889-9011
Internet : winntppc@vnet.ibm.com.

5.2.3.3 The POWER Team
The POWER Team is a program developed for POWER and PowerPC system
hardware and software developers to help them build and grow their product
in the AIX marketplace.

POWER Team members will receive technical, business and marketing
information on a regular basis. The following support is given to
participants:

• Porting assistance

• Consulting for design reviews, performance tuning

• Online information: Electronic bulletin board, Q & A database, field
television network educational broadcasts

• POWER and PowerPC conferences

142 PowerPC: An Inside View

Contact point

IBM Corporation
Software Vendor Operations, 472 Wheelers Farms Road, Milford, CT 06460
• (800)627-8363, Fax : (203)783-7669
Internet : AIXPROGS@RHQVM21.VNET.IBM.COM

Chapter 5. PowerPC Software Environment 143

144 PowerPC: An Inside View

Chapter 6. PowerPC - Hardware and Product Overview

This chapter concentrates on the IBM Power Series. We cover hardware
architectures and design and then have a look at the systems.

6.1 IBM Power Series Hardware Architecture
The IBM Power Series systems offer the next generation of performance for
demanding client/server environments in large and medium businesses, as
well as in government and higher education. These systems offer you the
open-ended performance of PowerPC technology that protects your
investment today as well as tomorrow. You will be able to choose among
the leading, stable, robust, advanced 32-bit operating systems such as AIX,
OS/2, Windows NT, and Solaris.

PowerPC promises new technologies that are both practical and pervasive.
These technologies include subsystems such as graphics, multimedia,
speech recognition, pen and collaborative computing. PowerPC will also
provide the user with exciting new user interfaces.

In order to understand the IBM Power Series, it is necessary to first have a
look at the typical hardware design. This design is shown in Figure 44 on
page 146.

 Copyright IBM Corp. 1995 145

Figure 44. Typical IBM Power Series Design

The general hardware design is also explained in 4.1, “PowerPC Reference
Platform Specification” on page 96 and 4.3, “The New PowerPC
Microprocessor Hardware Reference Platform” on page 103.

We will briefly look at the main subsystems that contribute to a PowerPC
Personal System before moving on to the new products as systems in their
own right.

6.1.1 Processor Subsystem
As could be inferred from the name, this subsystem contains the
processor(s). The processor operates on the instructions and data fed to it
by the applications and operating system. In order for this subsystem to
comply with the PowerPC Reference Platform specification, it has to meet the
requirements described in this specification.

146 PowerPC: An Inside View

6.1.2 Memory Subsystem
The memory subsystem can be subdivided into six systems. These systems
are:

 1. System Memory

The portion of memory where executable instructions reside is referred
to as the system memory. Systems must have at least 8MB of system
memory that must be expandable to a minimum of 16MB. It is strongly
recommended that this memory will be either parity checking, or Error
Checking and Correcting (ECC).

 2. System ROM

Power-on firmware, boot firmware, as well as additional data needed by
the system is stored in the System ROM. System ROM will typically be
implemented by the use of ROM, EPROM or FLASH ROM. All systems
must include a System ROM.

 3. Non-Volatile Memory

Non-Volatile memory (NVRAM) is used to store system configuration. It
is also used as an error indicator across system boots. A typical system
contains 4KB of NVRAM that must maintain its state in the absence of
system power.

 4. I/O Memory

This is the area in the memory map that refers to the addresses where
I/O devices reside. Some examples of memory I/O devices are graphics
and communication peripherals. I/O memory can exist on the system
expansion bus, but remains part of the I/O bus and is typically not
cached. Although I/O memory can be located on the primary processor
bus, it will only participate in the hardware-managed coherency protocol
if other ports do not interfere in the same area.

 5. System I/O

The system I/O is the area in the memory map that handles the
addressing and communications for I/O devices.

 6. External Cache

This is the cache that resides between any on-chip processor caches or
Level 1 (L1) and system memory. External cache is typically referred to
as level 2 (L2), and enhances system performance further.

New processors like the PowerPC 601 can execute up to five operations
every 15 nanoseconds. The challenge is therefore to keep the processor

Chapter 6. PowerPC - Hardware and Product Overview 147

filled with enough instructions so that it may operate at maximum
capacity. This is achieved by using external cache.

Cache is a small amount of very fast memory that holds the next few
thousand instructions and data for the processor. Due to the sequential
nature of the instruction stream of most programs, it is very likely that
the next instruction and data to be processed will be found in the cache.
It can thus be executed quickly without requiring access to the slower
main memory.

6.1.3 Storage Subsystems
According to the PowerPC Reference Platform specification, the following
subsystems and interfaces will be used:

• Hard file

Every system must either have a hard file or have the capability to
access a hard file. The minimum size for an internal hard file is 120MB,
but 200MB is strongly recommended as the minimum capacity. Hard
files can be attached through a direct connection using SCSI or IDE, or
through networking and expansion adapters.

• Diskette

Diskette drives must support the 3.5-inch, 1.44MB modified frequency
modulation (MFM) format. Optional features, such as electronic eject
through software control, can be added.

• CD-ROM

CD-ROM drives included in these systems must at least conform to the
ISO 9660 standard. Drives should also be of the double-speed variety,
capable of transferring at least 300KB per second. CD-ROM connection
may be achieved through either IDE or SCSI.

• SCSI

The small computer system interface (SCSI) is an ANSI standard
specification that is widely used as a peripheral bus. Systems that
implement SCSI must comply to the ANSI Standard X3.131-1990 for
SCSI-2. The interface will mainly be used to support hard files and
CD-ROMs, but could also be used to support scanners, tapes and optical
drives. Additionally it could be used to attach RAID-based storage
systems.

• IDE

Integrated device electronics (IDE) is an optional interface for hard files.
Systems implementing IDE should comply with the X3.221 ANSI Standard.

148 PowerPC: An Inside View

As enhanced IDE becomes a standard, it is recommended that systems
use it as the standard interface, hence allowing for support of devices
with capacity above 520MB.

6.1.4 Human Interface Subsystem
The human interface subsystem includes the following devices:

• Alphanumeric Input Device

Every system must include an alphanumeric input device. The most
common realization of this is the directly attached keyboard. Examples
are the 101/102-key keyboard.

• Pointing Device

When a system has a directly attached or built-in keyboard, it must also
have a directly attached or built-in pointing device. Examples of pointing
devices include a mouse, Track Point II, digitizer tablet and touch screen.

• Audio

In order to conform to the PowerPC Personal System minimum design
requirement, a system must include audio capability. The audio
subsystem must consist of at least two analog-to-digital input channels
and at least two digital-to-analog output channels. These channels must
support sample widths of at least 16 bits. Sampling rates of 22.05 and
44.1KHz must be supported.

The audio subsystems include a soft digital signal processor (DSP)
implementation. Traditional audio adapters use a hardware chip to
handle DSP. Soft DSP is obtained by the intensive floating point and
vector arithmetic capabilities of the PowerPC processor. Additional high
interrupt rates coupled with low interrupt latency and a seamless
interface to the data I/O stream assist in this implementation.

The PowerPC systems are therefore very well equipped for voice
annotation, text-to-audio conversion as well as compression and
expansion of digital data streams.

• Graphics

Built-in graphics subsystems should support a resolution of 640x480 and
256 colors as an absolute minimum. It is however recommendable to
support higher resolutions of at least 1024x768, and color depth of 8, 16
and 24 bits. In 1995, systems will support Bi-Endian graphics operation
and system software must therefore be able to access the graphics buffer
in either Endian format.

Chapter 6. PowerPC - Hardware and Product Overview 149

6.1.5 Real-Time Clock Subsystem
A system must include a real-time clock (RTC). The RTC must be able to
operate in the absence of system power. It must provide the necessary
information to determine the year, month, day, hour, minute and second.

6.1.6 Connectivity Subsystems
In this section we will focus our attention on the major connectivity devices of
the PowerPC Personal System. These devices are:

• Serial

Every system should include at least one serial port. This port must be
implemented using EIA/TIA-232-E signal compatibility. A nine-pin D-shell
male connector will be used. The port must support asynchronous
protocol with baud rates up to at least 19.2Kbps.

• Parallel

Although not essential, it is highly recommended to include one parallel
port. If the port is included then it must be compliant with the IEEE P1284
standard specification. The port should also support the extended
capabilities port (ECP) compatibility mode. Although the Centronics
interface is used by most “IBM-compatible” personal computers, the
interface has never been formalized.

• Network

For low-end network communications use LocalTalk (the standard
Macintosh serial port), conforming to EIA-422-A. LocalTalk is compatible
with the SCC 8530 controller and is defined by industry standards and
protocols. Use Ethernet or token-ring where higher performance is
required. When using Ethernet, conform to the IEEE 802.3 standard.
Token-ring implementation adheres to the IEEE 802.5 standard.

6.1.7 Bus Types
The PowerPC Personal System supports a large variety of bus types. In
theory all the popular bus architectures (that is, ISA, EISA, Micro Channel,
PCI, VESA and PCMCIA) can be supported. The current PowerPC Personal
System implements:

• ISA

• PCMCIA

• PCI

150 PowerPC: An Inside View

ISA bus systems must comply with the IEEE definition of ISA. Systems that
are plug-and-play enabled must conform to plug-and-play specifications. All
plug-and-play devices must be uniquely identifiable, state the services they
provide and the resources they require. It must also identify the driver that
supports it and be software configurable.

PCMCIA implementation is the 68-pin card and socket version, compatible
with Release 2.x. The PCMCIA software architecture has two key elements,
namely socket services and card services. Socket services is a
hardware-dependent interface and is therefore supplied by the system
vendor. The purpose of socket services is to mask the socket′s actual
hardware implementation from higher-level software components that utilize
it. Card services is a software layer that sits above socket services,
coordinating access among the cards, the sockets and system resources
such as interrupts and the memory map. It is the responsibility of the
operating system vendor to supply the card services extensions. Card
services accesses cards via socket services. The card drivers (enablers)
interact with the card via card services. It is the responsibility of the PC card
vendor to provide card enablers (drivers). In general, card services is
operating system-dependent.

The PCI bus was originally designed to provide the Pentium processor with
all the bandwidth it needed. Because it was not tied to the Intel family it is
very suitable for attachment to the PowerPC platform. PCI is a full 64-bit
processor independent bus. This is achieved through the design concept
that isolates the PCI bus completely from the processor and memory bus.
Major advantages of the PCI bus are its ability to provide automatic
configuration and the resolution of hardware conflicts. Refer to the PCI
technical specification for more information about the PCI implementation.

6.1.8 Controllers
• Universal Micro Control Unit (UMCU)

The UMCU is the very basic function center of the system. It is the only
logical hardware that is alive even when the power is switched off but
still connected to the external source. The UMCU manages basic power
functions. It provides functions in keyboard control, system power
control, power management event control and other peripheral device
control.

The UMCU communicates with the system microprocessor by message
passing and event notification through a message block. This block is
made up of registers implemented in the extended I/O controller.

Chapter 6. PowerPC - Hardware and Product Overview 151

• Native I/O controller

A National Semiconducter SuperI/O (PC87322) is used and contains the
following function blocks.

− Diskette drive controller
− Serial port controller
− Parallel port controller
− IDE interface

• Extended I/O controller

The Extended I/O controller is a sweep of several different devices.
Some of these device are used in all the products while other are
customized to a specific system for specific functions. The following
functions are provided:

− Keyboard/mouse interface controller
− C2 EEPROM interface controller
− UMCU controller support
− NVRAM interface control
− RTC/CMOS interface control
− IC DRAM card presence detect
− Audio CODEC interface control
− FDD support
− SCSI support
− LED indicators
− System X-data bus buffer control
− System address 8XX register interface

• PCI Bridge and Memory Controller

This controller consists of two modules that act together to make the
connection between the processor, memory and PCI buses. The
functions of the PCI Bridge and memory Controller are as follows:

− SIMM memory controller
− Bridge from PowerPC processor to PCI bus
− Burst or single beat access from CPU
− Burst or single beat access from PCI
− PCI and PowerPC processor bus arbitration
− Error reporting to the PowerPC processor
− Endian mode switching

• PCI-ISA Bridge Controller (Intel 82378ZB System I/O)

This controller provides the ISA bus bridge as well as a host of other
features. These features are:

152 PowerPC: An Inside View

− 20MHz PCI bus operation
− PCI bus interface
− PCI bus arbitration
− PCI configurations registers
− ISA bus interface
− High performance PCI attached IDE interface
− X-Data bus support
− 82C54 programmable interval timer
− 82C59 programmable interrupt controller
− 16-bit BIOS timer
− Test support logic

The PCI-ISA bridge decodes PCI cycles for selected addresses and
unclaimed PCI cycles for the ISA bus.

• Power Management Controller

The power management controller is derived from the IBM ThinkPad
product line. In addition to power management, the controller also
handles other planar logic, that results in cost savings. The following
functions are provided by the Power Management controller:

− Power management support
− PCI FLASH ROM interface
− PCI arbitration
− PCI bus operation up to 33MHz

6.2 The IBM Power Series Product Line
The invention of the PowerPC processors has opened the door for IBM to
design an exciting new range of Personal Computers. These systems will be
known as the IBM Power Series. The family consists of both desktop and
mobile systems.

The new IBM Power Series family of products represent the evolution of the
personal computer into the professional workstation, utilizing the best from
both worlds. Powerful, flexible and competitively priced, the Power Personal
System family is designed to address user′s most demanding computing
requirements. With the performance provided, the systems can effectively
run both 16-bit and 32-bit operating systems and applications. With true
multitasking, the IBM Power Series concurrently run multiple programs,
including such processor-intensive applications as desktop publishing,
spreadsheets, database applications, presentation graphics and multimedia.

We will now move on to a short description of the current models.

Chapter 6. PowerPC - Hardware and Product Overview 153

6.2.1 IBM Personal Computer Power Series 830 and 850
The IBM Personal Computer Power Series 830 and 850 systems redefine
desktop computing to new levels of system price/performance. These
desktop performers combine the performance characteristics of RISC
technology (Reduced Instruction Set Computers) with the price
characteristics of state-of-the-art Personal Computer technology. They
provide leadership technology, advanced industrial design, and IBM quality,
service and support.

Figure 45. IBM Personal Computer Power Series 830 and 850

In addition, the IBM Personal Computer Power Series 830 and 850 systems
include a rich, visually stunning ″out-of-box″ software. This provides an
introduction to the system, its capabilites and strengths, which should help
familiarize users with the system and increase productivity.

The IBM Personal Computer Power Series 830 and 850 system technology
encompasses:

• PowerPC 604 microprocessors

• PCI/ISA bus architectures

• Processor upgrades to provide growth and help to protect investment

• Enhanced PCI local bus IDE controller

• The ability to expand memory from 16MB to 192MB and internal hard
disk storage from 540MB to 3GB

154 PowerPC: An Inside View

• Standard business audio sound system that enables stereo in/out stereo
headphone, and microphone

The Personal Computer Power Series includes two specific products:

• The Personal Computer Power Series 830 is a 3-slot/3-bay space saver
design.

• The Personal Computer Power Series 850 is a 5-slot/5-bay desktop
design.

All the IBM Personal Computer Power Series 830 and 850 systems come
with a three-year warranty.

Whether you are selecting these new systems to run the existing personal
productivity applications or to develop new line-of-business applications, your
requirements are varied. The IBM Personal Computer Power Series 830 and
850 systems make getting the right system for your unique requirements
easy, by offering the customer a build-to-order system. This building block
approach allows customers to configure the system to meet their specific
needs.

The IBM Personal Computer Power Series 830 and 850 systems include an
operating system of choice. When possible, the operating system will be
installed on the hard disk. The operating systems that will be supported by
the IBM Personal Computer Power Series 830 and 850 include:

• OS/2 Warp Connect (PowerPC Edition)
• Windows NT Workstation 3.51 (PowerPC Edition)
• AIX Version 4 for Clients
• Solaris (PowerPC Edition)

Systems are also available with no operating system installed

6.2.1.1 System Characteristics
Following is a short description of the IBM Personal Computer Power Series
830 and 850 technical specifications:

Microprocessor

• Power Series 830: PowerPC 604 100MHz

• Power Series 850: PowerPC 604 100MHz, 120MHz or 133MHz

L2 cache

• 100MHz and 120MHz: 256KB standard, 512KB optional

• 133MHz: 512KB standard

Chapter 6. PowerPC - Hardware and Product Overview 155

Bus architecture

• PCI local bus

• Enhanced IDE controller

Memory

• Parity memory for data integrity

• 16MB memory minimum

• 192 maximum (installed in matching pairs of 70ns SIMMs)

Communications

• Standard PCI local-bus-attached 10BaseT Ethernet on the system board

Integrated audio

• Full 16-bit stereo business audio

• FM synthesis for music and sound effects

• Built-in speaker

• IBM Personal Microphone (for speech recognition and other voice
applications)

Video graphics support

• Standard: PCI SVGA local-bus graphics with 2MB DRAM

• Three optional high-performance adapter cards:

− IBM S15 Graphics Adapter, a 2MB VRAM-based 24-bit graphics
adapter with integrated video coprocessor (motion video
acceleration)

− IBM H10 Graphics Adapter, a 4MB VRAM-based 24-bit PCI graphics
adapter with integrated video coprocessor (motion video
acceleration)

− IBM POWER GXT150P Graphics Adapter, a 8-bit, 3MB advanced PCI
graphics adapter (3-D capable)

• Optional IBM Video Capture Enhancement adapter for use with S15 or
H10 only

CD-ROM drive

• Built-in 680MB quad-speed drive, Kodak Photo-CD, multisession-capable

IDE hard drives supported

• IDE 540MB, 728MB or 1GB

156 PowerPC: An Inside View

• Power Series 850: Up to three internal drives supported for up to 3GB
storage

Optional SCSI-2 subsystems supported (Power Series 850 only)

• 540MB, 1GB and 2GB hard drives

• Quad-speed SCSI-2 CD-ROM drive

• 4/10GB 4mm SCSI-2 tape drive

• Support for up to 5GB internally

• Requires IBM SCSI-2 Fast/Wide PCI adapter card and cable

Diskette drives

• Standard: 1.44MB 3.5-inch diskette drive

• Optional: 1.2MB 5.25-inch diskette drive

Monitors supported

• IBM P50 - 13.6-inch diagonal viewable screen size

• IBM P70 - 15.9-inch diagonal viewable screen size

• IBM P200 - 19.1-inch diagonal viewable screen size

• IBM P201 - 19.1-inch diagonal viewable screen size

• IBM 17S/S Sight and Sound monitor - 16.0-inch diagonal viewable screen
size

• IBM 952X family of monitors

Standard I/O ports

• SVGA monitor port

• 2 serial ports

• 1 enhanced parallel port

• Microphone and speaker jacks

• Audio line in/line out

• MIDI/joystick port

• Ethernet 10BaseT

Let us now have a look at the different models of the Personal Computer
Power Series.

Chapter 6. PowerPC - Hardware and Product Overview 157

6.2.1.2 Personal Computer Power Series 830
Figure 46 shows the design diagram of the Personal Computer Power
Series 830.

Figure 46. Personal Computer Power Series 830 Design Diagram

The following table provides an overview of the main characteristics of the
Personal Computer Power Series 830:

Table 11 (Page 1 of 2). Personal Computer Power Series 830 Characteristics

System Personal Computer Power Series 830

Processor standard 604 - 100MHz, 256KB L2 cache

upgrade processor socket

158 PowerPC: An Inside View

Table 11 (Page 2 of 2). Personal Computer Power Series 830 Characteristics

System Personal Computer Power Series 830

Memory std. / max. 16MB / 192MB

sockets 6 x 72-pin, 4 free (install SIMMs in pairs!)

expansion 4, 8, 16, 32MB parity SIMMs, 70ns

Storage bays 3 (0 free)

control ler 1 x Enhanced IDE (2 drives max.)

diskette 3.5-inch 1.44MB, media sense

std. disk 540MB min. (IDE)

std. CD-ROM Quad-speed (IDE)

Human
Interface

keyboard/mouse yes / yes

audio Crystal Semiconductor CS4232

graphics S3 864 DSP, 2MB DRAM

Connectivity serial / parallel 2 x 9-pin / 1 x enhanced parallel

network 10BaseT Ethernet (RJ45 twisted pair)

Expansion buses 1 x dedicated ISA 1/2 size

2 x shared ISA / PCI

6.2.1.3 Personal Computer Power Series 850
Figure 47 on page 160 shows the design diagram of the Personal Computer
Power Series 850 100MHz.

Chapter 6. PowerPC - Hardware and Product Overview 159

Figure 47. Personal Computer Power Series 850 100MHz Design Diagram

The design diagram of the Personal Computer Power Series 850 120MHz is
depicted in Figure 48 on page 161, and for the Personal Computer Power
Series 850 133MHz in Figure 49 on page 162. Note that the design for the
three different models differs only in the speed of the processor, the
processor local bus, and the PCI bus, and in the fact that the 133MHz version
has 512KB level2 cache standard.

160 PowerPC: An Inside View

Figure 48. Personal Computer Power Series 850 120MHz Design Diagram

Chapter 6. PowerPC - Hardware and Product Overview 161

Figure 49. Personal Computer Power Series 850 133MHz Design Diagram

The following table provides an overview of the main characteristics of the
Personal Computer Power Series 850:

Table 12 (Page 1 of 2). Personal Computer Power Series 850 Characteristics

System Personal Computer Power Series 850

Processor standard 604 - 100MHz, 256KB L2 cache

604 - 120MHz, 256KB L2 cache

604 - 133MHz, 512KB L2 cache

upgrade processor socket

Memory std. / max. 16MB / 192MB

sockets 6 x 72-pin, 4 free (install SIMMs in pairs!)

expansion 4, 8, 16, 32MB parity SIMMs, 70ns

162 PowerPC: An Inside View

Table 12 (Page 2 of 2). Personal Computer Power Series 850 Characteristics

System Personal Computer Power Series 850

Storage bays 5 (2 free)

control ler 2 x Enhanced IDE (4 drives max.)

diskette 3.5-inch 1.44MB, media sense

std. disk 540MB min. (IDE)

std. CD-ROM Quad-speed (IDE)

Human
Interface

keyboard/mouse yes / yes

audio Crystal Semiconductor CS4232

graphics S3 864 DSP, 2MB DRAM

Connectivity serial / parallel 2 x 9-pin / 1 x enhanced parallel

network 10BaseT Ethernet (RJ45 twisted pair)

Expansion buses 2 x dedicated ISA full, 1 x dedicated ISA 1/2
size

2 x shared ISA / PCI

6.2.1.4 Riser Cards
The following two figures show the riser cards used in the IBM Personal
Computer Power Series 830 and 850 systems. The 3-slot riser card is used
in the Personal Computer Power Series 830, the 5-slot riser card in the
Personal Computer Power Series 850.

Riser cards are plugged into the system board vertically and provide a
number of expansion slots for both PCI and ISA bus. The 3-slot riser card
shown in Figure 50 on page 164 provides one dedicated ISA card slot and
two shared PCI/ISA card slots. You can use a maximum of 3 slots at a time.
Each of the shared card slots can accommodate one ISA card or one PCI
card at a time, but not both at the same time. So, the first or the second
slot from the bottom can be used, and the third or the fourth slot from the
bottom. You cannot use the first and second or the third and fourth slot from
the bottom.

Chapter 6. PowerPC - Hardware and Product Overview 163

Figure 50. 3-Slot Riser Card

Figure 51 on page 165 shows the 5-slot riser card used in the Personal
Computer Power Series 850. This card provides three dedicated ISA card
slots and, as in the 3-slot riser card, two shared PIC/ISA card slots. You can
use a maximum of 5 slots at a time. The same restrictions apply for the
shared slots as on the 3-slot riser card.

164 PowerPC: An Inside View

Figure 51. 5-Slot Riser Card

6.2.2 IBM ThinkPad Power Series 820 and 850
With the IBM ThinkPad Power Series 820 and 850, you can put the power of
RISC-based computing on the job anywhere. The PowerPC 603e
microprocessor provides a leap in industry-leadership application
performance through its 100MHz speed, 32KB Level 1 cache and 256KB Level
2 cache support.

Chapter 6. PowerPC - Hardware and Product Overview 165

Figure 52. IBM ThinkPad Power Series 820 and 850

At the same time, you get the innovative features you′ve come to expect with
an IBM ThinkPad: large, state-of-the-art TFT displays with glare-reducing
Black Matrix technology and IBM′s industry-leading integrated TrackPoint III
pointing device. The operating systems that will be supported by the IBM
ThinkPad Power Series 820 and 850 include:

• OS/2 Warp Connect (PowerPC Edition)
• Windows NT Workstation 3.51 (PowerPC Edition)
• AIX Version 4 for Clients
• Solaris (PowerPC Edition)

Systems are also available with no operating system installed

The IBM ThinkPad Power Series 820 and 850 both come with integrated 16-bit
stereo business audio, internal stereo speakers, a built-in microphone and
an internal dual-speed CD-ROM drive.

6.2.2.1 System Characteristics
Following is a short description of the IBM ThinkPad Power Series 820 and
850 technical specifications:

Processor

• PowerPC 603e 100MHz with 32KB L1 internal cache

• 256KB L2 cache

166 PowerPC: An Inside View

Bus architecture

• Power Series 820: 32-bit memory

• Power Series 850: 64-bit memory

Memory

• Parity memory for data integrity

• Power Series 820:

− 16MB or 32MB base memory

− 48MB maximum via sockets for 8MB or 16MB Memory Modules

• Power Series 850:

− 16MB or 32MB base memory

− 80MB or 96MB maximum via two sockets for 4MB, 8MB, 16MB or
32MB IC DRAM cards (installed in matching pairs)

Display

• SVGA

− 10.4-inch (measured diagonally) active matrix TFT color LCD

− sidelit

− 65,536 colors at 800x600 resolution

− 110:1 contrast ratio

• VGA

− 10.4-inch (measured diagonally) active matrix TFT color LCD

− sidelit

− 65,536 colors at 640x480 resolution

− 100:1 contrast ratio

• Black matrix technology for superior viewability in bright light

Video graphics

• PCI local bus

• IBM ThinkPad Power Series G10 Graphics

• Motion video, NTSC in/out and PAL in (optional on Power Series 820)

• Power Series 850: Snap-in video camera (optional)

• Simultaneous display of LCD and external SVGA monitor

Chapter 6. PowerPC - Hardware and Product Overview 167

Audio

• Integrated 16-bit business audio

• Built-in microphone and stereo speakers

• IBM Personal Microphone (for speech recognition and other voice
applications)

Storage

• Removable 540MB, 810MB, or 1.2GB SCSI-2 hard drives

• Internal SCSI-2 double-speed removable CD-ROM drive

• Internal/external 3.5-inch 1.44MB diskette drive

• Support for optional 1GB or 2GB external hard drives

Expandability

• PCMCIA slots for two Type I/II cards or one Type III card

• 120-pin ISA bus connector

• External SCSI-2 port

Standard I/O Interfaces

• SVGA external display port (supports monitors up to 1024x768 resolution)

• Enhanced parallel port

• Serial port

• External keyboard/mouse/numeric keypad port

• External diskette drive port

• SCSI-2 port

• Audio line in/out (Power Series 850 only)

• Headphone and microphone jacks

• Motion video in (NTSC and PAL) and out (NTSC) jacks (optional on Power
Series 820)

Keyboard

• Integrated TrackPoint III pointing device with QuickStop response and
drag lock buttons

• 85 full-size keys

• Full key travel

Power supply

168 PowerPC: An Inside View

• Rechargeable NiMH Battery Pack

• Battery life can range from 2.0 to 5.0 hours

• 1.5-hour internal quick charge in power-off or suspend mode, 2.0-hour
during operation

• 50W external worldwide AC adapter

• Optional Travel Quick Charger (Power Series 820)

• Optional Quick Charger (Power Series 850)

6.2.2.2 ThinkPad Power Series 820
The ThinkPad Power Series 820 provides world-class performance with a
PowerPC 603e 100MHz microprocessor in a small, lightweight system that
can be battery or AC powered.

Multitasking capability and the choice of high-performance, 32-bit operating
systems make the ThinkPad Power Series 820 an ideal general business
solution for mobile, field and office professionals. The system is well-suited
for extremely demanding computer uses. Its innovative design offers
palm-rest space, built-in stereo speakers and integrated CD-ROM.

Models of the ThinkPad Power Series 820 with the optional G10 Graphics
with Motion Video Adapter can send and receive composite video. Motion
video can be input from a NTSC or PAL camcorder, displayed on an NTSC
television monitor, or recorded on an NTSC VCR.

In addition to motion video I/O capabilities, the ThinkPad Power Series 820
has full multimedia support with built-in audio and integrated CD-ROM
capability. All this capability comes in a sleek seven-pound system that
meets the requirements for U.S. Energy Star compliance.

With its new supporting options, the ThinkPad Power Series 820 delivers a
feature-packed, powerful, flexible, expandable mobile computer that is
designed to address the most demanding computing requirements.

Figure 53 on page 170 shows the ThinkPad Power Series 820 design
diagram.

Chapter 6. PowerPC - Hardware and Product Overview 169

Figure 53. ThinkPad Power Series 820 Design Diagram

A summary of the characteristics of ThinkPad Power Series 820 is given in
Table 13.

Table 13 (Page 1 of 2). ThinkPad Power Series 820 Characteristics

System ThinkPad Power Series 820

Processor standard 603e - 100MHz, 256KB L2 cache

upgrade CPU card

Memory std. / max. 16MB / 48MB

sockets 3 x 72-pin SODIMM

expansion 8, 16MB SODIMM

170 PowerPC: An Inside View

Table 13 (Page 2 of 2). ThinkPad Power Series 820 Characteristics

System ThinkPad Power Series 820

Storage bays 1 x disk drive, 1 x CD-ROM or diskette

control ler 1 x SCSI-2 fast

diskette 3.5-inch 1.44MB, media sense, external

std. disk 540MB / 810MB / 1.2GB removable (SCSI)

std. CD-ROM Double speed (SCSI)

Human
Interface

keyboard/mouse yes / TrackPoint III

audio Crystal Semiconductor CS4231

graphics Western Digital WD90C24A2, 1MB DRAM

display 10.4-inch TFT color LCD, 640x480

10.4-inch TFT color LCD, 800x600

Connectivity serial / parallel 1 x 9-pin / 1 x enhanced parallel

network none

Expansion buses PCMCIA: 2 x Type I or II, or 1 x Type III

Physical dimensions 297 x 210 x 56 mm - 11.7 x 8.3 x 2.2 inches

weight 2.8 kg (6.16 lbs) with battery

3.0 kg (6.64 lbs) with battery and FDD

3.4 kg (7.53 lbs) with battery and CD-ROM

6.2.2.3 ThinkPad Power Series 850
With the body of a ThinkPad and the soul of a PowerPC, the ThinkPad Power
Series 850 allows you to carry collaborative and conversational computing
wherever you go. This premium-function mobile product extends IBM′s
ThinkPad family, with advanced features and blazing performance provided
by its PowerPC 603e 100MHz processor.

All models of ThinkPad Power Series 850 take mobile productivity one step
further by offering a standard G10 Graphics with Motion Video Adapter for
video I/O, a snap-in video camera option, and voice-over-data capability
using standard modems, plus the floating point unit of the PowerPC 603e.

These features, plus such additional built-in functions as a multisession
CD-ROM and audio I/O with microphone and stereo speakers, provide a
system that is ideal for advanced collaboration and multimedia applications.
Combine these features with those that have made the ThinkPad world-class
- brilliant active matrix 800x600 Black Matrix displays, the TrackPoint III

Chapter 6. PowerPC - Hardware and Product Overview 171

pointing device, PCMCIA expandability, and user-removable 1.2GB hard disk
drives, and you have a product that is ready for your applications today and
in the future. All this capability is wrapped in an award-winning, sleek,
eight-pound system that meets the requirements for U.S. Energy Star
compliance.

The design diagram of the ThinkPad Power Series 850 is shown in Figure 54.

Figure 54. ThinkPad Power Series 850 Design Diagram

Table 14 on page 173 gives an overview of the ThinkPad Power Series 850
main characteristics.

172 PowerPC: An Inside View

Table 14. ThinkPad Power Series 850 Characteristics

System ThinkPad Power Series 850

Processor standard 603e - 100MHz, 256KB L2 cache

upgrade CPU card

Memory std. / max. 16MB / 80MB or 32MB / 96MB

sockets 2 x 88-pin IC DRAM (install pair!)

expansion 4, 8, 16, 32MB IC DRAM, 70ns, parity

Storage bays 1 x disk drive, 1 x CD-ROM or diskette

control ler 1 x SCSI-2 fast

diskette 3.5-inch 1.44MB, media sense, external

std. disk 540MB / 810MB / 1.2GB removable (SCSI)

std. CD-ROM Double speed (SCSI)

Human
Interface

keyboard/mouse yes / TrackPoint III

audio Crystal Semiconductor CS4231

graphics Western Digital WD90C24A2, 1MB DRAM

display 10.4-inch TFT color LCD, 640x480

10.4-inch TFT color LCD, 800x600

Connectivity serial / parallel 1 x 9-pin / 1 x enhanced parallel

network none

Expansion buses PCMCIA: 2 x Type I or II, or 1 x Type III

Physical dimensions 297 x 260 x 61 mm - 11.7 x 10.24 x 2.4 inches

weight 3.2 kg (6.96 lbs) with battery

3.6 kg (7.96 lbs) with battery and CD-ROM

3.8 kg (8.28 lbs) with battery, CD-ROM, video
camera

6.3 Advanced Function Support
These applications provided with the appropriate operating systems1 , plus
floating point performance of the PowerPC processor, provide advanced
function without additional hardware:

1

Chapter 6. PowerPC - Hardware and Product Overview 173

• IBM SOftMPEG Decoder for viewing MPEG 1 video/audio files
• IBM Video CD Player for viewing video CD-format movies
• IBM Soft MIDI Synthesizer for playing back high quality music
• Speech recognition, dictation and command navigation utilizing IBM

VoiceType technology

6.3.1 Additional Information on MPEG and Music Synthesis
• IBM Video CD Player

− The IBM Video CD Player provides the capability to view
industry-standard MPEG digital video with every Power Personal
Series system with the appropriate operating system support. It uses
the IBM SoftMPEG Decoder to allow users to view movies distributed
in Video-CD format. Video-CD is a format developed by Philips, JVC,
MATSUSHITA, AND SONY. In addition, the IBM SoftMPEG Decoder
supports the playback of MPEG 1 video clips.

MPEG is an international standard for compressing and
decompressing digital video and audio. The standard was developed
by the Moving Pictures Experts Group (a joint ISO-IEC committee).
MPEG is a popular video and audio distribution format because it
achieves very favorable compression while enabling efficient
decompression and high quality during playback. In the traditional PC
market, special add-in boards are required to view MPEG files. IBM
has developed software decompression algorithms capable of playing
MPEG 1 using the advanced architecture and floating point capability
of the PowerPC processors. With MPEG viewing capability on every
desktop, the prospect of distributing information content in
compressed audio and video form is enriched. The per seat cost for
viewing such information is substantially reduced.

• SoftMIDI Synthesizer
− IBM SoftMIDI Synthesizer uses high-quality audio sampling and

supports the general MIDI standard. MIDI files allow complex
musical compositions to be represented in a very compact form and
played back on music synthesizers. This exciting music synthesizer
is capable of responding to general MIDI files to produce high-quality
music. The General MIDI files provide music for multimedia
presentations, games, educational software and any other multimedia
application with files much smaller than digitized .WAV files. It can

Not all operating systems support all functions. Support for applications will only be provided on those systems
sold by IBM with operating systems included.

174 PowerPC: An Inside View

be configured for different environments, providing entry level to
high-level music sound quality without additional audio hardware. It
supports up to 32 voices. Normally a special add-on card is required
to provide wavetable music synthesis. The IBM SoftMIDI Synthesizer
is another example of using the advanced architecture and floating
point capability of the PowerPC processors.

Chapter 6. PowerPC - Hardware and Product Overview 175

176 PowerPC: An Inside View

Appendix A. What Is Multiprocessing?

This appendix is provided as an overview for readers who are not familiar
with multiprocessing concepts.

Uni-processor designs have built-in bottlenecks. The address and data bus
restrict data transfers to a one-at-a-time trickle of traffic. The program
counter forces instructions to be executed in strict sequence. In the past,
improvements in computer performance have been achieved simply by
designing better, faster uni-processor machines. It now appears that further
significant performance gains will need a different design.

Multiprocessing involves using more than one CPU. Multiprocessing can be
categorized in a number of ways, but some of the more important aspects to
consider are:

 1. Do the processors share resources, or do they each have their own?
Resources to consider include the operating system, memory, I/O
channels, control units, files and drivers.

 2. How are the processors connected? They might be in a single machine
sharing a single bus or connected by other topologies (crossbar, grid,
ring) or they might be in several machines using message-passing
across a network.

 3. Will all the processors be equal, or wil l some of them be specialized?
For instance, all the processors can do integer arithmetic, but only one of
them can do floating point.

 4. Will parallel programming be supported? The act of sharing the parts of a
program (breaking the code up, copying relevant data to each of the
parts, finding an idle processor, collecting the results and synchronizing
any inter-process interactions) represents an extra task in itself.

 5. Will it be easy to enhance/upgrade the system at a later date? Usually
the addition of a new processor will not cause system throughput to
increase by the rated capacity of the new processor, because there is

• Additional operating system overhead

• Increased contention for system resources

• Hardware delays in switching and routing transmissions between an
increased number of components.

 6. What happens if one of the processors fails? One of the most important
capabilities of the multiprocessor operating systems is their ability to

 Copyright IBM Corp. 1995 177

withstand equipment failures in individual processors and to continue
operation.

Loosely coupled multiprocessing involves connecting two or more
independent computer systems via a communication link. Each system has
its own operating system and storage. The systems can function
independently and can communicate when necessary. The separate systems
can access each other′s files across the communications link, and in some
cases, they can switch tasks to more lightly loaded processors to achieve a
degree of load balancing.

Tightly coupled multiprocessing uses a single storage shared by the various
processors and a single operating system that controls all the processors
and system hardware.

There are three basic operating system organizations for multiprocessors:

 1. Master/slave model

One processor is designated as the master and the others are the
slaves. The master is general-purpose processor and performs I/O as
well as computation. The slave processors perform only computation.
The processors are considered asymmetric (not equivalent) since only
the master can do I/O as well as computation. Utilization of a slave may
be poor if the master does not service slave requests efficiently enough.
I/O-bound jobs may not run efficiently since only the master does I/O.
Failure of the master is catastrophic.

 2. Separate execution model

Each processor has its own operating system and responds to interrupts
from users running on that processor. A process assigned to run on a
particular processor runs to completion. It is possible for some of the
processors to remain idle while one processor executes a lengthy
process. Some tables are global to the entire system and access to these
tables must be carefully controlled. Each processor controls its own
dedicated resources, such as files and I/O devices.

 3. Symmetric multiprocessing model

All of the processors are functionally equivalent and can perform I/O and
computation. The operating system manages a pool of identical
processors, any one of which may be used to control any I/O devices or
reference any storage unit. Conflicts between processors attempting to
access the same storage at the same time are ordinarily resolved by
hardware. Multiple tables in the kernel can be accessed by different
processes simultaneously. Conflicts in access to system-wide tables are

178 PowerPC: An Inside View

ordinarily resolved by software. A process may be run at different times
by any of the processors and at any given time, several processors may
execute operating system functions in kernel mode.

A two-processor system (for example) can do more work than a
uni-processor system, but it will not do twice as much as a uni-processor
system. This is because there is some overhead associated with adding
CPUs. The major impediments to the scalability of MP machines are:

 1. Contention for the operating system

An MP can have multiple processes accessing kernel data structures
simultaneously. Therefore, mutual exclusion locks must be placed around
many of these structures (or the code accessing them) to guarantee
atomizing. These locks degrade performance by:

• Increasing the path length of the system calls.

• Causing collisions when multiple processes try to access a protected
area simultaneously. In this case, all but one process will have to
wait for the critical data structure to become free.

 2. Contention for the system bus

 3. Increased overhead of cache misses due to the coherency protocol

A cache miss is more costly on a multiprocessor system than it is on a
uni-processor system. This is because if data is marked dirty in the
cache of another processor, the dirty data must be written to memory
before it can be accessed and used on another processor.

 4. Contention and communication within the application

Multiple tasks within an application may be executing on different
processors. If at some point, they need to synchronize, the application
overhead is increased by communication between the tasks and waiting
for each task to get to the synchronization point.

Appendix A. What Is Multiprocessing? 179

180 PowerPC: An Inside View

Appendix B. The PowerPC Instruction Set

This appendix provides information on the relationship between the
instruction sets used for the POWER, POWER2, PowerPC Architecture and the
PowerPC 601 microprocessor. Figure 55 on page 182 shows the relationship
between the instruction sets.

The PowerPC 601 processor was intended to be bridge processor from
POWER to PowerPC. The PowerPC 601, in fact, implements nearly all of both,
POWER and 32-bit PowerPC instruction sets. POWER2 added several new
instructions to extend POWER for technical applications, namely load/store,
floating-point quad, floating square root, and floating-point to integer convert.
POWER2 applications which exploit these instructions will fail on a POWER
machine. While square root and integer convert are not necessarily at issue,
being confined mostly to math libraries (enabling applications to run well on
both POWER and POWER2), the load/store quad instructions are another
matter. These instructions would tend to get used in mainline code and the
performance ramifications do not make them good candidates for emulation.
An application choosing to exploit these also explicitly chooses to discard
POWER compatibility.

The PowerPC instruction set can be characterized as being based on the
POWER instruction set with less a number of instructions. PowerPC also
proceed to add a number of new instruction, some common with POWER2, as
well as others not either POWER or POWER2. The POWER instructions
discarded by PowerPC were targeted for emulation as their frequency of use
was projected to be minimal.

There is a set of instructions common to each of the architectures that
compilers will restrict themselves to when requested which will allow the
program to execute on any of the three architectures with minimal emulation
activity. However, program binaries which employ POWER2′s load/store quad
ops will not execute on either POWER or PowerPC Program binaries which
exploit PowerPC-unique ops will either run less than optimal, if at all on
POWER and POWER2. POWER specific program binaries should run well on
POWER2 and statistics indicate should run reasonable well on PowerPC as
well with some amount of emulation.

 Copyright IBM Corp. 1995 181

Figure 55. Relationship between POWER, POWER2, PowerPC and the PowerPC 601 Instruction Set

Table 15 provides a list of of the 32-bit and 64-bit PowerPC instructions.

Table 15 (Page 1 of 8). The PowerPC Instruction Set

Mnemonic 32-bit 64-bit Description

addx √ √ add
addcx √ √ add carrying
addex √ √ add extended
addi √ √ add immediate
addic √ √ add immediate carrying
addic. √ √ add immediate carrying and record
addis √ √ add immediate shifted
addmex √ √ add to minus one extended
addzex √ √ add to zero extended
andx √ √ and
andcx √ √ and with complement
andi. √ √ and immediate
andis √ √ and immediate shifted
bx √ √ branch
bcx √ √ branch conditional
bcctrx √ √ branch conditional to count register
bclrx √ √ branch conditional to link register
cmp √ √ compare

182 PowerPC: An Inside View

Table 15 (Page 2 of 8). The PowerPC Instruction Set

Mnemonic 32-bit 64-bit Description

cmpi √ √ compare i mmediate
cmpl √ √ compare logical
cmpli √ √ compare logical immediate
cntlzdx √ √ count leading zeros doubleword
cntlzwx √ √ count leading zeros word
crand √ √ condition register and
crandc √ √ condition register and with

complement
creqv √ √ condition register equivalent
crnand √ √ condition register nand
crnor √ √ condition register nor
cror √ √ condition register or
crorc √ √ condition register or with complement
crxor √ √ condition register xor
dcbf √ √ data cache block flush
dcbi √ √ data cache block invalidate
dcbst √ √ data cache block store
dcbt √ √ data cache block touch
dcbtst √ √ data cache block touch for store
dcbz √ √ data cache block set to zero
divdx √ divide doubleword
divdux √ divide doubleword unsigned
divwx √ √ divide word
divwux √ √ divide word unsigned
eciwx √ √ external control in word indexed
ecowx √ √ external control out word indexed
eieio √ √ enforce in-order execution of I/O
eqvx √ equivalent
extsbx √ √ extend sign bite
extshx √ √ extend sign halfword
extswx √ extend sign word
fabsx √ √ floating absolute value
faddx √ √ floating add
faddsx √ √ floating add single
fcfidx √ floating convert from integer

doubleword
fcmpo √ √ floating compare ordered
fcmpu √ √ floating compare unordered
fctidx √ floating convert to integer doubleword
fctidzx √ floating convert to integer doubleword

with round toward zero
fctiwx √ √ floating convert to integer word

Appendix B. The PowerPC Instruction Set 183

Table 15 (Page 3 of 8). The PowerPC Instruction Set

Mnemonic 32-bit 64-bit Description

fctiwzx √ √ floating convert to integer word with
round toward zero

fdiv √ √ floating divide
fdivsx √ √ floating divide single
fmaddx √ √ floating multiple-add
fmaddsx √ √ floating multiple-add single
fmrx √ √ floating move register
fmsubx √ √ floating multiply-subtract
fmsubsx √ √ floating multiply-subtract single
fmulx √ √ floating multiply
fmulsx √ √ floating multiply single
fnabsx √ √ floating negative absolute value
fnegx √ √ floating negate
fnmaddx √ √ floating negative multiply-add
fnmaddsx √ √ floating negative multiply-add single
fnmsubx √ √ floating negative multiply-subtract
fnmsubsx √ √ floating negative multiply-subtract

single
fresx √ √ floating reciprocal estimate single
frspx √ √ floating round to single-precision
frsqrtex √ √ floating reciprocal square root

estimate
fselx √ √ floating select
fsqrtx √ √ floating square root
fsqrtsx √ √ floating square root single
fsubx √ √ floating subtract
fsubsx √ √ floating subtract single
icbi √ √ instruction cache block invalidate
isync √ √ instruction synchronize
lbz √ √ load byte and zero
lbzu √ √ load byte and zero with update
lbzux √ √ load byte and zero with update

indexed
lbzx √ √ load byte and zero indexed
ld √ load doubleword
ldarx √ load doubleword and reserve index
ldu √ load doubleword with update
ldux √ load doubleword with update indexed
ldx √ load doubleword indexed
lfd √ √ load floating-point double
l fdu √ √ load floating-point double with update
lfdux √ √ load floating-point double with update

indexed
lfdx √ √ load floating-point double indexed

184 PowerPC: An Inside View

Table 15 (Page 4 of 8). The PowerPC Instruction Set

Mnemonic 32-bit 64-bit Description

lfs √ √ load floating-point single
lfsu √ √ load floating-point single with update
lfsux √ √ load floating-point single with update

indexed
lfsx √ √ load floating-point single indexed
lha √ √ load halfword algebraic
lhau √ √ load halfword algebraic with update
lhaux √ √ load halfword algebraic with update

indexed
lhax √ √ load halfword algebraic indexed
lhbrx √ √ load halfword byte-reserved indexed
lhz √ √ load halfwaord and zero
lhzu √ √ load halfword and zero with update
lhzux √ √ load halfword and zero with update

indexed
lhzx √ √ load halfword and zero indexed
lmw √ √ load multiple word
lswi √ √ load string word immediate
lswx √ √ load string word indexed
lwa √ load word algebraic
lwarx √ √ load word and reserve indexed
lwaux √ load word algebraic with update

indexed
lwax √ load word algebraic indexed
lwbrx √ √ load word byte-reserve indexed
lwz √ √ load word and zero
lwzu √ √ load word and zero with update
lwzux √ √ load word and zero with update

indexed
lwzx √ √ load word and zero indexed
mcrf √ √ move condition field register
mcrfs √ √ move condition field register rom

FPSCR
mcrxr √ √ move to condition register rom XER
mcfr √ √ move from condition register
mffsx √ √ move from FPSCR
mfmsr √ √ move from machine state register
mfspr √ √ move from special purpose register
mfsr √ move from segment register
mfsrin √ move from segment register indirect
mftb √ √ move from time base
mtcrf √ √ move to condition register field
mtfsb0x √ √ move to FPSCR bit 0
mtfsb1x √ √ move to FPSCR bit 1

Appendix B. The PowerPC Instruction Set 185

Table 15 (Page 5 of 8). The PowerPC Instruction Set

Mnemonic 32-bit 64-bit Description

mtffsx √ √ move to FPSCR fields
mtfsifx √ √ move to FPSCR fields immediate
mtmsr √ √ move to machine state register
mtsr √ move to segment register
mtsrin √ move to segment register indirect
mulhdx √ multiply high doubleword
mulhdux √ multiply high doubleword unsigned
mulhwx √ √ multiply high word
mulhwux √ √ multiply high word unsigned
mulldx √ √ multiply low doubleword
mull i √ √ multiply low immediate
mullwx √ √ multiply low word
nandx √ √ nand
negx √ √ negate
norx √ √ nor
orx √ √ or
orcx √ √ or with complement
ori √ √ or immediate
oris √ √ or immediate shifted
rf i √ √ return rom interrupt
rldclx √ rotate left doubleword then clear left
r ldcrx √ rotate left doubleword then clear right
rldicx √ rotate left doubleword immediate then

clear
rldiclx √ rotate left doubleword immediate then

clear left
r ldicrx √ rotate left doubleword immediate then

clear right
r ldimix √ rotate left doubleword immediate then

mask insert
r lwimix √ √ rotate left word immediate then mask

insert
r lwinmx √ √ rotate left word immediate then and

with mask
r lwnmx √ √ rotate left word then and with mask
sc √ √ system call
slbia √ slb invalidate call
slbie √ slb invalidate entry
sldx √ shift left double word
slwx √ √ shift left word
sradx √ shift algebraic doubleword
sradix √ shift right algebraic doubleword

immediate
srawx √ √ shift right algebraic word

186 PowerPC: An Inside View

Table 15 (Page 6 of 8). The PowerPC Instruction Set

Mnemonic 32-bit 64-bit Description

srawix √ √ shift right algebraic word immediate
srdx √ shift right doubleword
srwx √ √ floating negative multiply-add
stb √ √ store byte
stbu √ √ store byte with update
stbux √ √ store byte with update indexed
stbx √ √ store byte indexed
std √ store doubleword
stdcx √ store doubleword conditional indexed
stdu √ store doubleword with update
stdux √ store doubleword indexed with update
stdx √ store doubleword indexed
stfd √ √ store floating-point double
stfdu √ √ store floating-point double with

update
stfdux √ √ store floating-point double with

update indexed
stfdx √ √ store floating-point double indexed
stiwx √ √ store floating-point as integer word

indexed
stfs √ √ store floating-point single
stfsu √ √ store floating-point single with update
stfsux √ √ store floating-point single with update

indexed
stfsx √ √ store floating-point single indexed
sth √ √ store halfword
sthbrx √ √ store halfword byte-reserved indexed
sthu √ √ store halfword with update
sthux √ √ store halfword with update indexed
sthx √ √ store halfword indexed
stmw √ √ store multiple word
stswi √ √ store string word immediate
stswx √ √ store string word indexed
stw √ √ store word
stwbrx √ √ store word byte-reverse indexed
stwcx √ √ store word conditional indexed
stwu √ √ store word with update
stwux √ √ store word with update indexed
stwx √ √ store word indexed
subfx √ √ substract from
subfcx √ √ substract from carrying
subfex √ √ substract from immediate carrying
subfmex √ √ substract from minus one extended

Appendix B. The PowerPC Instruction Set 187

Table 16 provides a list of PowerPC instructions not supported by the
PowerPC 601 processor.

Table 17 provides a list of POWER instructions deleted from the PowerPC
Architecture. However, some of the instructions are used by the PowerPC
601 processor, as the PowerPC 601 processor is a ″bridge″ processor
between the POWER and PowerPC technology.

Table 15 (Page 7 of 8). The PowerPC Instruction Set

Mnemonic 32-bit 64-bit Description

subfzex √ √ substract from zero extended
sync √ √ synchronize

Table 16. PowerPC Instructions not Supported by the PowerPC 601 Processor

Mnemonic Description

fresx floating-point reciprocal estimate single precision
frsqrtex floating-point reciprocal square root estimate
fselx floating-point select
fsqrtx floating-point square root
fsqrtsx floating-point square root single precision
mftb move from time base
stfiwx store floating-point as integer word indexed
t lbia translation lookaside buffer invalidate all
t lbsync translation lookaside buffer synchronize

Table 17 (Page 1 of 2). Power Instructions Deleted from the PowerPC
Architecture

Mnemonic Description 601

absx absolute Yes
clcs cache line compute size Yes
clf cach line flash No
cli cache line invalidate No
dclst data cache line store No
divx divide Yes
divsx divide short Yes
dozx difference or zero Yes
dozi difference or zero immediate Yes
lscbxx load string and compare byte indexed Yes
maskgx mask generate Yes
maskirx mask insert from register Yes
mfsri move from segment register indirect No

188 PowerPC: An Inside View

Table 17 (Page 2 of 2). Power Instructions Deleted from the PowerPC
Architecture

Mnemonic Description 601

mulx multiply Yes
nabsx negative absolute Yes
rac real address compute No
rlmix rotate left then mask insert Yes
rribx rotate right and insert bit Yes
slex shift left extended Yes
sleqx shift left extended with MQ Yes
sliqx shift left immediate with MQ Yes
sllqx shift left long with MQ Yes
slqx shift left with MQ Yes
sraiqx shift right algebraic immediate with MQ Yes
sraqx shift right algebraic with MQ Yes
srex shift right extended Yes
sreax shift right extended algebraic Yes
sreqx shift right extended with MQ Yes
sriqx shift right immediate with MQ Yes
srlqx shift right long with MQ Yes
srqx shift right with MQ Yes

Appendix B. The PowerPC Instruction Set 189

190 PowerPC: An Inside View

Glossary

A
Abstraction Software Layer . Separates the
hardware from the software.

Application Binary Interface . Enables
applications to run on all available
PowerOpen-compliant operating systems no
matter which PowerPC based hardware it runs
on.

Application Binary Interface (ABI) . An ABI is a
set of guidelines describing how binary code
should be structured so that applications and
code will run unchanged across systems from
multiple vendors. The ABI is a more specific
machine-level API.

Application Programming Interface . A library of
routines for application programmers.

Asymmetric Multiprocessing . See
Multiprocessing.

Asynchronous Exceptions . Exceptions that are
caused by external events or other conditions
not connected to whatever the CPU is
processing at the time that the exception
occurred. Contrast with Synchronous
Exceptions.

B
Bi-Endian Support . Support in the processor
architecture for both Big-Endian and
Little-Endian byte ordering.

Big-Endian Byte Ordering . A method of storing
and accessing multi-byte data types. The data
is stored starting with the most significant byte
and ending with the least significant.

Block . In the PowerPC Architecture, a special
memory partition which can be 128KB to 256MB

in size. It is specially defined to allow for quick
access.

Block Address Translation . The process of
translating the logical address of a block into
the physical address.

Block Address Translation Registers . The
registers that store the locations of blocks in
memory. Used in the block address translation
process.

Boot Time Abstraction Layer . Collection of
firmware and software which abstracts the
hardware at boot time.

Branch Look-Ahead . The technique of
inspecting the instruction queue to detect
branch instructions in the instruction stream.
The aim is to execute branch instructions early
enough to achieve zero-cycle branching.

C
Cache . A high-speed storage buffer that
contains frequently accessed instructions and
data; it is used to reduce access time.

Cache Coherency . The situation where multiple
cache units sharing one main memory space
have an accurate view of the contents of
memory.

Cooperative Multitasking . A form of
multitasking in which a thread (or application)
decides when to stop executing in order to let
other threads run.

CD-ROM. Compact disk-read only memory. A
disc that you can only read data from. Data
cannot be written to a CD-ROM.

Coprocessor . A microprocessor on an
expansion board or planar that extends the
address range of the main processor or adds

 Copyright IBM Corp. 1995 191

specialized instructions to handle a particular
category of operations.

Critical Word First . A cache data transfer
policy. When the CPU needs a piece of data
that is not in cache, the loading from memory
always occurs with the piece of data that the
CPU needs first, regardless of its place in the
cache block.

Cycles per Instruction . The average number of
clock cycles needed to complete executing one
instruction.

Cycle Time . The amount of time taken to
complete one CPU cycle.

D
Device . An input/output (I/O) unit such as a
terminal, a display, or a printer.

Device Driver . A file that contains the code
needed to attach and use a device.

Direct Access Storage Device (DASD) . A
device in which access time is effectively
independent of the location of the data.

Direct Address Translation . The process of
using a logical address as the physical address
in a memory access. Used when address
translation is disabled.

DMA . Direct memory access; technique by
which transfers to and from system memory are
made by an independent control chip rather
than by the system′s main processor, thereby
resulting in improved overall performance.

DOS. Disk operating system. A program that
controls the operation of an IBM Personal
Computer, PS/1, PS/2, or PS/ValuePoint and the
execution of application programs.

Dynamic Power Management Mode . A
mechanism in the PowerPC 603 chip to minimize
power consumption during normal operation of

the CPU. It does this by detecting any
functional unit that is idle and putting this unit in
a low-power state.

E
Error Checking and Correction (ECC) . In a
processing unit, the detection and correction of
all single-bit errors, plus the detection of
double-bit and some multiple-bit errors.

EPROM. Erasable programmable read-only
memory. Programmable read-only memory that
is read-only in normal use but can be erased by
a special technique and then reprogrammed.

EMS. Expanded memory specification; term
used to describe the standard developed by
Lotus, Intel and Microsoft for access to
expanded memory by real mode DOS
application.

Exception . An abnormal or error condition
during processing. May be caused by a variety
of fatal or non-fatal events. See asynchronous
exceptions, synchronous exceptions, precise
exceptions and imprecise exceptions.

Extended I/O Controller . This controller control
a host of functions including the NVRAM,
real-time clock, LED indicators and UMCU

F
FAT . File allocation table; term used to
describe the file system implemented by DOS.
This file system uses a file allocation table to
contain the physical sector addresses of all files
on the disk.

First In/First Out (FIFO) . A queuing technique in
which the next item to be retrieved is the item
that has been in the queue for the longest time.

Fixed Disk . A flat, circular, nonremovable plate
with a surface layer on which data can be
stored by magnetic recording.

192 PowerPC: An Inside View

FLASH . An electrically erasable programmable
read only memory (EEPROM) module that can
be updated by diskette

H
Hardware Architecture . Hardware architecture
is the logical structure and functional
characteristics of a computer including the
relationships among its hardware and software.

I
I/O Controller Interface Access . A method of
accessing I/O devices from programs. It uses
message passing between the CPU and the I/O
controller to communicate.

I/O Controller Interface Translation . The
process of using a logical address to generate
the I/O controller address and the messages
used to communicate with an I/O controller.
This is the address translation process used for
I/O controller interface accesses.

I/O Memory . I/O memory is the area in
memory that refers to the addresses where I/O
devices reside

Imprecise Exceptions . Exceptions that are
usually caused by a very serious failure or
non-recoverable condition. They may cause the
CPU to halt processing or stop execution of
some program. Contrast with precise
exceptions.

Intelligent Agent . A part in an application that
uses artificial intelligence to enable the
computer to understand natural language
commands, and responding with complex series
of tasks based upon those commands.

Interprocess Communication (IPC) . The basic
mechanism by which threads running in
different tasks can communicate with each
other.

Initial Program Load (IPL) . (1) The initialization
procedure that starts an operating system. (2)
The process of loading programs and preparing
a system to run jobs.

Interface . A shared boundary between two or
more entities. An interface may be a hardware
component to link two devices or a portion of
storage or registers accessed by two or more
computer programs.

International Organization for Standardization
(ISO). An organization of national standards
bodies from various countries established to
promote the development of standards to
facilitate international exchange of goods and
services, and develop cooperation in
intellectual, scientific, technological and
economic activity.

Interrupt . A suspension of a process, such as
execution of a computer program caused by an
external event, and performed in such a way
that the process can be resumed.

K
Kernel Programming Interface . Provides the
interface to kernel process and device drivers.

Kilobyte (KB) . 1024 bytes for processor and
data storage (memory) size; otherwise, 1000
bytes.

L
Little-Endian Byte Ordering . A method of
storing and accessing multi-byte data types.
The data is stored starting with the least
significant byte and ending with the most
significant.

Liquid Crystal Display (LCD) . A display device
that creates characters by means of reflected
light on patterns formed by a liquid that
becomes opaque when it is energized.

Glossary 193

Load/Store Architecture . The method of moving
data between CPU registers and main memory
using specialized load and store instructions
and using only register operands in
computational instructions.

M
Machine Abstractions . see abstraction software
layer

Math Coprocessor . In a personal computer, a
microprocessor on an expansion board that
supplements the operations of the processor in
the system unit, enabling a personal computer
to perform complex mathematical operations in
parallel with other operations.

Megabyte (MB) . 1,048,576 bytes.

MEI Protocol . A simplified version of the MESI
protocol (see MESI Protocol). Does not have a
shared state.

MESI Protocol . A mechanism to keep track of
the state of data in a cache unit. Cache lines
can be marked as being in a modified,
exclusive, invalid or shared state.

Multiprocessing . Multiprocessing is the ability
to execute threads on more than one processor
concurrently. In symmetric multiprocessing, the
operating system as well as other processes
can have threads executing on multiple
processors (as opposed to asymmetric
multiprocessing, in which the operating system
executes only one processor).

N
Native I/O Controller . The native I/O controller
is a controller chip that controls the diskette
drive, serial port, parallel port and integrated
IDE.

O
Operating Environment Architecture . A layer of
the PowerPC Architecture that defines the
memory management and exception models.

Operating System . The software that controls
the running of programs. An operating system
may provide services such as resource
allocation, scheduling, input/output (I/O) control
and data management.

Out-of-Order Execution . The situation in a
superscalar CPU where instructions are allowed
to execute without following the order in which
they are coded in the program.

P
Page . A 4MB partition of a segment. (See
Segment)

Path Length . The number of computer
instructions needed to perform a task.

Performance Optimization With Enhanced RISC
(POWER). IBM′s second-generation RISC
architecture. Serves as the underlying
processor architecture for IBM ′s RISC
System/6000 family of products.

PCI bridge and memory controller . This
controlle consists of two modules that makes a
connection between the memory, processor and
PCI bus

PCI-ISA bridge controller . A bridge between to
the ISA bus is provide by this controller.

Pipelining . A technique where processing of an
instruction is divided into several stages and
multiple instructions are processed
concurrently, with each instruction in different
stages of processing (assembly-line style).

Planar . Also known as the motherboard. The
largest electronic board in a computer which
connects the various subsystems together.

194 PowerPC: An Inside View

Power-on Self Test (POST) . A series of
diagnostic tests that are run automatically each
time the computer ′s power is turned on.

PowerOpen Association . Membership driven
organization chartered to manage the evolution
of the PowerOpen application binary interface
(ABI).

PowerOpen . A company formed by IBM and
Apple dedicated to promoting the PowerOpen
environment. The PowerOpen environment
defines a standard UNIX platform that allows
developers to write UNIX-based software that
can be ported to any PowerOpen-compliant
operating system

PowerPC Reference Platform Specification . A
document created by IBM and widely distributed
to vendors who wish to offer PowerPC hardware
and software. It defines a suggested hardware
configuration for PowerPC machines.

Precise Exceptions . Exceptions where the exact
cause is known and the machine state at the
time of exception is known. Contrast with
imprecise exceptions.

Preemptive Multitasking . A form of multitasking
in which the operating system periodically
interrupts the execution of a thread in order to
let other threads execute. This prevents
monopolization of the processor by one thread.

Principle of Locality . The probability that if the
CPU fetches a piece of program code from
memory, the next piece that it needs is next to
or near to the one currently being fetched.

Process . An address space and collection of
threads. This can be thought of as an
abstraction of a running program. It typically
contains the executable, the program′s data, the
stack, program counter, stack pointer, and other
registers. Essentially this is all of the
information needed to run the program. A
process is created, managed, and terminated by
the operating system. A process is also
sometimes refered to as a task, and consists of
executable entities called threads. A process

can become a parent process by creating other
(child) processes which may inherit some or all
of the parent process′s resources.

R
Random Access Memory (RAM) . A computer ′s
or adapter ′s volatile storage area into which
data may be entered or retrieved from in a
non-sequential manner.

Reduced Instruction Set Cycles . A processor
architecture designed to produce the optimal
value of Path Length x Cycles per Instruction.

Run Time Abstraction Layer . Collection of data
and software that abstracts hardware from the
operating system kernel. The run time
abstraction layer is made of system abstraction
software and device drivers.

S
Segment . A 256MB partition of the PowerPC
logical address space.

Snooping . A technique to maintain cache
coherency (see cache coherency). All cache
units watch the system bus. When a cache unit
accesses main memory, all the other cache
devices know about the access and can take
action to ensure that they maintain a coherent
view of memory.

Static Branch Prediction . A scheme that
attempts to predict in a conditional branch
instruction, whether or not the branch will occur.
The prediction that the scheme gives is fixed
and does not change with the circumstances.

Subsystem . A secondary or subordinate
system, or programming support, usually
capable of operating independently of
asychronously with a controlling system.

Superscalar Design . The concept of dispatching
and executing multiple instructions in parallel
using multiple execution units within a CPU.

Glossary 195

Supervisor-Level Programs . Programs that
have the authority to perform privileged
operations. These privileged operations usually
involve using or changing some protected
critical system resources. Contrast with
User-level Programs.

Symmetric Multiprocessing . See
Multiprocessing.

Synchronous Exceptions . Exceptions that are
caused by the instructions that the CPU is
processing at a particular moment. Contrast
with asynchronous exceptions.

System I/O . The system I/O is the area in the
memory map that handles the addressing and
communication for all I/O functions

System Memory . The portion of memory where
executable instructions reside is called the
system memory

System ROM . The system ROM is the are in
memory where power-on firmware and boot
firmware are stored. It is normally implemented
as ROM, EPROM, EEPROM or FLASH ROM.

T
Translation Lookaside Buffer . Fast hardware
buffer that contains the most recent logical to
physical address mappings.

Thread . The entities which actually execute in a
process ′s address space.

U
UMCU . The universal micro control unit
manages basic power functions. It is alive even
when power is switched off.

User Instruction Set Architecture . A layer of
the PowerPC Architecture that defines the

user-level programming environment and the
programming model for a uniprocessor
environment.

User-Level Programs . Programs that execute
with normal privileges. These programs do not
have the authority to manipulate protected
system resources. Contrast with
supervisor-level programs.

V
Virtual 8086 Mode . Mode of operation of the
Intel 32-bit processors, which allows the
processor to execute multiple concurrent tasks
with each regarding the processor as its own
distinct 8086 processor. This mode of operation
provides multitasking and memory protection
between the virtual 8086 tasks. Also known as
V86 mode.

Virtual Environment Architecture . A layer of the
PowerPC Architecture that defines the
programming model for a multiprocessing
environment.

W
WIM Bits . Three bits that define the caching
attributes of a page or block.

Write Back . A policy that can be implemented
to control the behavior of the cache system.
The write back policy states that any modified
data need not be reflected in memory
immediately. It must be copied out when the
cache unit detects that another cache device
wants to access the same piece of data in
memory.

Write Through . A policy that can be
implemented to control the behavior of the
cache system. The write through policy states
that any cache data that is modified must be
copied out to main memory immediately.

196 PowerPC: An Inside View

Z
Zero-Cycle Branching . The ability to detect and
resolve branch instructions early enough to
ensure an uninterrupted instruction stream and
avoid branch delay.

Glossary 197

198 PowerPC: An Inside View

List of Abbreviations

ABI Application Binary
Interface

AIX Advanced Interactive
eXecutive

ANSI American National
Standards Institute

AT Advanced Technology

ATM Asynchronous Transfer
Mode

BAT Block Address
Translation

BIOS Basic Input/Output
System

BP Branch Processor

BTAS Boot Time Abstraction
Layer

CD Compact Disk

CD-ROM Compact Disk - Read
Only Memory

CISC Complex Instruction Set
Computer

CMOS Complementary Metal
Oxide Semiconductor

CODEC Coder Decoder

CORBA Common Object
Request Broker
Architecture

CPU Central Processing Unit

CR Condition Register

CU Completion Unit

DAC Digital to Analog
Converter

DASD Direct Access Storage
Device

DDK Device Driver
Development Kit

DIMM Dual In-Line Memory
Module

DMA Direct Memory Access

D-MMU Data Memory
Management Unit

DOS Disk Operating System

DPMI DOS Protected Mode
Interface

DRAM Dynamic Random
Access Memory

DSOM Distributed System
Object Model

DSP Digital Signal Processor

ECC Error Checking and
Correcting

ECP Extended Capabilities
Port

EEPROM Electrically Erasable
Programmable Read
Only Memory

EIA Electronics Industries
Association (USA)

EISA Extended Industry
Standard Architecture

ELF Executable and Linking
Format

EMS Expanded Memory
Specification

EPA Environmental
Protection Agency
(USA, government)

EPROM Erasable Programmable
Read Only Memory

ESDI Enhanced Small Device
Interface

FAT File Alocation Table

 Copyright IBM Corp. 1995 199

FAX Facsimile

FDD Floppy Disk Drive

FIFO First In/First Out

FP Floating-Point

FPR Floating-Point Register

FPSCR Floating-Point Status
and Control Register

FPU Floating-Point Unit

FXU Fixed-Point Unit

GB Gigabyte

GPR General-Purpose
Register

GUI Graphic User Interface

HDD Hard Disk Drive

HPFS High Performance File
System

Hz Hertz

IBM International Business
Machines Corporation

IC Integrated Circuit

ICU Instruction Cache Unit

IDE Integrated Device
Electronics

IDE Integrated Development
Environment

IEEE Institute of Electrical
and Electronics
Engineers

I/O Input/Output

IML Initial Microcode Load

I -MMU Instruction Memory
Management Unit

IPL Initial Program Load

IRQ Interrupt Request

ISA Industry Standard
Architecture

ISO International
Organization for
Standardization

IST Instruction Set
Translator

ITSO International Technical
Support Organization

IU Instruction Unit

JEDEC Joint Electron Device
Engineering Council

JEIDA Japan Electronic
Industry Development
Association

KB Kilobyte

KBI Kernel Binary Interface

kHz Kilohertz

LAN Local Area Network

LCD Liquid Crystal Display

LED Light Emitting Diode

LIM Lotus Intel Microsoft

LSU Load/Store Unit

MAS Macintosh Application
Services

MB Megabyte

MCA Micro Channel
Architecture

MEI Modified, Exclusive,
Invalid

MESI Modified, Exclusive,
Shared, Invalid

MFM Modified Frequency
Modulation

MHz Mega Hertz

MIDI Musical Instrument
Digital Interface

M M U Memory Management
Unit

MSR Machine State Register

200 PowerPC: An Inside View

MVM Multiple Virtual Machine

NiCad Nickel-Cadmium

NiCd Nickel-Cadmium

NiMH Nickel Metal Hydride

NTSC National Television
Standards Committee
(USA)

NVRAM Non-Volatile Random
Access Memory

OEA Operating Environment
Architecture

OEM Original Equipment
Manufacturer

OS Operating System

OSF Open Software
Foundation

OS/2 Operating System/2

PC Personal Computer

PC-DOS Personal Computer Disk
Operating System

PCHE PC Hardware
Environment

PCI Peripheral Component
Interconnect

PCMCIA Personal Computer
Memory Card
International
Association

POE PowerOpen
Environment

POSIX Portable Operating
System Interface for
Computer Environment

POST Power on Self Test

POWER Performance Optimized
with Enhanced RISC

PowerPC Performance Optimized
with Enhanced RISC
Performance Chip

PowerPC SIL The PowerPC System
Information Library

PS/2 Personal System/2

PSM Platform-Specific
Module

PTE Page Table Entry

RAID Redundant Array of
Inexpensive Disks

RAM Random Access
Memory

RAMDAC Random Access
Memory and Digital to
Analog Converter

RGB Red Green Blue

RISC Reduced Instruction Set
Computer

ROM Read Only Memory

RS/6000 RISC System/6000

RTAS Run Time Abstraction
Layer Software

RTC Real-Time Clock

SCB Subsystem Control
Block

SCSI Small Computer System
Interface

SDK Software Development
Kit

SIMM Single In-Line Memory
Module

SOHO Small Office/Home
Office

SMP Symmetr ic
MultiProcessing

SOM System Object Model

SPRs Special Purpose
Registers

SR Segment Register

SRAM Static Random Access
Memory

List of Abbreviations 201

SRU System Register Unit

STN Super Twisted Nematic
(portable PC screen
technology)

SVGA Super Video Graphics
Array/Adapter

SVR4 Unix System V Release
4

TCP/IP Transmmission Control
Protocol/Internet
Protocol

TFT Thin-Film Transistor

TIA Telecommunications
Industries Association
(part of EIA)

TLB Translation Lookaside
Buffer

UISA User Instruction Set
Architecture

UMCU Universal Micro Control
Unit

VEA Virtual Environment
Architecture

VESA Video Electronics
Standards Association

VGA Video Graphics
Array/Adapter

VL-Bus VESA Local Bus

VLSI Very Large Scale
Integration

VPD Vital Product Data

VRAM Video RAM

XCOFF eXtended COFF
(Common Object File
Format)

XMS eXtended Memory
Specification

202 PowerPC: An Inside View

Index

Numerics
3D graphics 1
601, PowerPC 61
603, PowerPC 61
604, PowerPC 62
620, PowerPC 62
68LC040 131
7, System 130, 131

A
abbreviations 199
abstraction layer 99
acronyms 199
Address translation 30
address translation, block 50
addresses, logical 30
addresses, physical 30
advances, exponential 1
AIX 9, 122, 130, 131
alliance 5
alliance history 8
alliance objectives 6
Alphanumeric Input Device 149
analog-to-digital 149
Apple 131
architecture 1, 2, 145
Audio 149

B
backwards compatible 1
base address 30
BASIC 1
baud 150
Big-Endian memory organization 35
binary compatibi l i ty 134
block 50
block address translation 50
Boot Process and Firmware 101

bottlenecks 3
Branch delay 17
branch instructions 16
branch prediction 17
branch prediction, static 64
Bull HN Information Systems Inc 8
bus snooping 26
Busicom 1

C
cache 147
cache address tag 66
cache coherency 23—26
cache memory 23

Cache Coherency 26
data transfer between CPU And memory 24
Memory incoherency 25
multiprocessing 24—26
Principle of Locality 23
Snooping 26
Write Back policy 28
Write Through policy 27

disadvantages 27
cache write back policy 28
cache write through policy 27
Card Enablers 151
Card Services 151
CD-ROM 148
CD-ROM, definition 191
CEITIA 8
Center, Porting 142
Centronics 150
CISC 1
CISC versus RISC 85
Cocke, John 2
comparison, OS 130
compatibi l i ty 134
compatibil i ty, binary 134
compatibil i ty, source-level 134

 Copyright IBM Corp. 1995 203

compatible processors 3
compatible, source-level 119
compiler 137
Complex Instruction Set Computer 1
components 2
computer instruction, execution of 18
condition register operations 16
COSE 123
CPU 1
cross-compiler 118
cycle time 13
Cycles per Instruction 13

D
data types, storage of 35
Debugger 139
default pager 121
demand paging 34
Developers ToolBox Program, IBM Power

Series 141
device driver 122, 124, 127, 129
device drivers, user-level 122
device handler 124
device head 124
Digital Signal Processor 149
digital-to-analog 149
digit izer 149
diskette 148
driver, device 124, 127
DSP 149

E
ECC 147
ECP 150
EIA 150
Emulation 119, 125, 131, 135, 136
Endian Mode 118, 123, 126, 128
error checking and correcting 147
Ethernet 150
exception model 3
Exceptions 58
Execution Time, definition of 13

extended I/O controller 152
external cache 147

F
family 2
file system 120, 121
f i rmware 147

G
graphics 149

H
handler, device 124
hard file 148
hardware 145
hardware architectures 145
Harris 8
Hennessy, John 4
Hoff, Ted (Intel) 1

I
I /O memory 147
I/O, memory-mapped 52
IBM 801 minicomputer 4
IBM Microkernel 119
IBM Personal Computer Power Series 830 and

850 154
IBM Power Series 153
IBM Power Series Developers ToolBox

Program 141
IBM System/360 3
IBM System/370 3
IC 3
IDE 148
Insignia 9
Insignia Solutions 136
instruction set 3
instruction set cycles, definition of 13
Instruction Set Translator 136
integrated circuits 3
Integrated Device Electronics 148

204 PowerPC: An Inside View

Intel 1
ISA 151
IST 136, 137

K
Kaleida Labs 7
kernel 122, 123
keyboard 149

L
L1 147
L2 147
Level 1 147
Level 2 147
levels of PowerPC Architecture 37—39
Little-Endian memory organization 35
load/store architecture 22

load/store instructions 22
LocalTalk 150

M
machine abstractions 101
Macintosh, Power 131
MEI protocol 72
memory organization, Big-Endian 35—36
memory organization, Little-Endian 35—36
memory-mapped I/O 52, 53
memory, physical and logical 28—33

address translation 30
addresses, logical 30

displacement 30
addresses, physical 30

base address 30
page 28
page table 32
program loading into memory 29

memory, virtual 33—35
demand paging 34
swapping 34

MESI protocol 67
methods of porting 134
MFM 148

microcode 3
Microkernel Strategy 119
Microprocessor technology 1
Microsoft 5, 125
Mode, Endian 118
Motorola 1
mouse 149
mult imedia 1
Multiple Virtual Machine 121
Multiprocessing 118, 123, 126, 128
Multiprocessing, Symmetric 123
MVM 121, 136

N
native I/O controller 152
network 150
non-volati le memory 147
NT, Windows 117, 125
NVRAM 147

O
Open System 122
OpenWindows 127
operating system personality 119
operating systems for PowerPC 117
optimizing compilers 13
OS comparison 130
OS/2 117
OS/2 Warp Connect (PowerPC Edition) 130, 131
out-of-order execution 71

P
page 50
page table 32
pager, default 121
parallel 150
pari ty 147
path length 13
Patterson, David 4
PCHE 137
PCI 151
PCI Bridge and Memory Controller 152

Index 205

PCI-ISA Bridge Controller 152
PCMCIA 151
Pentium versus PowerPC 90, 89, 91

branch prediction 91
cache line size 91
cache organization 90
cache parity 90
cache structure 90
cache write policy 90
clock frequency 91
execution units 91
external address bus 91
external data bus 91
number of transistors 91
out-of-order instruction execution 91
pari ty 90
performance comparison 92—94
power consumption 91
SPECfp92 comparison, estimated 94
SPECint92 comparison, estimated 93
Superscalar instruction dispatch 90, 91
user registers 91
voltage 91
word size 91

Personal Computer Power Series 830 158
Personal Computer Power Series 850 159
personality, operating system 119
pipelining 18—22

basic pipelining 20
instruction execution process without

pipelining 19
pipelining with superscalar instruction

dispatch 21
throughput with pipelining 20

planar, definition 194
Plug-and-Play 151
pointing device 149
Porting Center 142
porting methods 134
POWER and PowerPC, comparison 41
POWER Architecture 11—17

Address translation 15
Block diagram 15
branch prediction, use of 17
Branch Processor 16

POWER Architecture (continued)
cache structure 16
CPU throughput 16
description of 14
Design Goals 12

commercial environments 12
cycle time 12, 13
Cycles per Instruction 12, 13
Execution Time 13
path length 12, 13
Reduced Instruction Set Cycles 13
scientific and engineering

environments 12
Differences from traditional RISC 14
Driving Factors 12
Fixed-point Unit 15
Floating-Point Unit 15
general-purpose registers 15
Instruction Cache Unit 16
instruction set 17
multiply-add instruction, implementation

of 16
objectives achieved 17
PowerPC Architecture, binary compatibility

with 36
Similarities with traditional RISC 14
superscalar design 16
zero-cycle branching 16—17

Power Macintosh 131
power management 97
Power Management Controller 153
Power Series Developers ToolBox Program,

IBM 141
POWER Team 142
PowerOpen 7
PowerPC 132

application support 132
PowerPC 601 8, 61, 62—68

Block Diagram 63
Branch Processor 64
Cache Organization 66
cache sector 66
Cache Unit 65
critical word first policy 66
Exception Model 68

206 PowerPC: An Inside View

PowerPC 601 (continued)
Fixed-point Unit 64
floating-point registers 65
floating-point status and control register 65
Floating-Point Unit 65
general-purpose registers 65
Instruction dispatch 64
Instruction Queue and Dispatch Unit 64
Instruction Set 67
Instruction Unit 64
Memory Management Unit 65
MESI protocol 67
MQ register 68
Real-time clock registers 67
register set 67
snooping 67
static branch prediction 64
translation lookaside buffers 65

PowerPC 603 61, 68—74
address translation 71
Block Diagram 69
Branch Processor 70
cache loading 73
Cache Organization 72
Cache Units 71
Completion Unit 71
Data Memory Management Units 71
dynamic power management mode 73
Exception Model 73
Fixed-Point Unit 70
Floating-Point Unit 70
general-purpose registers 70
Instruction Memory Management Units 71
Instruction Queue And Dispatch 70
Instruction Set 73
Load/Store Unit 70
MEI protocol 72
Memory Management Units 71
Power Management 73
Power-saving modes 73
register set 73
Snooping 73
system register unit 70

PowerPC 604 62, 74—79
Block Diagram 75

PowerPC 604 (continued)
Branch Processor Unit (BPU) 76
Cache Organization 77
Cache Units 77
Completion Unit (CU) 76
Exception Model 78
Fixed-Point Unit (FXU) 76
Floating-Point Unit (FPU) 76
Instruction Queue ″Fetch″ and Dispatch 75
Instruction Set 78
Load/Store Unit (LSU) 77
Memory Management Units (MMUs) 77
Performance Monitor 79
Power Management 78
Register Set 78
Rename Buffers 76

PowerPC 620 62, 79—84
Block Diagram 80
Branch Processor Unit (BPU) 81
Cache Organization (L1) 82
Cache Units (L1) 82
Completion Unit (CU) 81
Exception Model 84
Fixed-Point Unit (FXU) 81
Floating-Point Unit (FPU) 81
Instruction Queue ″Fetch″ and Dispatch 80
Instruction Set 83
Level 2 Cache Interface (L2) 83
Load/Store Unit (LSU) 82
Memory Management Units (MMUs) 82
Performance Monitor 84
Power Management 83
register set 84
Rename Buffers 81

PowerPC Alliance 5
PowerPC and POWER, comparison 41
PowerPC Architecture 36—59

32-bit architecture, address space 50
64-bit architecture, address space 50
64-bit operation support 37
Address Translation 53—56
address translation, block 50
address translation, memory-mapped I/O 53
Asynchronous exceptions 58
Asynchronous, imprecise exceptions 59

Index 207

PowerPC Architecture (continued)
Asynchronous, precise exceptions 58
Basic Conceptual Model 39—41
Bi-Endian Support 50
block 50
block address translation 50, 56
block address translation register entry 51,

56
block address translation registers 50
block diagram 40
block protection 53
Branch Processor 40
Cache Architecture 56—57
cache control 56
cache structure 41
Design goals 36—37
Direct Address Translation 56
Elements of the PowerPC

Architecture 42—59
Endian mode switching 50
exception handler 58
exception vector 58
Exceptions 58
execution units 40
execution units, implementation of 41
Fixed-Point Unit 40
flexibility of 36
floating point registers 41
Floating-Point Unit 41
general-purpose registers 41
I/O controller interface access 54
I/O Controller Interface Translation 56
Immediate Addressing Modes 46
Imprecise exceptions 58
instructions, attributes 44
instructions, types of 43—44

floating-point instructions 43
flow control instructions 44
integer instructions 43
load/store instructions 43
memory control instructions 44
processor control instructions 44
synchronization instructions 44

Layered architecture 37—39
Load/Store Unit 41

PowerPC Architecture (continued)
Memory Management Unit 52
Memory Partit ions 50—51
Memory Protection 52—53
memory-mapped I/O 52
Multiprocessing support 37
Operating Environment Architecture 39
page 50
Page Access Protection Levels 53
Page Address Translation 56
page protection 52
Page table entry 51
Page tables 51
POWER Architecture, binary compatibility

with 36
PowerPC Addressing Modes 45—47
PowerPC Exception Model 58—59
PowerPC Instruction Set 43—45
PowerPC Memory Model 50—57
PowerPC Programming Model 47—50
PowerPC Register Set 47—49

condition register 49
floating-point registers 49
floating-point status And control

register 49
general-purpose registers 49
machine state register 49
segment registers 49
special-purpose registers 49

Precise exceptions 58
Register Index Addressing Modes 46
Register Set 48
segment 50
Segment Registers 51, 56
supervisor mode of operation 47
Synchronous exceptions 58
Synchronous, imprecise exceptions 58
Synchronous, precise exceptions 58
User Instruction Set Architecture 38
user mode of operation 47
virtual address 56
Virtual Environment Architecture 38
WIM Bits 56
zero-cycle branching 40

208 PowerPC: An Inside View

PowerPC Processor Family 59
PowerPC Reference Platform

abstraction layer 98
architecture 101
goals 96
new compatibil i ty model 98
old compatibil i ty model 98

PowerPC Reference Platform specification 3, 9
PowerPC versus Intel Pentium 90, 89, 91

branch prediction 91
cache line size 91
cache organization 90
cache parity 90
cache structure 90
cache write policy 90
clock frequency 91
execution units 91
external address bus 91
external data bus 91
number of transistors 91
out-of-order instruction execution 91
pari ty 90
performance comparison 92—94
power consumption 91
SPECfp92 comparison, estimated 94
SPECint92 comparison, estimated 93
Superscalar instruction dispatch 90, 91
user registers 91
voltage 91
word size 91

PowerPC, operating systems 117
Principle of Locality 23, 34

R
RAID 148
Real-Time Clock 150
Reduced Instruction Set Computing 2
Reduced Instruction Set Cycles 13
reference implementation 101
RISC 2
RISC and CISC today 89—90

differences 89
similarit ies 89

RISC and CISC, advantages and
disadvantages 88—89

code compatibil i ty 89
Execution Time 88
Optimizing Compilers, ease of

implementat ion 88
pipelining, ease of implementation 88

RISC and CISC, features of 85—87
addressing modes, number of 86
control unit 87
format of instructions 85—86
hardwired CPU 87
instruction decoding 86
instruction sets, size of 87
length of instructions 85—86
load/store architecture 86
memory-to-memory operations 86
microcode 87
microinstructions 87
opcode 85
operands 85
register sets, size of 87
register-to-memory operations 86
register-to-register operations 86

RISC architecture 3
RISC story 3
RISC System/6000 11
RISC technology 2
RISC versus CISC 85
RISC-I 4
RISC-II 4
riser card 163
RTC 150

S
sampling rates 149
SCSI 148
segment 50
serial 150
server 118
service, shared 120
shared services 119, 120
Small Computer System Interface 148

Index 209

SMP 126
Snooping 26
Socket Services 151
Software development kit 140
SoftWindows 136
Solaris 8, 9, 127, 128, 130, 131

Desktop 128
Enterprise Server 128
Workgroup Server 128

Somerset Design Center 6
source-level compatibil i ty 134
source-level compatible 119
specification document 3
Stanford MIPS 4
Stanford University 4
static branch prediction 64
Strategy, Microkernel 119
subsystems

bus types 150
connectivity subsystem 150
control lers 151
Human Interface Subsystem 149
memory subsystem 146
processor subsystem 146
Real-Time Clock 149
storage subsystem 148

Sunsoft Solaris 127
superscalar design 16, 20
swapping 35
Symmetric Mult iprocessing 123
System 7 130, 131
system I/O 147
system memory 147
system ROM 147
System, Open 122
System/360 3
System/370 3

T
T.J. Watson Research Center 2
Tadpole Technology PLC 8
Taligent 7, 9
Team, POWER 142

technological boom 1
telephone-switching network 4
ThinkPad Power Series 820 169
ThinkPad Power Series 850 171
Thomson-CSF CETIA 8
throughput 13
token-ring 150
TrackPoint II 149
Transistor miniaturization 5
translation lookaside buffers 65
typical hardware design 145

U
UMCU 151
Universal Micro Control Unit 151
UNIX 117, 123, 127, 129
user level 121, 122
user-level device drivers 122

V
Virtual Machine, Multiple 121
Visicalc 1

W
WabiPlus 136
Watson Research Center 2
Windows 3.1 5
Windows NT 9, 117, 125, 126, 130, 131

NT Executive 126
Windows NT Workstation 126

Workplace OS 9

Z
zero-cycle branching 16—17

210 PowerPC: An Inside View

IBML

Printed in U.S.A.

SG24-4299-00

