
Porting Code to IA-64

David Prosser
Architect,
Development Systems
dfp@sco.com

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 2

Agenda

• Programming models
• Development environment and

debugging
• Porting code to the different models
• Finding and fixing porting problems

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 3

IA-64 UNIX Programming Models
• IA-32 (Pentium® II processors, etc.)

– as in UnixWare® 7 today

• ILP32
– ints, longs, and pointers are 32 bits
– new instruction set (IA-64 32 bit)

• LP64 (default)
– longs, and pointers are 64 bits
– new instruction set (IA-64 64 bit)

• No mixing permitted although
supported by IA-64 architecture
– one compilation model per process

Third party marks are property of their owners

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 4

Other IA-64 Programming Models

• ILP64
– 64 bit ints, longs, and pointers
– potentially fewer porting problems
– no convenient 32 bit integer

• LLP64
– 64 bit pointers; integers unchanged
– model used by Microsoft NT
– potentially breaks “portable” programs

that mix pointers and integers
– precludes 128 bit long long

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 5

Data Size and Alignment
(all have little-endian byte order)

Size (bytes) Align. (bytes) Size (bytes) Align. (bytes)

char 1 1 1 1
short 2 2 2 2
int 4 4 4 4

long 4 4 8 8
long long 8 4 8 8
pointer 4 4 8 8
float 4 4 4 4

double 8 4 8 8
long double 12 4 16 16

C / C++ Data
Types

ILP32 (IA-32) LP64

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 6

IA-32 Environment

• Binary compatible with UnixWare 7
– supports the Intel published ABI

• Almost entirely handled in “user space”
– thin layer between the kernel and your binary

means minimal execution overhead
– will take advantage of epc-based system calls

• Appropriate when single binary needed
for IA-32 and Monterey IA-64 (or when
there is no source)

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 7

ILP32 (IA-64 32-bit) Environment

• IA-32 data layout compatible
• Performance similar to LP64

– smaller data size (better cache use)
– data conversion in/out of kernel
– some misaligned data objects

• Fully supported–not just “intermediate step”
• Source compatibility
• Appropriate for recompile-and-go software

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 8

LP64 (IA-64 64-bit) Environment

• Highest performance
• UNIX industry-wide 64-bit model
• 64 bit “generic” ABI publicly available
http://www.sco.com/developer/gabi/contents.html

• Processor specific ABI available from Intel
• All architecture’s features available
• Entire kernel built LP64
• Little-endian byte order
• Appropriate for new and high-end software

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 9

IA-64 Development and Debugging

• Single cc and CC compilation commands
provide all compilation models
– no mixing of models
– supporting ELF tools work similarly

• Debugging provided for all models, with
lowest levels matching the process
– i.e., an IA-32 process sees %eax
– but, an IA-64 process will see gp

• Controlled processes can have different
models

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 10

IA-64 Compilation Defaults

• LP64
• Position independent code (PIC)

– works best with IA-64

• System V dynamic linking
• Instructions and read/write data separated
• No inline assembly “escapes”

– write complete assembly functions, but only
when absolutely necessary

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 11

IA-64 Calling Convention

• Arguments are passed in 8 byte slots or
multiples thereof
– first 8 slots are in registers
– high order bits unspecified for integer

returns and arguments smaller than 8 bytes

• Special rules for passing and returning
aggregates
– especially for all-floating structures

• Function pointers do not point at code

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 12

Porting Code to ILP32 Model
Both IA-32 and IA-64 32 bit

 Most IA-32 binaries just will work!

• /proc file system will reflect the kernel
– debuggers will need to be ported

• Exotic ioctl’s can be problematic
• System administrative files might change

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 13

Porting Code to ILP32 Model
Only IA-64 32 bit

 Lots of code will recompile and work!

• “Machine specific” part of the user context
differs from both UnixWare and AIX
– more and different register sets

• Argument passing assumptions
– aligned to 8 byte slots

» long long will not look like a pair of longs
– extra alignment padding for long doubles
– special aggregate handling

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 14

Porting Code to LP64 Model

• Good code that also does not depend
on byte order or external data formats
will recompile and run correctly
– generally, share/freeware code
– uses prototypes and all appropriate headers

• Often old and stale code will work fine
HOWEVER

• Finding and fixing the problems that do
happen is most of the rest of this talk

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 15

So, Why Port to LP64 Model?

• Need larger (64 bit) address space
• Need larger scalar arithmetic ranges

– bigger basic data sizes (time_t, for example)

• Application Performance
– IA-64 instruction set architecture

» faster than IA-32 instructions
– no misaligned data

» alignment faults can be expensive

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 16

ILP32 ➨ LP64 Portability Issues
• Changes in relative integer sizes

– int and long

• Changes in pointer/integer sizes
– int and pointers

• Function calls without full declarations
• Objects changing size
• Stack layout changes
• System data types
• AIX 64 bit migration guide

– http://www.developer.ibm.com/

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 17

64 Bit Enabled lint

• Available at http://www.sco.com/developer
– “64 bit UnixWare porting guide” also provided

• Supports ILP32 and LP64 models
– g64lint -K lp64 (default)
– g64lint -K ilp32

• Complete set of header files and libraries
• Also, see http://doc.sco.com

=> Software Development

 => Programming in Standard C and C++

 => Analyzing your code with lint

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 18

Assignment Truncation of Integers

1 int int1, int2, int3;
2 long long1, long2, long3, retlong(int);
3
4 void f(void) {
5 int1 = long1; /*64b => 32b*/
6 int2 = int2 * long2; /*64b expr => 32b*/
7 int3 = retlong(long3); /*64b arg => 32b
8 64b ret => 32b*/
9 }

assignment causes implicit narrowing conversion
 (5) int = long
 (6) int = long
 (7) int = long

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 19

Assignment Truncation of Integers

• Examine all narrowing assignments;
correct as needed

• Use explicit casts where narrowing
conversions are expected
– unfortunately, this can then be a source for

troubles later

5 int1 = (int)long1;
6 int2 = (int)(int2 * long2);
7 int3 = (int)retlong((int)long3);

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 20

Explicit Cast Improperly Applied

• Apply narrowing casts to expressions

1 int int1, r1, r2, r3;
2 long long1;
3
4 void f(void) {
5 r1 = long1 / int1;
6 r2 = (int)long1 / int1; /*32b expr => 32b*/
7 r3 = (int)(long1 / int1); /*64b expr => 32b*/
8 }

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 21

Integer Pointer Conversions
1 int *pint1, *pint2;
2 long *plong1, *plong2;
3 void fint(int *), flong(long *);
4
5 void f(void) {
6 pint1 = (int *)plong1;
7 plong2 = (long *)pint2;
8 fint((int *)plong1);
9 flong((long *)pint1);
10 }

pointer cast may result in improper alignment
 (7) (9)

• Use -p option to flag all pointer casts

pointer casts may be troublesome
 (6) (7) (8) (9)

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 22

Integer Pointer Conversions

• Examine all instances of incompatible
pointer assignments
– adjust size of objects based on range of

values to be held in the object
– use explicit casts to indicate intentional

mismatch
» older memory management routines
» use void * for generic pointers
» lint -p will not flag void * uses

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 23

Integer Expression Evaluations

• Operands widened to “common type”
– int – if operands are of type int or smaller
– larger only if an operand is larger than int

1 int int1, int2;
2 long long1;
3
4 void f(void) {
5 long1 = int1 * int2; /*32b multiply*/
6 long1 = (long)(int1 * int2); /*32b multiply*/
7 long1 = (long)int1 * int2; /*64b multiply*/
8 long1 = int1 * (long)int2; /*64b multiply*/
9 }

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 24

Integer Expression Evaluations

• To get 64 bit results:
– an operand of the expression must be

either of type long or unsigned long
– use wider constant or a cast if necessary
– “widening” conversions percolate up the

expression tree
» exceptions: shift operators and

sequence points

• No assistance from lint

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 25

Integer Constants

• Type determined by shape and value
• Leading (and high order) zeroes only

serve to denote octal – no other affect
on size

• General rules:
– decimal constants find first signed type

that holds the value, small to large
– other bases find first signed or unsigned

type that holds the value, small to large
– suffixes (combinations of u or U, and l or L,

and ll or LL) generally restrict the choices

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 26

Integer Constants – Issues

• Porting issues with code that:
– does not take into consideration that

integer constants may be more than 32 bits
– assumes that long or unsigned long data

is 32 bits
– depends on specific behavior at an

assumed data type length

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 27

Integer Constants – Examples

• Expression truncated at 32 bits

• Expression depends on 32 bit truncation

long1 = long1 + 20000000 * 30000000; /*32b expr*/
long2 = long2 + 20000000L * 30000000; /*64b expr*/

long1 += 0xffffffff; /*long1-1 for ILP32
 long1+4294967295 for LP64*/

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 28

Integer Constants – Examples

• Constant has int size, not “full size”
– leading zeroes do not increase the size

long1 &= ~0xffff0000; /*clears 48 bits*/
long1 &= ~0x00000000ffff0000; /*clears 48 bits*/
long2 &= ~(long)0xffff0000; /*clears 16 bits*/
long2 &= ~0xffff0000L; /*clears 16 bits*/

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 29

Integer Constants – Examples

• Shifts expecting 32 bit operands
– can be hidden in macro expansions!

ulong1 = (ulong1 << 5) >> 16; /*ILP32: keeps bits 11-26
 LP64: bits 11-58*/
long1 = (long1 << 5) >> 16; /*ILP32: might sign ext.11-26
 LP64: bits 11-58*/

ulong1 = (ulong1 & 0x7fff800) >> 11;

long1 = (long1 << (CHAR_BIT * sizeof(long) – 27))
 >> (CHAR_BIT * sizeof(long) – 16);

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 30

Integer Constants – Guide

• Use of all constants should be reviewed

• Do not forget symbolic constants from
#define directives

• Watch for:
– 64 bit expressions where overflow or underflow

may have occurred on a 32 bit sub-expression
– octal or hex constants with 231 as high order bit
– expressions depending on truncation at 32 bits

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 31

Changing Pointer/Integer Sizes

• Problem areas:
– code that converts pointers to int or
unsigned int with the expectation that
pointer value is preserved

– code that assumes pointers and ints are
the same size in an arithmetic context

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 32

Changing Pointer/Integer Sizes
1 int int1;
2 long long1;
3 char *charp;
4 void fint(int), flong(long);
5
6 void f(void) {
7 int1 = (int)charp;
8 fint((int)charp);
9 long1 = (long)charp;
10 flong((long)charp);
11 }

• lint flags conversions that can lose information

(7) warning: conversion of pointer loses bits
(8) warning: conversion of pointer loses bits

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 33

Changing Pointer/Integer Sizes

• Pointer and int in arithmetic context

1 #define BUSY 0x1
2
3 struct blk *blkp;
4
5 void f(void) {
6 /*...*/
7 blkp = (struct blk *)(BUSY | (int)blkp);
8 /*...*/
9 }

(7) warning: conversion of pointer loses bits

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 34

Changing Pointer/Integer Sizes

• All conversions of pointers from or to
integers should be reviewed

• If necessary:
– use long or unsigned long
– use intptr_t or uintptr_t from
<sys/types.h>

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 35

Lack of Prototyped Function
Declaration In Scope

• default argument promotions
– integer promotions for parameters smaller

than int
– undefined behavior if called function

expects a larger type
» ILP32 and LP64 compilation models

– IA-64 calling convention
» padding bits are unspecified

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 36

Lack of Function Declaration In
Scope

• Implicit return type of int
– caller will sign-extend the presumed 32 bit
int value value if used with a 64 bit type

– if a pointer or long actually returned, the
high order bits are lost

– even more interesting if structure actually
being returned

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 37

Lack of Prototyped Function
Declaration In Scope

• Use lint on all source files that make
up a binary to find:
– implicitly declared functions (point of call)
– functions declarations with “old-style”

parameter lists (point of call)
– functions with an implicit int return type
– argument types used inconsistently
– function return types used or declared

inconsistently

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 38

Objects Changing Size

• Object whose sizes will differ
– pointers, long and long double

• Object whose sizes might differ
– double, long long
– alignment differences may effect padding

• Only issue if data is shared between an
ILP32 binary and an LP64 binary

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 39

Objects Changing Size

• Developer responsibility to define
matching data objects in each model

• If necessary, use #ifdef’s
– #if LONG_MAX > 0x7fffffff

» defined in <limits.h>
– use “model” predicate to control definition
 #if #model(ilp32)

 #if #model(lp64)

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 40

Fixed Size Data Types

• Defined in <sys/types.h>

– 64 bit size still has alignment differences

signed unsigned Size (bits) Align. (bytes) Size (bits) Align. (bytes)

int8_t uint8_t 8 1 8 1
int16_t uint16_t 16 2 16 2
int32_t uint32_t 32 4 32 4
int64_t uint64_t 64 4 64 8

ILP32 (IA-32) LP64Fixed Size Data Types

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 41

Predefined System Type Changes

• Types intimately bound to address
space size are either unsigned long or
long

• Certain values such as wide characters
and file mode bits are adequately
represented in 32 bits

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 42

Predefined System Type Changes

C Data Type
Size

(bytes)
C Data Type

ILP32 Size
(bytes)

LP64 Size
(bytes)

mode_t unsigned long 4 unsigned int 4 4

ptrdiff_t int 4 long 4 8

size_t unsigned int 4 unsigned long 4 8

ssize_t int 4 long 4 8

wchar_t long 4 int 4 4

wint_t long 4 int 4 4

wuchar_t unsigned long 4 unsigned int 4 4

UnixWare 7 Future Releases
UNIX System

Type

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 43

Summary

• You can “have it your way”, using the
model that meets your needs

• Porting to either ILP32 model is easy
• Porting to LP64 may well require some

code analysis and changes
• Use g64lint as your first analysis step
• Testing/certification costs will dominate,

no matter which model used

Porting Code to IA-64
© 1999 SCO All Rights Reserved - Slide 44

Downloading g64lint
• http://www.sco.com/developer

– 64-bit Tools and Technical Information
» 64-bit UnixWare Porting Guide
» g64lint tool
» 64-bit driver porting information

• Questions or Comments
– unison64@sco.com

– chibib@us.ibm.com

• Porting guide from 32 bit AIX to both
Monterey ILP32 and LP64 coming soon

