Porting Code to I1A-64

David Prosser
Architect,

Development Systems
dfp@sco.com

Agenda

* Programming models

* Development environment and
debugging

* Porting code to the different models
* Finding and fixing porting problems

Porting Code to 1A-64
©1999 SCO All Rights Reserved - Slide 2

|A-64 UNIX Programming Models

e IA-32 (Pentium® Il processors, etc.)
— as in UnixWare® 7 today

* ILP32
—ints, | ongs, and pointers are 32 bits
— new instruction set (IA-64 32 bit)

* LP64 (default)
— | ongs, and pointers are 64 bits
— new instruction set (IA-64 64 bit)

* No mixing permitted although
supported by IA-64 architecture

— one compilation model per process

Porting Code to 1A-64
© 1999 SCO All Rights Reserved - Slide 3
b
Third party marks are property of their owners ey

Other IA-64 Programming Models

* ILP64
— 64 biti nts, | ongs, and pointers
— potentially fewer porting problems
— no convenient 32 bit integer

* LLP64
— 64 bit pointers; integers unchanged
— model used by Microsoft NT

— potentially breaks “portable” programs
that mix pointers and integers

— precludes 128 bit | ong | ong

Porting Code to 1A-64
©1999 SCO All Rights Reserved - Slide 4
v
= UHIE"
i

Data Size and Alignment
(all have little-endian byte order)

C/ C++ Data ILP32 (1A-32) LP64
Types Size (bytes) | Align. (bytes) | Size (bytes) | Align. (bytes)
char 1 1 1 1
short 2 2 2 2
int 4 4 4 4
long 4 4 8 8
long long 8 4 8 8
pointer 4 4 8 8
float 4 4 4 4
double 8 4 8 8
long double 12 4 16 16

Porting Code to 1A-64
©1999 SCO All Rights Reserved - Slide 5
v
= UHIE"
i

IA-32 Environment

* Binary compatible with UnixWare 7
— supports the Intel published ABI

* Almost entirely handled in “user space”

— thin layer between the kernel and your binary
means minimal execution overhead

— will take advantage of epc-based system calls

* Appropriate when single binary needed
for IA-32 and Monterey IA-64 (or when
there is no source)

Porting Code to 1A-64
©1999 SCO All Rights Reserved - Slide 6

]

ILP32 (IA-64 32-bit) Environment

IA-32 data layout compatible

Performance similar to LP64

— smaller data size (better cache use)
— data conversion in/out of kernel

— some misaligned data objects

Fully supported—not just “intermediate step”
Source compatibility
Appropriate for recompile-and-go software

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 7
v
= UHIE"
i

LP64 (IA-64 64-bit) Environment

Highest performance
UNIX industry-wide 64-bit model
64 bit “generic” ABI publicly available

http://ww. sco. conl devel oper/ gabi/contents. ht m
Processor specific ABIl available from Intel
All architecture’s features available

Entire kernel built LP64

Little-endian byte order

* Appropriate for new and high-end software

Porting Code to 1A-64
©1999 SCO All Rights Reserved - Slide 8

|A-64 Development and Debugging

» Single cc and CC compilation commands
provide all compilation models

— no mixing of models
— supporting ELF tools work similarly

* Debugging provided for all models, with
lowest levels matching the process
—i.e., an IA-32 process sees %eax
— but, an IA-64 process will see gp

» Controlled processes can have different
models

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 9
v
= UHIE"
i

|A-64 Compilation Defaults

LP64

Position independent code (PIC)
— works best with 1A-64

System V dynamic linking
Instructions and read/write data separated

No inline assembly “escapes”

— write complete assembly functions, but only
when absolutely necessary

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 10
v
= UHIE"
i

|A-64 Calling Convention

 Arguments are passed in 8 byte slots or
multiples thereof

— first 8 slots are in registers

— high order bits unspecified for integer
returns and arguments smaller than 8 bytes

» Special rules for passing and returning
aggregates

— especially for all-floating structures
* Function pointers do not point at code

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 11

]

Porting Code to ILP32 Model
Both IA-32 and IA-64 32 bit

Most IA-32 binaries just will work!

» / proc file system will reflect the kernel
— debuggers will need to be ported
» Exotic i oct|’s can be problematic

» System administrative files might change

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 12
= UHI
i

Porting Code to ILP32 Model
Only IA-64 32 bit

Lots of code will recompile and work!

* “Machine specific” part of the user context
differs from both UnixWare and AIX

— more and different register sets
* Argument passing assumptions
— aligned to 8 byte slots
»| ong | ong will not look like a pair of | ongs
— extra alignment padding for | ong doubl es
— special aggregate handling

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 13

Porting Code to LP64 Model

* Good code that also does not depend
on byte order or external data formats
will recompile and run correctly

— generally, share/freeware code
— uses prototypes and all appropriate headers
» Often old and stale code will work fine
HOWEVER

* Finding and fixing the problems that do
happen is most of the rest of this talk

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 14

]

So, Why Port to LP64 Model?

* Need larger (64 bit) address space

* Need larger scalar arithmetic ranges
— bigger basic data sizes (ti ne_t, for example)

* Application Performance
— IA-64 instruction set architecture
» faster than 1A-32 instructions
— no misalignhed data
» alignment faults can be expensive

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 15

]

ILP32 J LP64 Portability Issues

Changes in relative integer sizes
—int and | ong

Changes in pointer/integer sizes
— i nt and pointers

Function calls without full declarations
Objects changing size

Stack layout changes

System data types

AlIX 64 bit migration guide
— http://ww. devel oper.i bm com

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 16
v
= UHIE"
i

64 Bit Enabled | 1 nt

e Available at htt p://ww. sco. con devel oper
— “64 bit UnixWare porting guide” also provided

e Supports ILP32 and LP64 models
—g64lint -Kl p64 (default)
—g64lint -Kilp32

 Complete set of header files and libraries

e Also, see http://doc. sco.com

=> Sof t ware Devel opnent
=> Progranming in Standard C and C++
=> Anal yzi ng your code with lint

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 17
v
= UHIE"
i

Assignment Truncation of Integers

64b ret => 32b*/

1 int intl, int2, int3;

2 long longl, long2, long3, retlong(int);

3

4 void f(void) {

5 intl = |longl; /| *64b => 32b*/

6 int2 = int2 * |long2; /*64b expr => 32b*/
7 int3 = retlong(long3); /*64b arg => 32b

8

9

}

assi gnment causes inplicit narrow ng conversion

(5) int = long
(6) int = long
(7) int = long

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 18

Assignment Truncation of Integers

 Examine all narrowing assignments;
correct as needed

» Use explicit casts where narrowing
conversions are expected

— unfortunately, this can then be a source for
troubles later

5 intl = (int)longl;
6 int2 = (int)(int2 * |ong2);
7 int3 = (int)retlong((int)long3);

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 19

Explicit Cast Improperly Applied

* Apply narrowing casts to expressions

int intl, r1, r2, r3;
long longl;

void f(void) {

rl = 1longl / int1;
r2 = (int)longl / int1l; /*32b expr => 32b*/
r3 = (int)(longl / intl); /*64b expr => 32b*/

o~NO O~ WNBE

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 20

Integer Pointer Conversions

int *pintl, *pint2;
long *plongl, *plong2
void fint(int *), flong(long *);

void f(void) {
pintl = (int *)plongl;
plong2 = (long *)pint2;
fint((int *)plongl);
flong((long *)pintl);

O©CO~NOOUITD WNPE

10 }

poi nter cast may result in inproper alignnment

(7) (9)
- Use - p option to flag all pointer casts

poi nter casts may be troubl esome

(6) (7) (8) (9)

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 21

Integer Pointer Conversions

 Examine all instances of incompatible
pointer assignments

— adjust size of objects based on range of
values to be held in the object

— use explicit casts to indicate intentional
mismatch

»older memory management routines
»use voi d * for generic pointers
»|int -pwill not flag voi d * uses

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 22

]

Integer Expression Evaluations

» Operands widened to “common type”
— i nt —if operands are of type i nt or smaller
— larger only if an operand is larger than i nt

int intl, int2;
Il ong | ongl;

void f(void) {
longl = intl * int2; [*32b mul tiply*/

longl = (long)(intl * int2); /*32b nmultiply*/
longl = (long)intl * int2; /*64b mul tiply*/
longl = intl * (long)int2; /*64b mul tiply*/

O©CoO~NOUAWNPRF

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 23

Integer Expression Evaluations

* To get 64 bit results:

— an operand of the expression must be
either of type | ong or unsi gned | ong

— use wider constant or a cast if necessary

— “widening” conversions percolate up the
expression tree

» exceptions: shift operators and
sequence points

e No assistance from | i nt

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 24

]

Integer Constants

» Type determined by shape and value

* Leading (and high order) zeroes only
serve to denote octal — no other affect

on size

e General rules:

— decimal constants find first signed type
that holds the value, small to large

— other bases find first signed or unsigned
type that holds the value, small to large

— suffixes (combinations of u or U,and | or L,
and | | or LL) generally restrict the choices

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 25
v
= UHIE"
i

Integer Constants — Issues

* Porting issues with code that:

— does not take into consideration that
integer constants may be more than 32 bits

— assumes that | ong or unsi gned | ong data
is 32 bits

— depends on specific behavior at an
assumed data type length

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 26

Integer Constants — Examples

» Expression truncated at 32 bits

longl longl + 20000000 * 30000000; [/*32b expr*/
long2 long2 + 20000000L * 30000000; /*64b expr*/

* Expression depends on 32 bit truncation

longl += Oxffffffff; /*longl-1 for |ILP32
|l ong1+4294967295 for LP64*/

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 27

Integer Constants — Examples

» Constant has i nt size, not “full size”
— leading zeroes do not increase the size

|l ongl &=
|l ongl &=
|l ong2 &=
|l ong2 &=

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 28

~Oxffff0000;
~0x00000000f f f f 0000
~(l ong) Oxffff0000;
~Oxf fff0OOOOL;

/*cl ears
/*cl ears
/*cl ears
/*cl ears

48 bits*/
48 bits*/
16 bits*/
16 bits*/

Integer Constants — Examples

» Shifts expecting 32 bit operands
— can be hidden in macro expansions!

ulongl = (ulongl << 5) >> 16; /*ILP32: keeps bits 11-26
LP64: bits 11-58*/
longl = (longl << 5) >> 16; /*1LP32: m ght sign ext.11-26
LP64: bits 11-58*/

ul ongl = (ulongl & O0x7fff800) >> 11;

longl = (longl << (CHAR_BIT * sizeof(long) — 27))
>> (CHAR_BIT * sizeof(long) — 16);

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 29

Integer Constants — Guide

e Use of all constants should be reviewed

* Do not forget symbolic constants from
#def i ne directives

 Watch for:

— 64 bit expressions where overflow or underflow
may have occurred on a 32 bit sub-expression

— octal or hex constants with 231 as high order bit
— expressions depending on truncation at 32 bits

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 30
v
= UHIE"
i

Changing Pointer/Integer Sizes

e Problem areas:

— code that converts pointers toi nt or
unsi gned i nt with the expectation that
pointer value is preserved

— code that assumes pointers and i nt s are
the same size in an arithmetic context

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 31

Changing Pointer/Integer Sizes

int intl;

Il ong |l ongl;

char *charp;

void fint(int), flong(long);

void f(void) {
intl = (int)charp;
fint((int)charp);
longl = (long)charp;
0 flong((!l ong)charp);
}

PP OOO~NOO~WNER
[EEY

- lint flags conversions that can lose information
(7) warning: conversion of pointer |oses bits

(8) warning: conversion of pointer |oses bits

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 32

Changing Pointer/Integer Sizes

e Pointer and i nt in arithmetic context

#defi ne BUSY 0Ox1
struct bl k *bl kp

void f(void) {
[*00 0%
bl kp = (struct blk *)(BUSY | (int)blkp);
[*00 0%

©CoO~NOOUITDWNPEF

}

(7) warning: conversion of pointer |oses bits

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 33

Changing Pointer/Integer Sizes

* All conversions of pointers from or to
integers should be reviewed

 If necessary:
— usel ong or unsi gned | ong

—useintptr_t oruintptr_t from
<sys/types. h>

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 34

Lack of Prototyped Function
Declaration In Scope

» default argument promotions

— integer promotions for parameters smaller
than i nt

— undefined behavior if called function
expects a larger type

»ILP32 and LP64 compilation models
— IA-64 calling convention
» padding bits are unspecified

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 35

]

Lack of Function Declaration In
Scope

e Implicit return type of i nt

— caller will sign-extend the presumed 32 bit
i nt value value if used with a 64 bit type

— if a pointer or | ong actually returned, the
high order bits are lost

— even more interesting if structure actually
being returned

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 36

Lack of Prototyped Function
Declaration In Scope

* Usel i nt on all source files that make
up a binary to find:
— implicitly declared functions (point of call)

— functions declarations with “old-style”
parameter lists (point of call)

— functions with an implicit i nt return type
— argument types used inconsistently

— function return types used or declared
inconsistently

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 37

]

Objects Changing Size

* Object whose sizes will differ
— pointers, | ong and | ong doubl e
* Object whose sizes might differ
— doubl e, ong | ong
— alignment differences may effect padding

* Only issue if data is shared between an
ILP32 binary and an LP64 binary

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 38

]

Objects Changing Size

» Developer responsibility to define
matching data objects in each model
* If necessary, use #i f def’s
—#i f LONG MAX>Ox7fffffff
»definedin<limts. h>
— use “model” predicate to control definition
#i f #nodel (il p32)
#i f #nodel (1 p64)

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 39

Fixed Size Data Types

* Defined in <sys/types. h>

Fixed Size Data Types ILP32 (IA-32) LP64
signed unsigned Size (bits) | Align. (bytes)| Size (bits) | Align. (bytes)
int8 t uint8_t 8 1 8 1
intl6 t uint16 _t 16 2 16 2
int32_t uint32_t 32 4 32 4
int64 t uinté4 t 64 4 64 8

— 64 bit size still has alignment differences

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 40

Predefined System Type Changes

» Types intimately bound to address
space size are either unsi gned | ong or
| ong

e Certain values such as wide characters
and file mode bits are adequately
represented in 32 bits

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 41

Predefined System Type Changes

UnixWare 7 Future Releases
UNIX System
Type C Data Type (t?yltzees) C Data Type ILIE’b3y2teSS|)ze LF(’S;;S;)Z €
mode_t unsigned long 4 unsigned int 4 4
ptrdiff_t int 4 long 4 8
size_t unsigned int 4 unsigned long 4 8
ssize_t int 4 long 4 8
wchar_t long 4 int 4 4
wint_t long 4 int 4 4
wuchar_t | unsigned long 4 unsigned int 4 4

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 42

Summary

You can “have it your way”, using the
model that meets your needs

Porting to either ILP32 model is easy

Porting to LP64 may well require some
code analysis and changes

Use g64l i nt as your first analysis step

Testing/certification costs will dominate,
no matter which model used

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 43
v
= UHIE"
i

Downloading g64l i nt

e http://ww. sco. conl devel oper

— 64-bit Tools and Technical Information
» 64-bit UnixWare Porting Guide
» @64l i nt tool

» 64-bit driver porting information
* Questions or Comments
— uni son64@co. com
— chi bi b@is.i bm com

* Porting guide from 32 bit AIX to both
Monterey ILP32 and LP64 coming soon

Porting Code to 1A-64
©1999 SCO Al Rights Reserved - Slide 44

]

