
Migrating
C and C++

Applications to
 AIX 5L on IA-64

Partners in Development
September, 2000

Special Notices
This publication/presentation was produced in the United States. IBM may not offer the products, programs, services
or features discussed herein in other countries, and the information may be subject to change without notice. Consult
your local IBM business contact for information on the products, programs, services, and features available in your
area. Any reference to an IBM product, program, service, or feature is not intended to state or imply that only IBM's
product, program, service, or feature may be used. Any functionally equivalent product, program, service, or feature
that does not infringe on IBM's intellectual property rights may be used instead.

Information in this presentation concerning non-IBM products was obtained from the suppliers of these products,
published announcement material or other publicly available sources. Sources for non-IBM list prices and perfor-
mance numbers are taken from publicly available information including D.H. Brown, vendor announcements, vendor
WWW Home Pages, SPEC Home Page, GPC (Graphics Processing Council) Home Page and TPC (Transaction
Processing Performance Council) Home Page. IBM has not tested these products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to suppliers of those products. IBM may
have patents or pending patent applications covering subject matter in this presentation. Furnishing this presentation
does not give you any license to these patents. Send license inquiries, in writing, to IBM Director of Licensing, IBM
Corporation, New Castle Drive, Armonk, NY 10504-1785 USA. All statements regarding IBM's future direction and
intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your local
IBM office or IBM authorized reseller for the full text of a specific Statement of General Direction.

The information contained in this presentation has not been submitted to any formal IBM test and is distributed "AS
IS." While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that
the same or similar results will be obtained elsewhere. The use of this information or the implementation of any
techniques described herein is a customer responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. Customers attempting to adapt these techniques to their
own environments do so at their own risk.

The information contained in this document represents the current views of IBM on the issues discussed as of the
date of publication. IBM cannot guarantee the accuracy of any information presented after the date of publication.

All prices shown are IBM's suggested list prices; dealer prices may vary. IBM products are manufactured from new
parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Any performance data in this document was determined in a controlled environment. Therefore, the results obtained
in other operating environments may vary significantly. Some measurements quoted in this presentation may have
been made on development-level systems. There is no guarantee these measurements will be the same on generally-
available systems. Some measurements quoted in this presentation may have been estimated through extrapolation.
Actual results may vary. Users of this presentation should verify the applicable data for their specific environment.

The following terms are registered trademarks of International Business Machines Corporation in the United States
and/or other countries: AIX, AIX 5L, AIX/6000, C Set++, CICS, CICS/6000, DB2, ESCON, IBM, LANStreamer,
LoadLeveler, Magstar, MediaStreamer, Micro Channel, MQSeries, Netfinity, Parallel Sysplex, RS/6000, S/390,
Service Director, ThinkPad, TURBOWAYS, VisualAge. The following terms are trademarks of International
Business Machines Corporation in the United States and/or other countries: AIX PVMe, DB2 Universal Database,
Deep Blue, e-business (logo), HACMP/6000, Intelligent Miner, Intellistation, Network Station, POWER2
Architecture, PowerPC (logo), PowerPC 604, SP. A full list of U.S. trademarks owned by IBM may be found at
www.ibm.com/legal/copy/trade.html. Microsoft, Windows, Windows NT and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, other countries or both. UNIX is a registered
trademark of The Open Group. Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States and other countries. Lotus, Lotus Domino and Lotus Notes are trademarks or registered
trademarks of Lotus Development Corporation. Tivoli, TME, TME 10 and TME 10 Global Enterprise Manager are
trademarks or registered trademarks of Tivoli Systems, Inc. Other company, product and service names, which may
be denoted by a double asterisk (**), may be trademarks or service marks of others. SCO is a registered trademark of
Santa Cruise Operations, Inc. Sequent, NUMA-Q, DYNIX/ptx, and ptx are registered trademarks of Sequent
Computer Systems, Inc., a wholly owned subsidiary of IBM.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 1

Contents

CONTENTS ...1

INTRODUCTION ...2

Helpful Terms and Definitions ..2

PART 1. MIGRATING AIX APPLICATIONS TO AIX 5L ON IA-64..3

Introduction ...3
General Differences Between AIX 4.3 and AIX 5L on IA-64...3
AIX System calls for Binding..6

PORTING AIX 32-BIT DEVICE DRIVERS TO AIX 5L ON IA-64 ..9
IFDEFS..9
Driver Configuration..9
Memory Mapped I/O ...12
Other Kernel Services and Considerations ..19

DEALING WITH ENDIANESS...24
Byte Ordering ..24
Porting ...26
Overlaid Data (with Bit Fields)..28
Exchanging or Sharing Data ..29

CONVERTING 32-BIT APPLICATIONS TO 64-BIT APPLICATIONS..31
Overview..31
C and C++ Data Type Size and Alignment Issues ...32
Explicit Cast Improperly Applied ..33
Pointer to an int Icompatible with a Pointer to a long..34
Lack of Prototyped Function Declarations in Scope of Call Statements..35
Integer Expression with Potential Overflow Is Converted to a long ..37
Untyped Integral Constants Are int by Default..38
Sizeof(void *) != Sizeof(int) ..39
Truncation of a 64-bit Pointer Value When Converted to a Smaller Integral Type...40
Assumption That Pointers and int Are Same Size in Arithmetic Context ..41
Pointer Return Type or Argument Types in the Absence of a Prototyped Function Declaration41
Objects Change Size ..43
Integer Constants ...44
Stack Layout Changes due to Larger Data Elements ...45

PART 2. MIGRATING DYNIX/PTX PROGRAMS TO AIX 5L ON IA-64..46

MIGRATING C APPLICATIONS ...46
C Language Incompatibilities ..46

MIGRATING ASSEMBLY LANGUAGE PROGRAMS...60

MIGRATING C++ PROGRAMS..60
C++ Compiler Differences...61
C++ Class Libraries ...64

PART 3. REFERENCES...65

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 2

Introduction

It our intent to facilitate an easy migration of applications from AIX V4.3 and DYNIX/ptx to AIX 5L on IA-64. In
most cases, migration will require nothing more than a simple recompile; however, there are some exceptions. This
document covers the various migration scenarios and those instances that require changes to the application source
and/or to the way the application is built.

Thanks to the following for their contributions: Casey Cannon, Thomas Chen, Mike Lyons, Randy Swanberg,
Cynthia Sax, Don Wood, Mike Day, Scott Porter, Donald Stence, Bill Buros

Helpful Terms and Definitions
IA-64

64-bit Intel Architecture

ILP32
A 32-bit application source that has been compiled to run natively on IA-64. In this model, the size of int,
long, and pointer for C and C++ is 32-bit.

LP64
A 64-bit application source that has been compiled to run natively on IA-64. In this model, the size of int
for C and C++ is 32 bit, while the size of long, and pointer is 64-bit.

IA-32
A 32-bit application source that has been compiled to run on 32-bit Intel architecture.

EM-32
The native 32 bit mode of the IA-64 architecture.

EM_64
The native 64-bit mode of the IA-64 architecture.

Itanium
First Intel implementation of the IA-64 Intel architecture. This processor supports IA-32, EM-32 (ILP32)
and EM-64 (LP64) binaries

AIX 5L on IA-64
The New AIX version 5 operating system that will run on POWER and Itanium based Systems

Little Endian (LE)
The right to left assignment of addresses to bytes in a data word.

Big Endian (BE)
The left to right assignment of addresses to bytes in a data word.

Endian-Sensitive Application
An application source that depends on the byte ordering

Endian-Neutral Application
An application source that has no dependency on byte ordering

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 3

Part 1. Migrating AIX Applications to AIX 5L on IA-64

Part 1, Migrating AIX Applications to AIX 5L on IA-64, provides information on general differences between AIX
4.3 on POWER and AIX 5L on IA-64, porting AIX 32-bit device drivers AIX 5L on IA-64, byte ordering, and
endianess in porting.

Introduction
AIX on the PowerPC addresses data in Big Endian (BE) order, while traditional Intel processors address data in
Little Endian (LE) order. In porting AIX to IA-64, we chose to maintain the Intel LE byte ordering. As a result,
application source that depends on byte ordering and runs successfully on AIX/POWER may not run successfully on
AIX 5L on IA-64 without modifications to eliminate that dependency. In general, software developers have a single
source of their application that runs on AIX and other LE systems, such as NT, ensuring that their source is Endian-
neutral. When this is not the case, changes to the source may be required.

Note that some functionality available on AIX on the POWER may not be supported on AIX 5L on IA-64 in its first
release. An exhaustive list is not available at this time, but the following is known to be missing:

• 3D Graphics Support
• DCE
• SOM/DSOM
• JVM 1.1.8 (the JVM will be 1.3)

General Differences Between AIX 4.3 and AIX 5L on IA-64

Alignment Differences
Double on AIX/POWER (32 and 64 bit) has a size of 8 bytes, but is aligned at 4 byte boundary. For ILP32 the size
is 8 bytes and the alignment is also 8 bytes.. This may cause a structure containing “double” to have different size
and mapping characteristics on AIX/POWER than on AIX 5L on IA-64. See table below

AIX/POWER 32-bit AIX 5L - ILP32
struct {
 int i; # size 4; alignment 4 size 4; alignment 4

long long j; # size 8; alignment 8 size 8; alignment 8
 long k; # size 4; alignment 4 size 4; alignment 4

float m # size 4; alignment 4 size 4; alignment 4
double n # size 8; alignment 4 size 8; alignment 8
long double p; # size 16; alignment 16 size 16; alignment 16

 }
ILP32 pplications that wish to have the same structure mapping as for IA-32 can use the following pragma:

#pragma align=ia64unix386
This pragma will force the following size an alignment rules for ILP32:

 struct {
 int i; # size 4; alignment 4

long long j; # size 8; alignment 4
 long k; # size 4; alignment 4

float m # size 4; alignment 4

Developer Tip
If you are interested in migrating your application to 64-bit, first move your code to 64-bit on AIX. Then,
migrate the 64-bit code from AIX on POWER to AIX 5L on IA-64.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 4

double n # size 8; alignment 4
long double p; # size 16; alignment 4

 }

Default for char
The default compilation mode for char on AIX/POWER is unsigned, while on AIX 5L on IA-64 it is signed. AIX
applications that need the default behavior for char on Itanium to be unsigned can use the -qchars=unsigned
compile-time flag to accomplish the same desired effect.

Floating Point Support

There are two different extended precision on the table, 128 bits and 80 bits. In PPC/POWER platform, long
double is a type of a software implementation which takes a storage of two doubles (128 bits). In ILP32 (Intel)
platform, long double is 80 bit long and is hardware supported. Because 80 bit long double is hardware supported in
IA64, it is very valuable to have extended range and precision without compromising the performance. Although
PPC/POWER version of long double is more precise than IA64's natural extended precision, it is slower and has
smaller range of values. The default size for long double when using the VA 5.0 C and C++ compiler is 64-bits. In
order to get 80 bit extended precision, the –qlongdouble=80 compiler flag.
Some floating point APIs which are supported by the AIX kernel on POWER will not be supported on IA-64. These
are:

− fp_trapstate

− fp_fpscrx

− fp_trap

− fp_flush_imprecise

− fp_raise_xcp

− fp_iop_snan

− fp_iop_infsinf

− fp_iop_infdinf

− fp_iop_zrdzr

− fp_iop_infmzr

− fp_iop_invcmp

− fp_iop_sqrt

− fp_iop_convert

− fp_iop_vxsoft

There are also other differences such as range, resolution, NANs and infinities.

 nlist/knlist

knlist on AIX 5L for IA-64 takes an nlist64 structure. This is necessary since the IA64 kernel exists above 4GB of
addressability.

Module Format
AIX 5L on IA-64 supports the UNIX Sytem V.4 generic ABI for IA-64. Shared library creation and usage as well as
static and dynamic linking and loading of applications is different than what is supported on AIX for POWER. Both
the module and debugger format are different as follows:

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 5

AIX/POWER AIX 5L IA-64
Module Format XCOFF ELF
Debugger Format stab strings DWARF2

Information on the generic IA-64 ABI can be found at the following URL: http:www.sco.com/developer/gabi

Import/Export file Support
As an accomodation for existing AIX applications, the AIX 5L on IA-64 linker will provide support for the use of
Import and Export files. This support is different from the support on AIX/POWER in both Syntax and Semantics
which may require makefile changes. The command line arguments to ld are:

-B import:file
-B export:file

Import/Export Syntax
Directives begin with a '%', which must be in column one. There is currently one directive, "%soname". The
directive is followed by a string (quoted or not):

%soname name

This directive has the effect of adding the named shared object to the needed list of the object being built. (The
needed objects of a dynamic executable or shared object can be listed with the -Lv option of the dump command.)
The comment character is '#'. It may occur in any column. The comment goes to the end of line.

Symbols should be listed one per line. Symbol entries may contain an optional tag which may have an optional
number:

sym_name [{ws} tag [{ws} decimal_number]] {eol}

where tag is one of syscall, function, object, and decimal_number is a system call number for the syscall tag and a
size for an object. {ws} stands for white space, either space or tab; {eol} stands for end-of-line.

In an export file, symbols with the syscall tag will be marked for export by the system loader as system calls. All
symbols not marked for export will not be visible outside of the shared object defining them. The %soname directive
is ignored in an export file. Multiple import files can be specified on the ld command line, but only one export file.

The -Bsyscall option is still present and functioning, but its functionality is now additionally obtainable through
export files. The -Bsyscall option will be depricated in the future.

libld.a Support
Since the module format on AIX 5L on IA-64 is ELF, the XCOFF specific processing library libld.a will not be
ported. Instead, libelf will provide the object file specific processing code for the ELF environment.

Libraries and Archives
On AIX/POWER, an archive may contain different types of objects. For example, libc.a contains .o files, 32-bit
shared libraries and 64-bit shared libraries. Applications (both 32-bit and 64-bit) can link dynamically and/or
statically against this single archive (libc.a). This behavior is not duplicated on AIX 5L on IA-64. The System V.4
semantics for shared library creation, static and dynamic linking, does not allow for a single archive to be used in the
same manner as on AIX/POWER. For AIX 5L on IA-64, library variants will exist in separate directories as
follows:

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 6

/usr/lib/ia32 (IA32 little-endian libraries)
/usr/lib/ia64l32 (IA64 ilp32 little-endian libraries)
/usr/lib/ia64l64 (IA64 lp64 little-endian libraries)

Mixed mode linking is disallowed. The linker’s implementation determines its target mode (ia32, ia64l32, ia64l64).

When a directory specifier is provided, such as 'ld ... -Ldir ...', the linker will add that directory to its search list
before the default directories to be searched (as it always has).

When the run-time linker and link-editor are searching for libraries, it is not a fatal error if an ELF file of the wrong
type is encountered in the search. Instead the link-editors will exhaust the search of all paths before determining a
matching object could not be found. This will permit having a common search path (LD_LIBRARY_PATH) which
contains a mix of directories containing differing process models.

Symbol Resolution
On AIX 5L on IA-64, symbol resolution in a running program is performed by the runtime linker, according to the
rules specified in the generic IA-64 ABI (gABI). At link time, shared objects referenced on the command line are
listed in the "needed module" section of the program. Symbols are resolved at runtime by sequentially searching the
"needed modules" list until a definition is found.

On AIX, symbol resolution is performed at link time. If a symbol is defined in a shared object (or "module")
referenced on the command line, the linker records the symbol name and defining module in the loader section of the
program. When a program is executed, imported symbols must be resolved by finding them in the defining module,
as recorded at link time.

On both platforms, an import file can be used in place of a shared object (module) that is not available or has not yet
been built.

The inability to associate a symbol to a specific library on AIX 5L on IA-64 makes the order in which the libraries
are specified very important. For instance, with respect to rpc, if you want the streams behavior, your library order
must be libnsl, then libc, and if you want sockets behavior, it must be libc followed by libnsl. For example:

1. Module “A” contains a definition for function “X”
2. Library “foo” also has a definition for a different function “X”
3. Library foo has a function “Y” which calls function “X”

On AIX/POWER , function “Y” will get the “X” present in library “foo”.
On AIX 5L on IA-64, function “Y” will get the “X” present in Module “A”.

AIX System calls for Binding
The AIX load(), loadquery() and unload() APIs will continue to be supported on AIX 5L on IA-64. However,
loadbind() will not be supported.

Linking and ld flags
The AIX linker differs from the SVR4 linker (used in AIX 5L on IA-64) in features and functionality. The flags used
as well as their default behavior are often different. The AIX 5L on IA-64 linker will not support relinking of an
executable. Some of the linker flags on AIX may have implied semantics when linking on AIX 5L on IA-64, others
have coresponding flags, and the rest are not supported. The following table shows the AIX linker flags and their
semantics with the corresponding AIX 5L on IA-64 linker flags and semantics:

AIX/POWER Linker Flag AIX 5L/IA-64 Equivalent Flag
-DNumber locates the initialized data Possible with the Map File (-M option)
-eLabel sets the entry point to Label -e epsym sets the entry point to epsym

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 7

AIX/POWER Linker Flag AIX 5L/IA-64 Equivalent Flag
-G produces a shared object -G produces a shared object
-HNumber aligns the text, data, and loader sections at
a multiple of number

Possible with the Map File (-M option)

-lName processes libName.a -l x
-LDir adds Dir to the list of search directories -L path

Note: -L does not record the path in the binary
All -L options are processed first before any of the -l
options, therefore, each library specified with the -l
option will be searched in all directories specified

Each library specified with -l option is searched in the
directory specified with -L only if -L precedes the -l
option

LDPATH = dirlist
Libraries are searched in the following order:
1) directories specified by -L or LIBPATH if there is
no -L option
2) Standard directories (/usr/lib and /lib)

LD_LIBRARY_PATH = dir1:dir2; dir3:dir4
Libraries are searched in the following order:
1) dir1 and dir2
2) directories specified by -L option
3) dir3 dir4
4) standard directories (/usr/lib & /usr/ccs/lib)

-oName names the output file -o outfile names the output file
-r produces non executable output file suitable for
another linking

-r produces a relocatable file (partially linked file)

-s strips symbolic debugging information -s strips symbolic debugging information
-TNumber sets the starting address of the text section.
Doesn’t have any effect on run-time addresses

Possible with the Map File (-M option)

-bautoimp or -bso imports symbols from any shared
object specified as input. This option is valid for all
shared objects

-Bdynamic link with shared object version of a library
(when available). This option is valid only for the
shared objects following it and until the next -Bstatic

-bC:File or -bcalls:File writes an address map to a file -m produces a memory map of input/output sections
-bdynamic or -bshared processes subsequent shared
objects in dynamic mode

-Bdynamic link with shared object version of a library
(when available) until next -Bstatic

-bstatic processes subsequent shared objects in static
mode

-Bstatic link with archive version of a library, until next
-Bdynamic

-bE:File or -bexport:File exports the external symbols
listed in File

-Bexport:File exports all global and weak symbols
listed in File

-bernotok or -bf reports an error if there are any
unresolved external references

-z defs do not allow undefined symbols (default for
executables)

-berok allows unresolved external references in the
output file;

-z nodefs allows undefined symbols (default %for
shared objects)

-bexpall export all global symbols -Bexport
-blibpath:Path uses Path when writing the loader
section of the output file

-R path records path for run-time library search (this
may not be equivalent)

-bnoexpall does not export any symbol not listed in the
export file (default)

-Bexport:File hides all symbols except those listed in
File

-bpD:Origin specifies origin as the address of the first
byte of file page containing the beginning of the data
section

Possible with the Map File (-M option)

-bpT:Origin specifies origin as the address of the first
byte of the file page containing the beginning of the
next section

Possible with the Map File (-M option)

-bro or -btextro ensures that there are no load-time
relocations for the text section

-z text in dynamic mode only. Do not allow relocations
against non-writable allocatable segment

-bsymbolic assigns the symbolic attribute to most
symbols exported without an explicit attribute

-Bsymbolic=[list | :File] bind all references to the
named symbol to its definition

LIBPATH environment variable -YP, dirlist changes default library search directories

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 8

AIX/POWER Linker Flag AIX 5L/IA-64 Equivalent Flag
-bnso -bI:/lib/syscalss.exp -a produces a statically linked executable file (must not

be used with -r and -dy options)

The following AIX flags either have no meaning on AIX 5L on IA-64 or have no equivalance. Encountering these
flags on the ld command line may either cause an error or be ignored:

-k -z -basis -bautoexp -bbigtoc -bbindcmds:File -bbinder:File -bbindopts:File -bcomprld -bcrld -bcror15 -
bcror31 -bD:Number -bdbg:Option -bdebugopt:Option -bdelcsect -berrmsg -bex1:File -bex2:File -bex3:File -
bex4:File -bex5:File -bgc -bgcbypass:Number -bglink:File -bh:Number -bhalt:Number -bI:File -nimport:File -
binitfini:Init:Term:Priority -bipath -bkeepfile:File -blazy -bL:File -bloadmap:File -bM:ModuleType -
bmodtype:ModuleType -bmaxdata:Number -bmaxstack:Number -bS:Number -bnl -bnoloadmap -bnoautoimp -
bnobigtoc -bnobind -bnocomprld -bnocrld -bnodelcsect -bnoentry -bnoerrmsg -bnogc -bnoglink -bnoipath -
bnolibpath -bnom -bnoobjreorder -bnop:Nop -bnoquite -bnoreorder -bnortl -bnortllib -bnostrip -bnosymbolic -
bnotextro -bnro -bnotypchk -bnov -bnox -bquiet -br -breorder -brename:Old -brtl -brtllib -bS:number -bsmap
-bstabcmpct -bsxref:File -btypchk -bx -bX:File -bxref:File -m -M -SNumber -uName -v -zString

Note: Both the Visual Age V5.0 Compiler and the static linker “ld” have a –B option. If you have makefiles that use
the cc driver to invoke the linker, you must pass the –B options to the linker as follows:

-Wl,”-B…”

where the letter following the W is an el, and the … is a suboption of the –B. For example, to use the linker’s –
Bexport option you specify:

-Wl,”-Bexport:file”

The quoting of the string is only to keep any space delimiters from indicating the next argument to the compiler.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 9

Porting AIX 32-bit Device Drivers to AIX 5L on IA-64
This section provides information on how to take a 32-bit PPC AIX driver and migrate it to AIX 5L on IA-64. It is
intended to provide guidance to AIX 5L on IA-64 bring-up driver writers and to input to the DDK development.

IFDEFS
By convention, a number of #defined values can be used in controlling device driver and kernel extension source. #if
__ia64 is used to distinguish compilations targeted at the AIX 5L on IA-64 architecture. 64-bit compiles of kernel
extensions and device drivers will define #if __64BIT_KERNEL and __64BIT__. Therefore, for single-source
device drivers that generate a 32-bit PPC AIX device driver and a 64-bit device driver (AIX 5L on PPC or IA-64),
the differences can be controlled with these ifdefs. Finally, _POWER_MP continues to be used to identify a
compilation directed toward a multiprocessor environment. This can be used for single-source device drivers that
generate a 32-bit PPC AIX UP device driver, and for 32-bit AIX MP and 64-bit AIX 5L on POWER and IA-64
device drivers (which are required to be MP-safe).

Driver Configuration

Configure Methods
There are two issues to consider. First, the config methods need to be made endian-safe. Second, config methods
need to handle the 64-bit kernel implications.

Currently, the plan is to continue to have the existing 32-bit application configuration methods (modified for any
endianess problems) work as is, and to load the 64-bit version of the device driver. In general this means that device
config methods will not be impacted by the 64-bit porting work. The only known issue is that with dev_t for passing
devnos in the device's DDS, because the 64-bit device driver implicitly assumes a dev_t is 64 bits. Ideally, since the
device fileset will be impacted and shipping^^confused?^^ due to the porting of the device driver, it would be a
good time to go ahead and make the config method change to handle 64-bit and 32-bit kernel devnos. At a minimum,
the device's DDS structure will need to define a dev32_t type devno which will remain a 32-bit integer type.

The preferred solution will be for the method to define the devno in the device's DDS structure as a dev64_t, which
will handle either a 32-bit or a 64-bit devno. On an IA-64 system, the method would always use a 64-bit devno. On a
PPC system, the method would have a runtime check to determine whether the 32-bit or 64-bit kernel was active, and
use the appropriate libcfg.a services to generate the major and minor numbers. For example, the config method code
might look like:

 struct dds {
 .
 dev64_t devno;
 .
 } dds;

#ifdef __ia64
 major = genmajor64();
 minor = genminor64(major);

dds.devno = makedev64(major, minor);
#else
 if (__KERNEL_32()) {
 major = genmajor();
 minor = genminor(major);
 dds.devno = (dev64_t) makedev(major, minor);
 } else {
 major = genmajor64();
 minor = genminor64(major);

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 10

 dds.devno = makedev64(major, minor);
 }
#endif

All ODM information will stay the same and thus is not impacted. For AIX 5L on IA-64, there is a possibility that
some PdAt attributes (such as describing bus memory space requirements that are already detectable via PCI
configuration mechanisms) will no longer be required.

Devno
Currently, in existing systems, the devno of type dev_t is a 32-bit field. The low 16 bits represent the minor number
and the high 16 bits represent the major number. As part of the 64-bit porting effort, we are laying the groundwork
for the kernel and kernel extensions to understand a 64-bit devno, and the dev_t type will become a long in the 64-
bit environment. This will allow for future expansion to support more than 64K minor and 64K major numbers.

A problem with respect to this is that there are existing application interfaces which understand data structures that
contain a type dev_t. To a 32-bit application, it is important that dev_t remain 32-bits. Therefore, in our first pass
while enabling the 64-bit kernel and 64-bit kernel extensions to understand a 64-bit t dev_t, interfaces that surface
devnos as 32-bit quantities will need to convert from the 64-bit formatted devno to a 32-bit formatted devno. Macros
will be provided for accomplishing this, although the most significant bits of the major and minor numbers will be
lost. When we actually support major and minor numbers greater than 2^16, new API's that understand the larger
dev_t format will be created to replace these interfaces, and the old interfaces will "fail" appropriately.

This will be the format of the 64-bit devno under the 64-bit kernel:

V R Major Number Minor Number
S
V 3 3

63 62 61 2 1 0

V = Version bit
0 = Old Style 32-bit devno (Major:31-16; Minor 15-0)
1 = New Style (Major:61-32; Minor 31-0)
RSV = Reserved bit
Major = 30-bit major allowing up to 1 billion major numbers
Minor = 32-bit minor number allowing up to 4 billion minor numbers

The following macros will be provided to config methods and device drivers (available in 32-bit and 64-bit
compiles) for extracting major and minor fields or creating 64-bit devnos.

 /*
 * Extract major number from 64-bit devno
 */
 #define major64(_devno) \
 ((int)((_devno & 0x3FFFFFFF00000000LL) >> 32))

 /*
 * Extract minor number from 64-bit devno
 */
 #define minor64(_devno) \
 ((int)(_devno & 0x00000000FFFFFFFFLL))

 /*
 * Make a 64-bit devno
 */
 #define makedev64(_major, _minor) \

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 11

 ((dev64_t)(((long long)_major << 32) |
 ((long long)_minor & 0x00000000FFFFFFFFLL) | DEVNO64))

The following macros will be provided to 64-bit device drivers for testing and converting devnos from 32-bit to 64-
bit and vice versa.

 /*
 * Version bit for 64-bit devno
 */
 #define DEVNO64 0x8000000000000000LL

 /*
 * See if devno is 64 or 32
 */
 #define ISDEVNO64(_devno) \
 (((ulong)_devno & DEVNO64) : TRUE ? FALSE)

 /*
 * Convert to 64-bit devno.
 * Used by 64-bit drivers whose method passed in a 32-bit devno.
 */
 #define DEV32TO64(_devno) \
 ((dev_t) ((((ulong)_devno) & DEVNO64) : _devno ? \
 (((_devno & (ulong)0xFFFF0000) << 16) | \
 (_devno & 0xFFFF) | DEVNO64)))

 /*
 * Convert to 32-bit devno.
 * Used where an existing API only understands a 32-bit devno.
 * NOTE: major and minor bits greater than 2^16 are truncated (lost)
 */
 #define DEV64TO32(_devno) \
 ((dev32_t) (!(((ulong)_devno) & DEVNO64) : _devno ? \

The following macros will be provided to device drivers to allow them to have common source between the 32-bit
and 64-bit versions. Depending on the compile mode, these resolve to the appropriate version of the major, minor,
and makedev macros:

 #ifdef __64BIT_KERNEL
 /*
 * For DD source code simplicity, map the old to the new
 */
 #define major_num(_devno) major64(_devno)
 #define minor_num(_devno) minor64(_devno)
 #define makedevno(_major, _minor) makedev64(_major, _minor)
 #else /* __64BIT_KERNEL */

/*
 * For DD source code simplicity, map the old to the new
 */
 #define major_num(_devno) major(_devno)
 #define minor_num(_devno) minor(_devno)
 #define makedevno(_major, _minor) makedev(_major, _minor)
 #endif /* end of else __64BIT_KERNEL */

All 64-bit device drivers will need to understand 64-bit devnos and their new format under the 64-bit kernel. They
will need to be in sync with their config method depending on what their method supports. For example, if the
method was not ported to understand the new 64-bit devno, but continues to call genmajor()/genminor() and passes

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 12

a 32-bit devno to the driver, the driver will need to convert the devno to a 64-bit format, using the DEV32TO64()
macro. Otherwise, the 64-bit driver should only need to worry about 64-bit devnos; i.e., on open(), close(),
strategy(), etc. calls.

Application interfaces that must convert 64-bit devnos to 32-bit devnos for binary compatibility can use the
DEV64TO32() macro. Initially, the maximum number of major numbers supported by the 64-bit kernel will be
2^16, which can still be represented within a 32-bit devno, so this conversion will suffice for this release and until
there is a need to go beyond the 2^16th major or minor number limit.

Memory Mapped I/O
Probably the most significant driver-visible kernel service change between 32-bit POWER and AIX 5L on IA-64
concerns memory-mapped I/O.

Address Space Management
The current 32-bit device driver model includes the iomem_att() and iomem_det() services for getting and releasing
temporary addressability to I/O space. These interfaces will not be supported in the 64-bit kernel (AIX 5L on
POWER or IA-64).

A new I/O mapping model is defined for the 64-bit kernel. This new model is designed to allow a device driver to
map multiple discontiguous I/O regions into a single virtually attached and addressable segment. It also is structured
to minimize the exposure of addressable I/O space to other errant kernel mode accesses and to allow "priming" of the
translation hardware. Following is a description of the new model.

Initialize an I/O Mapping
io_handle_t io_map_init(struct io_map *, vpn_t, io_handle_t);

This service will create a segment to establish a cache-inhibited virtual to real translation for the bus address region
defined by the contents of the struct io_map. The flags parameter of the io_map structure can be used to customize
the mapping such as making the region read-only, using the IOM_RDONLY flag. io_map_init can only be called
from the process environment.

It returns a "handle" of an opaque type io_handle_t to be used on future map/unmap calls. If the segment cannot be
created or the mapping performed for any reason, NULL is returned.

The vpn_t type parameter represents the virtual page number offset to allow the caller to specify where in the virtual
segment to map this region. If the offset conflicts with a previous mapping in the segment, NULL is returned.
Although the io_map.size field is specified in number of bytes, the underlying mapping actually occurs in terms of
virtual pages (0x1000 bytes). So if the initial mapping is for 4 registers in the bus address region to be mapped into
virtual page number zero, any subsequent mapping into the same segment must be to a virtual page number greater
than zero—you cannot map a second set of 4 registers into a different byte range of virtual page zero.

The caller would want to map the most frequently accessed and performance-critical I/O region at vpn_t offset 0 into
the segment. This is true because the subsequent io_map() calls for this io_handle_t will return the effective address
representing the start of the segment—i.e., page offset 0. The device driver is responsible for managing the various
offsets into the segment. A single bus memory address page can be mapped multiple times at different vpn_t offsets
within the segment if desired.

The io_handle_t parameter is passed when the caller wants to append a new mapping to an existing segment. For the
initial creation of a new I/O segment, this parameter must be NULL. For appended mappings to the same segment,
this parameter is the io_handle_t returned from the last successfuly io_map_init() call. If the mapping fails for any
reason (offset conflicts with prior mapping, or no more room in the segment), NULL is returned. In this case, the

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 13

previous io_handle_t as passed in is still valid. If successful, the io_handle_t returned should be used on all future
calls.

This allows device drivers that must manage multiple address spaces on a single adapter to map them into a single
virtual address region, requiring the driver to only do a single attach, io_map(), to gain addressibility to all the
mappings.

For example, the following creates an I/O segment and maps three distinct regions into it, one read-write Bus I/O
space region, one read-write Bus Memory region, and one read-only Bus Memory region:

 struct io_map iom;
 io_handle_t ioh;
 io_handle_t aioh;

 /*
 * Initialize mapping for I/O region
 */
 iom.bid = BID_ALTREG(adapter->bid, PCI_IOMEM);
 iom.key = IO_MEM_MAP;
 iom.flags = 0;
 iom.busaddr = adapter->io_address;
 iom.size = PAGESIZE;

 ioh = io_map_init(&iom, 0, NULL);
 if (ioh == NULL)
 dd_backout(..);

 /*
 * Initialize mapping for Bus Memory region 1
 */
 iom.bid = BID_ALTREG(adapter->bid, PCI_BUSMEM);
 iom.flags = 0;
 iom.busaddr = adapter->bus_address_1;
 iom.size = ONE_MB;

 aioh = io_map_init(&iom, PAGESIZE/PAGESIZE, ioh);

 if (aioh == NULL)
 dd_backout(..);

 /*
 * Initialize mapping for Bus Memory region 2
 */

 iom.busaddr = adapter->bus_address_2;
 iom.size = SIXTEEN_MB;
 iom.flags = IOM_RDONLY;

 ioh = io_map_init(&iom, (PAGESIZE + ONE_MB)/PAGESIZE, aioh);

 if (ioh == NULL)
 dd_backout(..);

Attach to an I/O Mapping
void * io_map(io_handle_t);

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 14

This service sets up addressibility to the I/O address space defined by the io_handle_t structure. It returns an
effective address representing the start of the mapped region.

This is basically the replacement call for iomem_att(). However, note that it might possibly replace multiple
iomem_att() calls depending on the device and driver and whether multiple regions were mapped into this single
virtual segment. Also, like iomem_att, this service does not return any sort of failure. If something goes wrong, the
system will crash.

It is important to note a major difference from iomem_att(). iomem_att() took an io_map structure containing a bus
address and returned a fully qualified effective address with any byte offset from the bus address preserved and
computed into the returned effective address. io_map() will always return a segment-aligned effective address
representing the beginning of the I/O segment corresponding to io_handle_t. The manipulation of page and byte
offsets within the segment are the responsibility of the device driver.

Consider the following comparison between the old model and the new:

 iom.bid = BID_ALTREG(adapter->bid, PCI_BUSMEM);
 iom.key = IO_MEM_MAP;
 iom.flags = 0;
 iom.busaddr = 0x1234888;
 iom.size = PAGESIZE;

 eaddr = iomem_att(&iom);

In the above example, the eaddr returned by iomem_att() would be something like 0x31234888. Now consider the
new model:

 iom.bid = BID_ALTREG(adapter->bid, PCI_BUSMEM);
 iom.key = IO_MEM_MAP;
 iom.flags = 0;
 iom.size = PAGESIZE;

 iom.busaddr = 0x1234888;
 ioh = io_map_init(&iom, 1, ioh);

 eaddr = io_map(ioh);
 eaddr += PAGESIZE * 1; /* add in virtual page offset */
 eaddr += 0x888; /* add in byte offset */

In the above example, the eaddr returned by io_map() would be something like 0x30000000. The driver had to add
in the virtual page offset (PAGESIZE*1, or 0x1000 bytes) that it previously assigned this region on the
io_map_init() call, and add in the byte offset of the actual target bus address.

This service is also subject to the same nesting rules regarding the number of attaches allowed. The total system
number of active temporary attaches is 4. It is recommended that no more than 1 active attach be owned by a driver
calling Interrupt or DMA kernel services. It is also recommended that no active attaches be owned by a driver when
calling other kernel services.

This service is callable from both the process and interrupt environments.

Detach from an I/O Mapping
void io_unmap(void * eaddr);

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 15

This service removes addressibility to the I/O address space defined by the eaddr parameter. There must be a valid
active mapping from a previous io_map() call for this effective address. Note that eaddr can be any valid effective
address within the segment, and does not have to be exactly the same as the address returned by io_map().

This is basically the replacement call for iomem_det(). However, note that it might possibly replace multiple
iomem_det() calls depending on the device and driver and whether multiple regions were mapped into this single
virtual segment via io_map_init().

This service is callable from both the process and interrupt environments.

Remove an I/O Mapping
void io_map_clear(io_handle_t);

This service destroys all mappings defined by the io_handle_t parameter.

There should be no active mappings—i.e., outstanding io_map()'s—to this handle when io_map_clear() is called.
The segment previously created by the io_map_init() call, or multiple io_map_init() calls, is deleted.

This service is only callable from the process environment.

Here are some example snippets of what a common source 32-bit POWER driver, and 64-bit POWER and IA-64
driver might look like:
 dd_open()

 #ifdef __64BIT_KERNEL
 io_handle_t ioh;
 #endif
 struct io_map iom;

 /*
 * Initialize an I/O MAP structure with adapters bus
 * memory region....this works for 32-bit or 64-bit
 */
 iom.bid = BID_ALTREG(adapter->bid, PCI_BUSMEM);
 iom.key = IO_MEM_MAP;
 iom.flags = 0;
 iom.busaddr = ap->busmem_address_1;
 iom.size = ap->busmem_size_1;

 #ifdef __64BIT_KERNEL
 /*
 * Create an I/O segment and map this bus address range
 * at Virtual page 0 into the segment.
 */
 ioh = io_map_init(&iom, 0, NULL);
 if (ioh == NULL)
 return(EINVAL);
 #endif

 dd_startio() and/or dd_intr() etc...

 void * eaddr;

 /*
 * Get addressibility to busmem_address_1
 */
 #ifdef __64BIT_KERNEL

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 16

 /* Attach to my I/O segment and add in the byte offset to
 * my target bus address. Since I put this region at Virtual
 * Page 0 in my segment, I don't need to add in a page offset.
 */
 eaddr = io_map(ioh) + PAGEOFFSET(ap->busmem_address_1);
 #else
 eaddr = iomem_att(&iom);

/* Get addressability to busmem_address_1 */
 #endif

 /*
 * Remove addressibility to busmem_address_1
 */

 #ifdef __64BIT_KERNEL

 io_unmap(eaddr);

 #else
 iomem_det(eaddr);

 #endif

 dd_close()

 #ifdef __64BIT_KERNEL

 /*
 * Remove my I/O segment
 */
 io_map_clear(ioh);
 #endif

AIX 5L on IA-64 Bus I/O Space
The AIX 5L on IA-64 architecture presents two additional differences that device driver writers must handle. First,
there is only 64K (16 bits of addressing) of platform bus I/O space for the entire system (similar to IA32
environments today). This is in contrast to CHRP systems, where there is 32-bits of bus I/O space per PHB (PCI
Host Bridge). ISA I/O space on AIX 5L on IA-64 is within this single shared 64K space (while in CHRP, it is within
the low 64K of its parent PHB’s I/O space). The net of this for AIX 5L on IA-64 is that I/O space is a much more
limited resource, and device drivers should use it only when absolutely required. Note it is TBD whether there will
be a mechanism for a driver package to communicate to system configuration utilities that it does not need an I/O
space assignment, despite the value read from the associated PCI Base Address Register. Regardless, driver writers
should use Bus Memory space in favor of Bus I/O space whenever possible.

The second impact from the AIX 5L on IA-64 I/O space model concerns how it is memory-mapped from the
perspective of the driver executing on the CPU. Like PPC, I/O space is memory mapped (i.e., it is accessed via a
virtual address returned by io_map). However, the virtual address space is discontiguous with respect to the physical
64K address space, spreading 4 ports per page across a 64 MB virtual address space (see AIX 5L on IA-64 PRM for
more details). What this means to device driver writers accessing bus I/O space (PCI or ISA) is that an address
transformation is required. The following illustrates how to initialize a handle to access the command register block
for the primary channel of an IDE controller in legacy mode (8 registers, starting at address 0x1f0 of ISA I/O space,
1 register starting at 0x3f6):

 /*
* setting up the io handle for the ide command block registers for
* primary channel

 */

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 17

 struct io_map iom;
/* io map structure(ioacc.h)*/

iom.key = IO_MEM_MAP;
 iom.flags = 0;
 iom.busaddr = (long long)IA64_IOPORT(0x1f0);

/* start of register block */
 iom.bid = BID_ALTREG(dds.bus_bid, ISA_IOMEM);
 iom.size = IA64_IOPORT_RANGE(0x1f0, 8);

/* 8 registers in this block */
ioh = io_map_init(&iom, 0, NULL);

if (ioh == NULL)
dd_backout(...);

iom.busaddr = (long long) IA64_IOPORT(0x3f6);
/* start of 2nd register block */
iom.size = IA64_IOPORT_RANGE(0x3f6, 1);
/* 1 register in this block */
aioh = io_map_init(&iom, 2, ioh);
/* first mapping covers virtual page numbers
* zero and one, 4 bytes starting at 0x01f0 an
* 4 bytes starting at 0x11f4. This mapping will
* be on virtual page two, at 0x23f6.*/

The AIX 5L on IA-64_IOPORT and IA64_IOPORT_RANGE macros will be provided in ioacc.h. For illustrative
purposes, the possible system definition of the macros could be:

#define IA64_IOPORT(port) (((port & 0xFFFC) << 10) | (port & 0xFFF))
#define IA64_IOPORT_RANGE(port, num_regs) \
 (IA64_IOPORT(port+num_regs-1)—IA64_IOPORT(port) + 1)

Note that it has not been completely clarified whether ports will appear in the first 4 bytes of a page, or at their
natural page offsets. The above assumes the latter; if this is not true on the actual hardware, minor adjustments to the
macros will be needed, but the io_map_init call made by drivers will be the same.

Continuing on, the following example shows one way the IDE cylinder low register, located at 0x1f4 of ISA I/O
space in legacy mode, could be accessed. This illustrates how driver writers might need to adjust the register offsets
used from the start of register blocks to accomodate the discontigous addressing in AIX 5L on IA-64:

#ifdef __ia64
#define CYL_LOW_OFFSET 0x1004
#else
#define CYL_LOW_OFFSET 0x4
#endif

volatile char * eaddr;
 eaddr = io_map(ioh);

eaddr += 0x1f0;
/* add in the page offset for the start of the register block */

 data = *((volatile eaddr *)(io + CYL_LOW_OFFSET));
/* add in the offset from start of the register block */

Finally, the following illustrates a second kind of problem driver writers might encounter in migrating from PPC
memory-mapped I/O to the discontiguous mapping of I/O space in AIX 5L on IA-64. In this case, structure offsets
need to be adjusted:

struct at_cmd_block {

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 18

char data;
char error;
char sec_cnt;
char sec_num;

#ifdef __ia64
char pad[0x1000];
/* adjust for discontiguous ports */

#endif
char cyl_low;
char cyl_hi;
char drv_head;
char status;

};
 volatile struct at_cmd_block *reg_pointer;
 eaddr = (caddr_t) io_map(ioh);

eaddr += 0x1f0;
/* add in the page offset for the start of the register block */

 reg_pointer = (volatile struct at_cmd_block *) eaddr;
 data = reg_pointer->cyl_low;

There are additional coding techniques that could be used for I/O space register access on PPC that will need
modification on AIX 5L on IA-64, but the above should indicate the kind of adjustments necessary.

REALMEM_BID
The REALMEM_BID will still be supported in the 64-bit environment, but it will only be supported by
rmmap_create(). The new mapping service, io_map_init(), will not support REALMEM_BID. Specific functions
that previously used REALMEM_BID to access system facility space not specifically associated with any I/O bus,
such as the PAL or diagnostic tools, should convert to using the BID intended for that purpose, SYSMEM_BID.

Unaligned/String/Multiple Accesses to I/O
The 64-bit PPC architecture does not guarantee atomicity of access when performing unaligned, string, or multiple
operations. While AIX 5L on IA-64 does not provide string or multiple operations, it appears to still be subject to
the same issues on unaligned accesses. There are two issues with this when dealing with these operations to I/O (non-
system memory) space. The first is that the CPU may break up unaligned accesses into a series of smaller operations
(i.e., a non-word-aligned store may result in 4 separate byte stores). Depending on the device this could be a problem
if it cannot handle the broken up access or because the 4-byte data store is not atomic.

The second issue deals with "stuttering," or reissuing the same load or store operation. This could be caused by the
CPU initiating a non-atomic operation (such as an unaligned, string, or multiple storage access), then being
interrupted (by some non-maskable interrupt), and then restarting the entire non-atomic operation from the
beginning. This becomes a problem for I/O space if the target of the load or store is not idempotent.

On our current PPC systems, we are not subject to the latter of the two problems. If unaligned storage accesses are
being performed to I/O space today, it most likely is being broken up into multiple smaller operations. However,
with today's systems there isn't the concern for "stuttering" that there will be with future processors. Therefore, any
device driver performing these types of accesses must be fixed.

Depending on the CPU, when it encounters an unaligned operation, it can either break up the operation itself or
vector to the operating system's alignment fault handler to break up and perform the operation. The 64-bit PPC
kernel alignment handler will recognize attempted unaligned accesses to I/O space and crash the system. The AIX 5L
on IA-64 kernel, on the other hand, will not detect that the unaligned access is to I/O space, and will not crash the
system.

As a programming guideline for device driver writers, it is recommended that drivers avoid unaligned accesses to I/O
space (and, where available, similarly avoid string or multiple operations to I/O space). This is a much simpler and

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 19

safer approach than determining whether the device can correctly handle the way advanced CPU architectures can
break up and/or repeat these kinds of operations.

Other Kernel Services and Considerations

DMA
For the most part, for mainstream device drivers , there is currently no change with respect to DMA and the DMA
services. The one noticeable exception is that the busaddr parameter to D_MAP_PAGE() and D_UNMAP
_PAGE() becomes a ulong *, instead of a uint *.

There are two AIX 5L on IA-64 design points that are not yet closed, which potentially could have a minor impact
on DMA services interfaces. Additional information will be provided as soon as the final design is settled.

1. How handling contiguous physical addressing requirements by devices will be handled (e.g., rmalloc)
2. How to handle devices capable of only addressing 32 bits in systems with greater than 4GB of memory, given

the lack of TCEs in the AIX 5L on IA-64 platforms.

There is no support for pluggable ISA cards in AIX 5L on IA-64, and hence no support for ISA bus masters. Also,
the dreq_active interface is no longer supported.

If there were any drivers using the xmemdma() service (which is doubtful), they will find out that xmemdma()does
not exist in the 64-bit kernel. xmemdma64() was the bridge replacement for xmemdma() in 4.3 and will now be the
only one supported.

Finally, the interfaces designed for supporting DAC-capable PCI devices (i.e., 64-bit addressing), via the
DMA_ENABLE_64 flag to D_MAP_INIT() become defunct, since the general set of interfaces are now 64-bit
capable. Note that the DMA_ADDRESS_64_BIT flag is still important and retains its meaning that the device can
support generating a 64-bit Address.

Interrupts
There are no impacts or changes to the interrupt processing model. Note that in the 64-bit environment, any call to
i_init() without the INTR_MPSAFE flag set will return a failure. (Refer to the MPSAFE discussion under
Devswitch Interfaces.)

EPOW
The EPOW registration and processing remains unchanged. Note that whether or not the driver’s registered EPOW
handler ever gets called depends on platform capabilities. The underlying implementation may differ drastically from
PPC systems, but the abstraction presented to device drivers remains the same.

Devswitch Interfaces
Some general items to be aware of with respect to the device switch table interfaces are the parameter types. As
previously discussed, the devno parameter on each of the config(), open(), close(), read(), write(), etc. entry points
should be declared as type dev_t. This ensures the field is the correct size for the active compilation mode. In
addition, the ext parameter, or extended parameter, for interfaces such as open(), read(), write(), ioctl(), grows to a
long type in the 64-bit environment. A new typedef is provided in m_types.h, ext_t, for use in declaring the ext
parameters. Another such parameter is the arg parameter to the ioctl() entry point. To the application programming
interface, this parameter is defined as a void *. The exceptions to this are the ioctl32() and ioctl32x() application
interfaces that were created so a 64-bit application could call the ioctl() entry point of a device driver even though
the device driver was not 64-bit application safe. All 64-bit kernel extensions will be 64-bit application safe (see 64-
bit Application Support), so this becomes a moot point. Thus, each driver should make sure to declare arg
parameters as void * to get the natural growth to 64 bits in the 64-bit compilation environment.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 20

There are currently a couple of flags used in the d_opts field of the devsw structure, DEV_MPSAFE and
DEV_64BIT, which indicate that a device driver is Multi-Processor Safe and callable by 64-bit applications,
respectively. Both of these flags will remain and retain their current definition. However, in the 64-bit kernel
environment, all device drivers must be either MP safe or MP efficient. All device funneling support will be removed
from the 64-bit kernel.

Therefore, devswadd() will fail any calls to register a device switch entry that does not indicate DEV_MPSAFE.
This also applies to the interrupt handler registration as indicated in the Interrupts section earlier, regarding the
INTR_MPSAFE flag.

Also, in the 64-bit kernel environment all 64-bit kernel extensions will support being called by 64-bit applications
and 32-bit applications. The issues surrounding a 32-bit kernel extension supporting a call from a 64-bit application
dealt with the 32-bit kernel extension needing to reshape data structures passed in from the 64-bit application, and
depending on the interface, also concerned the ability to remap address spaces to gain 32-bit addressability to 64-bit
process address spaces. Once ported to 64-bit, each kernel extension's default view of any private interface data
structures match that of any 64-bit application, so the support is natural. Also there is no address space remapping
required as the 64-bit kernel/kernel extension has full natural addressability to the 64-bit application address space.
Instead, each 64-bit kernel extension will need to understand the 32-bit application's view of the shared data
structure, and be able to reshape that into something it understands. This is still easier than the 64-bit application to
32-bit kernel extension case since there is still no address space remapping necessary. The 64-bit kernel and kernel
extension have full natural addressability to 32-bit application address space as well. The existing _as_is64()
exported kernel service will still be used to distinguish whether the calling process is 32-bit or 64-bit. Please note
that if the device driver is using the macro IS64U defined in user.h that it must not define _KERNSYS. If that
happens, then the driver will end up making a direct reference to the U-block, which is a concern for updates and
future incompatibilities if the definition of the U-block were to change.

Finally, one brief point regarding the IOCINFO ioctl() operation. The devinfo structure is and will remain a fixed-
type field data structure. So, the view of this data structure from either a 32-bit or 64-bit compilation environment is
identical. If and when a device driver must support a device that causes one of these fields to overflow its 32-bit
capacity (for example, the numblks field of the disk union), that device driver will be responsible for having a new
union added to the devinfo structure that will provide a fixed-type field data structure representing the new
information as well as defining an appropriate new devtype corresponding to it.

32-bit Application Support
Full 32-bit application support is required of all 64-bit device drivers. There are no address space concerns, since
there is no address remapping required to gain addressability to 32-bit application address space. The same model
exists for direct references to application space, utilizing services like copyin(), copyout(), xmattach(), xmemin(),
xmemout(), xmempin(), etc.. 64-bit kernel extensions will need to handle the difference in data structure sizes when
shared with, i.e., passed between, 32-bit processes. Similar to what 32-bit kernel extensions had to do for 64-bit
applications, the 64-bit kernel extension will need to reshape the data structures as necessary to understand them.
The IS64U macro (via the _as_is64()) kernel service can be used to determine if a process is 32-bit.

What this means to common source device drivers that build both 32-bit and 64-bit executables is that there will
need to be #ifdef __64BIT_KERNEL paths to define the appropriate code paths for the various compilation modes.
For example, consider the following structures and code paths:

 /*
 * General Structure Definition
 */
 struct xyz {
 int jj;
 long kk;
 void * mm;
 } xyz;

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 21

 #ifdef __64BIT_KERNEL
/* Structure definition to give 64-bit extension 32-bit's view of data structure */
 struct xyz32 {
 int jj;
 __long32_t kk;
 __ptr32 mm;
 } xyz32;
 #else
/* Structure definition to give 32-bit extension 64-bit's view of data structure */
 struct xyz64 {
 int jj;
 long long kk;
 __ptr64 mm;
 } xyz64;
 #endif
 if (IS64U) {
 /*
 * If 64-bit process....
 */
 #ifdef __64BIT_KERNEL
 copyin((caddr_t)arg, &xyz, sizeof(struct xyz));

/* copyin general struct */
 #else
 copyin((caddr_t)arg, &xyz64, sizeof(struct xyz64));

/* copyin 64-bit struct */
 as_remap64(xyz64.mm, size, &xyz.mm);

/* remap the 64-bit data pointer */
 #endif
 } else {
 /* else 32-bit process...
 */
 #ifdef __64BIT_KERNEL
 copyin((caddr_t)arg, &xyz32, sizeof(struct xyz32));

/* copyin 32-bit struct */
 #else
 copyin((caddr_t)arg, &xyz, sizeof(struct xyz));

/* copyin general struct */
 #endif
 }

64-bit Application Support
Full 64-bit application support is required of all 64-bit device drivers. The definition of "full 64-bit application
support" may very well mean that your driver returns EINVAL if called by a 64-bit application and you don't
support some specific function for 64-bit apps. The general idea is that the 64-bit kernel will not "police" individual
calls through the devsw table or sysconfig() like the 32-bit (PPC) kernel does. This level of policing is being pushed
down to the individual 64-bit device drivers.

In the 32-bit kernel, sysconfig() used the SYS_64BIT bit of the command to determine if the module should be
callable by 64-bit applications. This bit is ignored in the 64-bit kernel. The device driver's entry point will need to
check whether the caller is a 64-bit application and either handle it or return a failure.

The level of policing in the 64-bit kernel will be limited to the devswadd() service. In order for the devswadd()
registration of a device driver to be successful in the 64-bit kernel environment, it must indicate full support for 64-
bit applications with the DEV_64BIT flag of the d_opts field of the devsw structure. Support for 64-bit applications
by 64-bit kernel extensions is completely natural as data structures are viewed consistently and no address remapping
is required.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 22

The model for direct references to application space is common with that of the 32-bit application space, using the
common set of services like copyin(), copyout(), xmattach(), xmemin(), xmemout(), xmempin(), etc..

Pinning Memory
With the exception of pinu()/unpinu(), the existing pin and unpin interfaces will continue to be supported and
function as is (xmempin(), xmemunpin(), pin(), unpin(), and pincode(), unpincode()). The pinu() and unpinu()
interfaces will not be supported in the 64-bit kernel. Instead, device drivers should xmattach() to the user space data
and then use xmempin() and xmemunpin(). This change can be common between the 32-bit and the 64-bit device
drivers, since the latter method is currently supported on 32-bit and will be supported on 64-bit.

Cross Memory
To the device drivers, the cross memory model appears unchanged. All of the existing cross memory services
(xmattach(), xmdetach(), xmempin(), xmemunpin(), xmemin(), xmemout()) will be supported and function as
they do today. The size and content of the cross memory descriptor (struct xmem) will be changing in the 64-bit
kernel, but the xmem structure is and should be treated as opaque.

Currently, the cross memory model can support a single segment crossing (XMEM_PROC2, for big data buffers
that span contiguous segments). In the 64-bit kernel there is no limit on the number of segment crossings supported
by the cross memory model.

Kernel extensions should always use cross memory services when dealing with a cross memory descriptor and never
attempt to interpret its contents. Client file systems have been guilty of this in the past by vm_att()'ing directly to the
subspace_id within the cross memory descriptor to gain addressibility to the address space. There are kernel services
provided , xm_att() and xm_det(), (as of AIX 4.3) that attach and detach to/from an address space described by a
cross memory descriptor that should be used for this purpose.

Error Logging
Each error template should be investigated to see if any of the detail data being logged grows in size due the 64-bit
port. If so, the driver owner has a couple of choices. One would be to update the error template to reflect the new
detail data size and define a size-invariant structure (same size in 32-bit or 64-bit) so that the same number of bytes
are logged from either the 32-bit or 64-bit driver. The second option would be to define a new error template for the
64-bit case, with the proper #ifdef's within the driver that chose the correct one.

Power Management
The initial release of AIX 5L on IA-64 will not support device driver power managment. It is unclear what changes
to the 32-bit POWER device driver power management framework (pm_register_handle, pm_planar_control, etc.)
will eventually be needed on IA-64. For the initial porting of the POWER device drivers to AIX 5L on IA-64, it is
recommended that the power management (PM)-specific functions of the driver be migrated as well. It is acceptable
to initially hide the PM-related code behind IFDEFs, to simplify testing issues until the underlying framework is
more developed.

Linking/loading
No device driver-visible changes have yet been identified in kernel extension linking and loading. It is possible that
some minor build environment changes will be needed, such as a modified way to describe a kernel extension’s
exported symbols. This will be documented when the design is completed and approved.

Packaging
AIX 5L on IA-64 packaging details are still be determined. Support for the traditional package layout in an installp
format will be provided (it still needs to be determined how the changes for 64-bit POWER packaging affect AIX 5L
on IA-64). Alternative packaging formats (such as UDI) will also be supported, but should not be used in migrating

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 23

existing POWER AIX device drivers. Additional packaging details will be documented as the design is completed
and approved.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 24

Dealing with Endianess

Byte Ordering
Endianness refers to how a data element and its individual bytes are stored (or addressed in memory). For big-endian
(BE), the lowest address is associated with the most significant (or left-most) byte of a multibyte value, while a little-
endian gives the lowest address to the least significant (or right-most) byte of a multibyte value. In general, bit zero is
associated with the most significant bit (MSB) for BE; but with the least significant bit for LE.

A 4-byte word with LE and BE representations are shown to illustrate that the data itself in a word are the same in
both cases (see Figure 1); while the byte address associated with each data byte is different. Bytes are addressed in
an opposite direction and the rest remains the same.

Figure 1. 4-byte word with LE and BE respresentations

Now, let’s look at a more complicated case of a 64-bit double-word with multiple data elements. In Figure 2,
variables a, b, and c all are located at the same addresses 00, 04, and 06, respectively, in both LE and BE cases. Data
elements and the individual bytes within a data element are stored in a consistent left-to-right order for BE. For LE,
on the other hand, data elements are stored in a right-to-left order; while data bytes within a data element remain in a
left-to-right order. This can be confusing, particularly in reading the memory dump on a little-endian machine.

Figure 2. Data Elements with the Same Address in LE and BE Storage Models

10 11 12 13
M
S
B

L
S
B

Byte
Address 00 01 02 03

Big-Endian

10 11 12 13
M
S
B

L
S
B

Byte
Address 03 02 01 00

Little-Endian

M
S
B

B y t e
A d d r .

1 0 1 1 1 2 1 3

0 0 0 1 0 2 0 3

B i g E n d i a n

14 1 5 1 6 1 7

0 4 0 5 0 6 0 7

 a b c

M
S
B

B y t e
A d d r .

1 6 1 7 1 4 1 5

0 7 0 6 0 5 0 4

L i t t l e E n d i a n

10 1 1 1 2 1 3

0 3 0 2 0 1 0 0

 a c b

L
S
B

L
S
B

struct example {
 int a;
 short b;
 short c;
};

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 25

Figure 3 summarizes the byte ordering and addressing attributes of LE and BE storage models. In Figure 3, each data
element has the same address in either LE or BE modes, e.g., variables a, b, c, d, e, and f, are located at the addresses
00, 08, 0C, 10, 18, and 1C, respectively.

Figure 3. Data structure in BE and LE

struct {
long a = 0x1112131415161718; // doubleword
short b = 0x1920; // halfword
int c = 0x21222324; // word
char d[7] = ’A’,’B’,’C’,’D’,’E’,’F’,’G’; // byte array
short e = 0x2526; // halfword
int f = 0x27282930; // word
} s;

Word
Address

11
00

12
01

13
02

14
03

18
07

15
04

16
05

17
06

17

19
08

20
09

0A

0B

21
0C

22
0D

23
0E

24
0F

'G'
1615

'E'
14

'D'
13

'C'
12

'B'
11

'A'
10

6356484032241680

00

08

10

Big-Endian

'F'

MSB LSB

18 19 1A 1B 1C 1D 1E 1F

25 26 --- --- 27 28 29 30
18

Word
Address

11
07

12
06

13
05

14
04

18
00

15
03

16
02

17
01

'A'
10

21
0F

22
0E

23
0D

24
0C

0B

0A

19
09

20
08

'B'
1112

'D'
13

'E'
14

'F'
15

'G'
16

17

0816243240485663

00

08

10

Little-Endian

'C'

MSB LSB

2625------3027 28 29
18191A1B1C1D1E1F 18

Word
Address

18
00

17
01

16
02

15
03

11
07

14
04

13
05

12
06

17

20
08

19
09

0A

0B

24
0C

23
0D

22
0E

21
0F

'G'
1615

'E'
14

'D'
13

'C'
12

'B'
11

'A'
10

6356484032241680

00

08

10

Little-Endian

'F'

LSB MSB

1F18 19 1A 1B 1C 1D 1E

2526 --- --- 2728293018

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 26

The byte order within a multibyte data (e.g., variables a, b, c, e, and f) in LE mode is in the reverse byte order of the
data in BE mode. For a single-byte data type—i.e., the character array d[]—the endianness is of no consequence.
Characters (or other single-byte data types) are at the same byte locations in LE or BE mode. Note that long integers
are 64 bits in Itanium’s 64-bit environment, and each data element is aligned at its natural boundary (at multiples of
its data size), with padding if necessary, to avoid misaligned data accesses.

Figure 3 also shows two representations of the LE data storage model. On the left, the addresses of individual bytes
remain the same as those in the BE case by reversing the significance of the byte locations. The right presents the
addresses in a reverse order, keeping the significance of byte locations the same as that of the BE model. Typically,
the right one is used to represent a LE storage model.

It is clear that byte ordering is not an issue if a program that writes a word to memory then reads the same location as
a word—it sees the same value if a variable is referenced consistently. If a program tries to read the same value one
byte at a time (when a word is written), however, it may get different results depending on whether the processor is
BE or LE—the bytes may appear to be "reversed" inside a multibyte data.

Porting
In general, a program module is endian-neutral—the compilation will resolve the differences in byte ordering
between LE and BE, if multibyte data elements are not referenced as individual bytes (or its proper subset) or vice
versa. On the other hand, using a union data structure, casting a data element, or manipulating bit fields can reference
individual bytes in a multibyte data element in a reversed byte order. This can be problematic when porting code
between LE and BE machines. Another source of endian dependencies comes from sharing data across platforms.
Typically, data are converted to a canonical data format for sharing to avoid endian dependency. Similarly,
endianness problems result when interfacing with external devices (these can typically be solved by hardware and/or
software solutions).

It is suggested in [1] that running “lint” or other programming aids can point out dubious uses of C construct. Other
than that, there is no real magic in identifying and changing code automatically to correct endianness problems. In
this section, several code examples are illustrated to show how to look for code patterns that can have potential
endianness problems. In some cases, changes for making the code endian-neutral or endian-aware are suggested.

Data Type Mismatch
Data type mismatch is a major source for endian dependency. A data should be treated at runtime as defined by its
data type to avoid endian dependency problems. These can be discovered by inspection or lint. Using lint can
indicate potential castings that are hiding endian dependency problems.

For example, a 4-byte integer should be treated by the processor as an indivisible data element of integer data type.
The individual bits and bytes in the integer are viewed in opposite orders by LE and BE. Accessing the integer as a
smaller unit can produce different results by LE and BE processors, as shown in the next code example.

int a = 0x11121314;
char b, *ptr;
...
ptr = (char *) &a; // pointer ptr points to a
b = ptr[1]; // b is 0x13 in LE and 0x12 in BE
...

The code is changed as follows to make it endian-aware for porting.

#define BIG_ENDIAN 0
#define LITTLE_ENDIAN 1
int a = 0x11121314;
char b, *ptr;
...

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 27

char endian() {
short t = ‘0x0001;
return *((char *) &t); //return 00 for BE and 01 for LE

}
...
ptr = (char *) &a; // pointer ptr points to a

 if (endian() == BIG_ENDIAN) b = ptr[1]; else b=prt[2];
// b is 0x12 in BE and LE
...

In this case, the endian() routine is used to detect endianness at run time. This is necessary for a bi-endian machine
which supports both LE and BE data storage models dynamically. However, a price in performance is paid for the
flexibility in performing runtime checking. It is desirable in porting AIX to IA-64 that conditional compilation, by
predefining data storage model of LE or BE, be used to avoid performance penalties at runtime.

A better solution to the above problem would be to use an endian-neutral solution.

/*
 * Macro to get bits 16-23 (in terms of the significance of bit positions) from
 * an integer value done by shifting the bits down to the zero bit position
 * and then anding the most significant 24 bits off.
 */

#define INTB16TO23(a) ((a >> 16) & 0xff)
...
b = INTB16TO23(a); // b is 0x12 in BE and LE
...

In this case, since the code wanted bits 16–23 to be stored in b, using the shift operation lets the processor handle the
multibyte data as a unit and perform the appropriate operations.

Another case of endian dependency comes from referencing multiple data elements as a single, large data element, as
illustrated in the next code example.

short a[2];
int b;
...
a[0] = 0x1112;
...
a[1] = 0x1314;
...
b = *((int*) &a[0]); // b is 0x11121314 in BE and 0x13141112 in LE
...

Data type mismatch can also occur when using a union data structure. Union allows variables with multiple data
elements having different types to share a common storage area to save memory. But LE and BE can see different
data values if the same storage area is used as one data type for writing and the other for reading or vice versa.

union short_or_int {
short a[2];
int b;

};
short c;
...
short_or_int.b = 0x11121314;
c = short_or_int.a[0]; // c is 0x1112 in BE and 0x1314 in LE
...

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 28

At issue, again, is that LE and BE address the short data short_or_int.a[] in the union in opposite orders, although
the integer short_or_int.b remains the same in the two storage models.

Overlaid Data (with Bit Fields)
In some code, overlaid data, which has more than one data type in a data element, may be used to encode multiple
pieces of information within a data element to save memory.

For example, it is typical that a descriptor data structure (in device drivers) uses a single word for both flags and a
pointer. One possibility is that a descriptor word contains flags in the most significant byte and a 16-bit or 24-bit
pointer (address) in the least significant bytes.

Another example is that a word, e.g., int, can be used to encode data for efficient use of memory space. The next
code example shows a 4-byte word used for encoding personal data.

struct personal_data{
unsigned age:7; // age from 0 to 128
unsigned height:7; // height from 0 to 128
unsigned gender:1; // male / female
unsigned pad:17; // aligned to a word boundary

};

No changes are required if this structure is not used as an interface between entities that are different in endianness
and if the data is referenced by the appropriate tags. If the data is not referenced by the appropriate tag, but is instead
referenced by overlaying another type, then problems similar to the previous section can occur. These are easily
handled by using the real tag for the structure element or using a more generic method of referencing the data.

The problem with using the bit-field structure as an interface between entities with different endianness is that not
only do the bit-fields need to be reversed, but the data units subdivided by bit-fields may need to be byte swapped to
get a successful conversion.

To refer to the same encoded data in our example, the data structure needs to be changed, as follows, in porting from
a BE to a LE machine.

struct personal_data{
unsigned pad:17; // aligned to a word boundary
unsigned gender:1; // male / female
unsigned height:7; // height from 0 to 128
unsigned age:7; // age from 0 to 128

};

After swapping the positions of the bit-fields within the structure, the whole integer would have to be byte swapped
to get a value that could be used on the BE systems. The reversals are required due to the way our compilers generate
the bit packed structure. The gcc compiler on a LE platform packs from LSb to MSb. The gcc compiler on a BE
platform and the AIX compiler generate from MSb to LSb. So, in this example, we reverse all the fields so that the
LE compiler while packing from LSb to MSb generates a structure that is packed from MSb to LSb like the BE
compiler.

When looking closer at this code example, however, you’ll note that the reason for the code change in porting is for
sharing data in between LE machine and BE machines—data stored by a machine is shared by an opposite endian
machine. The code does not need be changed in porting to AIX if the “personal_data” is not stored by PowerPC for
IA processors or vice versa. Though bit fields are stored and referenced in opposite orders on a LE and a BE
machine, they should not care if each bit field is addressed as defined. Note that one exception is when a bit field is
used to map data for interface purposes and that interface requires a certain data format.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 29

Exchanging or Sharing Data
Another class of endian problems is code that is used as an interface between systems of varying endianness; for
example, device drivers that use BE data that is byte swapped to LE data for use with a LE device/adapter. Also, the
TCP/IP/UDP/RPC protocols require that data be sent in “network byte order” or BE. These are examples of
canonicalizing data. The idea is that an interface exists that has defined byte ordering for the data used by that
interface. In the device driver case, the PCI device defines LE as the canonical form in most cases. The networking
code has chosen BE as its canonical form.

In general, this is a problem for communicating between devices (device driver to device/adapter interactions),
network communications, or applications that share data that is granulized in chunks bigger than a byte. For example,
a database, stored binarily, shared between an AIX POWER (BE) system and AIX 5L on IA-64 (LE) system could
have problems because the data would not be byte swapped appropriately for one of the systems.

These problems are typically handled by the application or data sender canonicalizing the data. The data sender
usually performs some operations on the data to convert the data to the canonical form and then sends the data. The
data receiver reads the data and performs some operations to convert the data from canonical form to a usable form.
In the case of the networking code, the data receiver may be either LE or BE.

For example, IPv4 addresses and TCP port values in the TCP/IP header are manipulated as 32-bit unsigned integers
and 16-bit unsigned integers, respectively. These need to be in host endianness (meaning the endianness that the
system is running under) because math operations are performed on them. These need to be converted to BE before
sending and must be converted from BE when receiving. To do this conversion, the code defines a set of routines
that take a value and convert from host endianness to BE form or vice versa. In fact, these are POSIX defined. They
are the htonl, ntohl, htons, and ntohs routines (s refers to short and l refers to a 32-bit quantity). In AIX, these are
macros that pass through and do nothing. In porting to IA-64, these routines need to swap data bytes because the host
is now in LE. Note that endianness is usually referred to as order in the documentation for these routines.

The application programs must choose their own canonical form, decide that data will not be shared, or provide
utilities to convert between the forms. XDR (eXternal Data Representation) is one of the protocols that provide a
canonical data format for sharing data across heterogeneous systems. At this time, there is no plan for sharing system
data between an AIX BE system an AIX LE system.

Endianness issues in interfacing to an external I/O device can be resolved by various hardware and software
solutions—which complicates the solutions in porting device drivers from a PowerPC to a IA system. Though
PowerPC supports the BE data storage model, its I/O busses, whether IBM’s own MicroChannel or the latest PCI,
are LE-based. In RS/6000 systems, the I/O controller, which is the bridge between system bus and its I/O buses,
provides a data steering function to convert data from LE to BE (and vice versa) in reading from or writing to a
device. This data steering function is applied to both DMA (Direct Memory Access) and PIO (Program I/O) or
MMIO (Memory-Mapped I/O) data. In essence, the I/O controller treats data as byte streams such that byte 0 in the
system goes to byte 0 in I/O, byte 1 to byte 1, and so forth. This brings up an interesting scenario—bytes in multiple-
byte data need to be swapped before being passed to the I/O. In porting to IA-64, these multibyte data elements need
to be “un-swapped”.

In AIX, several PIO macros are provided to reverse the byte order of the data used when interfacing with a BE
device. (Most of the I/O devices are LE based; while there are BE based devices, the bus is LE.)

To port AIX to Itanium, it is suggested that endian-aware routines/macros be defined to consolidate the driver-to-
device interface. These routines/macros will present data in the correct format as governed by endianness of its
device, I/O bus, and host.

Most of the endian dependencies in code result from referencing data differently from its natural, defined data type.
For example, addressing internal bytes of a multibyte data element, referencing multiple data elements as a single,
large data element, packing multiple bit field in a data element, casting data, and using union data structure can

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 30

potentially produce erroneous results and/or crash the system when the code is ported to an opposite-endian
platform.

Another source of endian dependency is in assuming the endianness of the runtime platform. For example, AIX
assumes that its processor supports the BE storage model. In interfacing with its PCI devices, which support the LE
data storage model, AIX may call endian conversion routines to reverse the byte order in a data structure.

When porting to an opposite-endian platform, recompilation typically generates code with correct byte ordering.
However, it is likely that some code with endian dependency will need to be identified (by inspection or using
programming aids such as “lint”) and changed manually before all endian related issues can be resolved. In porting
AIX code, the machine-independent code should be changed to avoid endian dependency; while the machine-
dependent portion of the code may be rewritten to support LE if the endian dependency can not be resolved easily.

You can choose between changing the data structure and changing the code referencing the data structure in making
code endian-neutral or endian-aware. It is generally a good practice to keep the data structure and change the code
referencing the data.

The attributes of the LE and BE storage models are summarized as follows:

• The BE addresses individual bytes in a multibyte data element from Most Significant Byte to Least Significant
Byte (from left to right), similarly to how data elements are referenced (from left to right).

• For LE, data elements and individual data bytes within a data element are referenced in opposite directions.
• The starting address of a data element in both LE and BE storage models remains the same across the two data

storage models.
• Individual bytes within a multibyte data element are addressed in a reversed order between a BE and a LE data

storage model.
• For single-byte data types, endianness is of no consequence—characters (or other single-byte data) are at the

same (starting) addresses in LE or BE mode.
• Endianness is of no consequence if a data element is referenced consistently using the same data type as defined.
• The endian dependency becomes a potential problem if internal bytes and/or a proper subset of a data element

are referenced individually and/or multiple data elements are referenced as an aggregated, single data element.
• Packing bit fields into a single data element can be problematic if the data needs to be stored to a persistent

storage device shared by an opposite-endian machine. But it is not an issue if the data is not shared between BE
and LE machines. The internal locations of bit fields in a data element are of no consequence between the two
data storage models if the bit fields are referenced as defined. Though code will work correctly (in its
endianness), comments associated with code may need to be changed to present the internal bit patterns in a
reversed order.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 31

Converting 32-bit Applications to 64-bit Applications
Before going through the effort of converting an application from 32-bit to 64-bit, it is important to understand
whether the conversion will lead to a measurable benefit in scalability and performance. To make that determination,
let’s first understand the benefits of 64-bit systems and what changes to the application are needed to take advantage
of these benefits.

The Intel Itanium chip is an implementation of the Intel IA 64-bit architecture, and AIX 5L on IA-64 is a 64-bit
kernel. This combination offers software developers the following advantages not available on 32-bit systems:

• Full 64-bit addressing that expands the addresses available to the application far beyond the 4 GB limit on 32-bit
systems.

• 64-bit data elements (integers) with instructions for performing efficient arithmetic computations.
• Support for large data structures and executables.
• Support for physical memory beyond 4 GB.
• Support for larger file sizes.
• Greater scalabilty of system data types such as time_t, date_t, …

Software developers must then determine if the application:

• Can utilize the large address space for more buffer pool, for mapping files into memory, for shmat and mmap
• Can benefit from more physical memory (>4 GB) and, if so, is the user of the application likely to implement it

on a system with more than 4 GB?
• Needs 64-bit integers.
• Needs larger files and data structures than can be supported on 32-bit systems.

Overview
Most applications are written in one or more high-level languages. Since applications written in assembly or macro
assembly will need complete rewrites, porting issues will be discussed in terms of C. Variations of the problems
occur with other languages.

Most well-written programs will compile and run without change, where "well-written" implies the use of good
programming practices, including:

• Conformance to the ANSI/ISO C standard
• Portability considerations high in the design, implementation, and maintenance phases of the software cycle
• Use of prototyped functions declarations throughout

In reality, portability issues are often the first to be sacrificed to meet completion schedules or are forgotten in the
software maintenance cycle. In other cases, production code is written without regard for portability. The base of
much of the C source code to be ported to 64-bit AIX 5L on IA-64 has existed for a long time and been through
many maintenance and enhancement cycles. During these processes it is quite easy for assumptions, implicit or
explicit, about either absolute or relative sizes of int, long, and pointer data types to become part of the C source
code.

These assumptions, in combination with the changes in size and alignment of basic data types, will be the source of
most problems porting existing source code to a 64 bit system. This section details the areas where problems may
occur and explain how the C compiler in combination with lint can be used to isolate and correct problems.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 32

C and C++ Data Type Size and Alignment Issues
Support for a 64 bit address space and larger scalar arithmetic ranges in LP64 mode naturally requires changes in at
least some of the basic C data types. As shown in the following table, pointers, longs, and long long ints in LP64
mode are 8 bytes (64 bits). The alignment restrictions for these data types, as well as the size and alignment of long
double floating point types, have changed for performance considerations. It should be noted that the rules for size
and alignment for ILP32 are the same as those for IA-32.

AIX on PowerPC AIX 5L on IA-64 on Itanium
C and C++
Data Type

32-bit Source
Size/Alignment

64-bit Source
Size/Alignment

ILP32
Size/Alignment

LP64
Size/Alignment

char 1/1 1/1 1/1 1/1
short 2/2 2/2 2/2 2/2
int 4/4 4/4 4/4 4/4
long 4/4 8/8 4/4 8/8
longlong 8/8 8/8 8/8 8/8
pointer 4/4 8/8 4/4 8/8
float 4/4 4/4 4/4 4/4
double 8/4 8/4 8/8 8/8
longdouble 16/16 16/16 16/16 16/16
*Note that long long has a size of 8 bytes and is aligned on 8 byte boundaries in both 32-bit and 64-bit modes.
Also note that integrals and floats are aligned according on their natural boundary (same as their size) which is
different than the rules for IA-32. Applications requiring the IA-32 alignment rules can use the
 “#pragma align=ia64unix386”. However the size of long double will remain 16 bytes even when the pragma is
used.

In porting 32-bit applications to 64-bit, some of the problems that will be encountered are related to:

• sizeof(int) != sizeof(long)
• sizeof(void *) != sizeof(int)
• objects change size
• lack of prototyped function declarations

Sizeof(int) != Sizeof(long)
In ILP32 mode, both "int" and "long int" are 32 bits in size. Because of this similarity, these types may have been
used interchangeably in production code. As shown in the table above, in LP64 mode, long data is 64 bits in length.
A general guideline is to review existing use of long data types throughout the source code. If the values to be held in
such variables, fields, and parameters will fit in the range of (2Gig -1) to -2Gig or 4Gig to 0, then it is probably best
to use int or unsigned int, respectively.

Truncation of 64-bit Value When Assigned to a Smaller Type
The assignment of a long int value to a smaller type will result in truncation of the 64-bit value. This may be exactly
the intention of the code, but where int and long have been used interchangeably, this truncation may be an
unexpected source of problems.

1 int i1, i2, i3;
2 long l1, l2, l3;
3
4 extern long retlong(int);
5
6 void long2int(void) {
7 /* implicit truncation on the next 3 statements */
8 i1 = l1; /* 64 bit value => 32 bit "i1" */
9 i2 = i2 * l2; /* 64 bit expression value => 32 bit "i2" */

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 33

10 i3 = retlong(l3); /* 64 bit "l3" passed to 32 bit prototyped param
11 64 bit return value => 32 bit "i3" */
12
13 i1 = (int) l1;
14 i2 = (int) (i2 * l2);
15 i3 = (int) retlong((int)l3);
16 }

Recommendation
Examine all instances of narrowing assignment, particularly where the source is of type long or unsigned long, and
decide whether such narrowing may be a problem or is intended. Use an explicit cast at the point of an intended
narrowing conversion to indicate to the compiler and to lint that such narrowing is being done by design.

lint Assistance
Lint will report implicit narrowing integral conversions associated with the = operator, as shown in the following lint
output.

 assignment causes implicit narrowing conversion
 (8) int = long
 (9) int = long
 (10) int = long

Explicit Cast Improperly Applied
Explicit narrowing casts should be used on expressions, not operands. In the following example, in LP64 mode the
compiler and lint will warn of the implicit narrowing of the long expression "l1 / i1" to an int in statement 6. Line 8
shows a similar statement with an explicit cast which will suppress the lint warning, but changes the result of the
expression. The cast is applied to the long variable before the division. Statement 10 illustrates a properly applied
explicit cast that will yield identical results with statement 6.

1 int i1;
2 int r1, r2, r3;
3 long l1;
4
5 void foo() {
6 r1 = l1 / i1; /* gets compiler and lint warning */
7
8 r2 = (int)l1 / i1; /* l1 is truncated to 32 bits before divide */
9
10 r3 = (int) (l1 / i1); /* the result of the division is truncated to
11 32 bits */
12 }

Recommendation
Narrowing casts should be applied to expressions.

lint Assistance
Lint will flag the statement on line 6 as containing an implicit narrowing conversion.

 assignment causes implicit narrowing conversion
 (6) int = long

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 34

Pointer to an int Icompatible with a Pointer to a long
Pointers to different unqualified types are not compatible in C, and a pointer to one type should not be assigned to a
pointer of another type. For historical reasons, however, most compilers do not stringently enforce this restriction
and comply with the ANSI/ISO C Standard by issuing a warning. In source code where int and long have been used
interchangeably, pointers to int and long may have also been used interchangeably. In LP64 mode, these point to
objects of different size and subsequent dereference of such a pointer will clearly result in undefined behavior.

 1 long *ptrl1, *ptrl2;
 2 int *ptri1, *ptri2;
 3
 4 extern foo_int(int *);
 5 extern foo_long(long *);
 6
 7 void bar(void) {
 8
 9 ptrl1 = ptri1;
 10 ptri2 = ptrl2;
 11
 12 ptrl1 = (long *)ptri1;
 13 ptri2 = (int *)ptrl2;
 14
 15 foo_int(ptrl1);
 16 foo_long(ptri1);
 17 }

Both the C compiler and lint report the incompatibility of pointer assignments in statements 9, 10, 15, and 16 in the
example above. In addition to the obvious object size mismatches that would occur if these pointers were
dereferenced, the alignment requirements for int and long are different in LP64 mode. If a pointer to long is used to
reference a memory address that is not 8-byte aligned, an alignment fault will occur. This will, in turn, require
intervention by the operating system and degrade application performance.

Lines 12 and 13 in the above example, while valid C code, still present the same problems as lines 9 and 10. The
explicit casts have probably been introduced into the source code to quiet the C compiler and lint. Use of lint with
the -p option to select portability checking will flag these statements for review.

Any pointer type may be assigned to or from a void *. Any code which effectively assigns an int * to a long *, or the
reverse, through an intermediate void * variable or function parameter may exhibit the undefined behavior possible
in the above example.

Recommendation
Examine all instances of incompatible pointer assignments, particularly those involving a long * data type. The type
of the object pointed to should be made consistent, and that choice should be based on the range of values to be held
by the object.

For cases where the types pointed to are intentionally different, as with char * pointers returned from older memory
allocation or memory management routines, use an explicit cast to indicate to the compiler and to lint that this is
intentional. A better solution is to bring the code up to ANSI C specifications and use void * for generic pointers.
Remember to consider any alignment issues.

lint Assistance
In addition to flagging the incompatible pointer assignments as the compiler does, lint also notes that there is a
potential alignment issue with the explicit cast of an int * to a long * in statement 12.

(9) Assingnment type mismatch
(10) Assignment type mismatch

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 35

(15) Argument is incompatible with prototype: arg #1
(16) Argument is incompatible with prototype: arg #1

 pointer cast may result in improper alignment
 (12)

Running lint with a "-p" option will flag all pointer conversions, excluding conversions to or from void *, for review.
 pointer casts may be troublesome
 (9) (10) (12) (13)
 (15) (16)

Lack of Prototyped Function Declarations in Scope of Call Statements
Passing arguments to a function is essentially the assignment of values to the formal parameters of the called
function. For calls to functions with a prototyped declaration in scope, these assignments have implicit conversions
where argument types differ from the corresponding formal parameter type. For calls to functions lacking a
prototyped declaration in scope, default argument promotions are performed on each argument. For integer data
types that are 32 bits or less in size, the integral promotions will yield 32-bit int or unsigned int types. If these 32-bit
values are used as 64-bit values by the called function, the behavior, according to the ANSI/ISO C Standard, is
undefined. This applies to both ILP32 and LP64 compilation modes.

The IA-64 calling conventions state that integral scalar parameters smaller than 64 bits are placed in the least
significant bits of a 64-bit argument slot, padded on the left; the contents of the padding are undefined. Passing a
non-64-bit value to a function that will use the information as a 64-bit data type will result in using undefined bits.
While some versions of the C/C++ compiler, particularly with optimization disabled, may sign or zero extend
arguments to 64 bits, this behavior is not guaranteed.

A similar problem will occur with a function returning a 64-bit value and no prototyped function declaration visible
at the point of call. The implicit return type is int and the callee will only expect a 32-bit value from the function
called. The high order 32 bits of the return value are truncated. Note that use of implicit types is nonstandard for C++
and being considered for C by the ANSI/ISO standardization committees.

The following example illustrates various forms of external function declarations that appear in existing code, from
non existent to prototyped. The calls to functions func1() and func2() exhibit both problems:

• Only 32-bit values are passed as arguments; the high order 32 bits of the argument are undefined.
• Only 32 bits of the return value are used following the function call.

The call to function func2_A() assumes an implicit int return type as happens in the previous two calls. The call to
function func3() in the presence of a fully prototyped function declaration will correctly pass a sign extended 64-bit
argument and handle a 64-bit return value.

argsret.1.c:
1 extern func2();
2 extern func2_A(long);
3 extern long func3(long);
4
5 static short s;
6 static int i, j;
7 long l1, l2, l3;
8
9 void foo () {
10 l1 = func1(s); /* no function declaration visible */
11 l2 = func2(i); /* implicit return type & old style param list */
12 l2 = func2_A(i); /* implicit return type */
13
14 l3 = func3(j);

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 36

15 }

argsret.2.c:
1 extern long l1, l2, l3;
2
3 long func1 (arg)
4 long arg;
5 {
6 return arg * l1;
7 }
8
9 long func2 (arg)
10 long arg;
11 {
12 return arg * l2;
13 }
14
15 long func2_A (long arg) {
16 return arg * l2;
17 }
18
19 long func3 (long arg) {
20 return arg * l3;
21 }

Recommendation
Prototyped function declarations should be visible at all call sites, particularly for functions with 64-bit parameters or
64-bit return types. This applies to ILP32 mode as well as LP64 mode. Both the compiler and lint should be used to
locate all places where:

• Functions appear to be declared implicitly
• Functions are declared with an "old-style" parameter list
• Functions appear to have an implicit return type
• lint reports that function types or arguments appear to be declared or used inconsistently across source files.

The combination will clearly locate problems in K&R or ANSI C source code, and once corrected for LP64 mode,
will also work in ILP32.

lint Assistance
If lint is run on all source files that make up a binary, it will flag:

• Implicitly declared functions (at the point of call)
• Functions declarations with "old-style" parameter lists (flagged at the point of call)
• Functions with an implicit return type of int argument types used inconsistently
• Function return types used or declared inconsistently

argsret.1.c
(1) no type specifiers present
(2) no type specifiers present
implicitly declared to return int
(10) func1 called lacking visible prototype declaration
(11) func2
 argsret.2.c: value type used inconsistently

 func1 argsret.2.c(5) long () :: argsret.1.c(10)
int ()

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 37

 func2 argsret.2.c(11) long () ::
argsret.1.c(11) int ()
 func2_A argsret.2.c(15) long () ::
argsret.1.c(12) int ()

 value type declared inconsistently
 func2 argsret.2.c(11) long () ::
argsret.1.c(1) int ()
 func2_A argsret.2.c(15) long () ::
argsret.1.c(2) int ()

 function argument (number) used inconsistently
 func1 (arg 1) argsret.2.c(5) long :: argsret.1.c(10)
int
 func2 (arg 1) argsret.2.c(11) long ::
argsret.1.c(11) int

Integer Expression with Potential Overflow Is Converted to a long
Arithmetic expressions are evaluated following the usual arithmetic conversions of all operands to a common type.
The type of the expression is this common type. For an expression containing integral operands, that implies that
small operands will be converted to int as needed to represent all values of the original type. The common type will
only be larger than an int if an operand of the expression is an unsigned int, long, or unsigned long. What this means
for LP64 mode is that expressions not containing a long or unsigned long type will be evaluated in terms of 32-bit
values and yield a 32-bit result.

The following example illustrates an instance where in LP64 mode the actual results may not be what the user
desired.

1 int a, b;
2 long l;
3
4 void foo (void) {
5
6 l = a * b; /* 32 bit multiply with potential truncation */
7
8 l = (long) (a * b); /* 32 bit multiply with potential truncation */
9
10 l = (long)a * b; /* 64 bit multiplication—no truncation */
11 l = a * (long)b; /* 64 bit multiplication—no truncation */
12 }

If the user intended to get a 64-bit result from the multiplication, lines 6 and 8 are incorrect. Both source statements
contain a 32-bit multiplication with the result truncated to 32 bits and cast, implicitly in line 6, to a 64-bit long value.
Statements 10 and 11 show the correct way to get a 64-bit multiplication of two smaller types. By casting either
operand to a long prior to the multiplication, the other operand is implicitly cast to a long.

Recommendation
To have integral expressions produce 64-bit results, at least one of the operands must have a data type of long or
unsigned long. If necessary, an appropriate cast to long or unsigned long should be applied to one of the operands.
That cast will have the effect of percolating up the expression tree to yield a 64-bit result.

A cast applied to an expression of int or unsigned int type, implicitly or explicitly, will only yield a 64-bit sign or
zero extended representation of the 32-bit value.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 38

Untyped Integral Constants Are int by Default
To be more specific, the C Standard states that the type of an integer constant, depending on its format and suffix, is
the first (smallest) type in the corresponding list which will hold the value. The quantity of leading zeros does not
effect the type selection.

unsuffixed decimal number int, long int, unsigned long int

unsuffixed octal or hexadecimal number int, unsigned int, long int, unsigned long int

suffixed by u or U unsigned int, unsigned long int

suffixed by l or L long int, unsigned long int

 suffixed by both u or U and l or L unsigned long int

Code may behave differently when compiled for LP64 mode than when compiled for ILP32 if it:

• Does not take into consideration that integral constants may be represented as 32-bit types even when used in
expressions with 64-bit types

• Assumes that long or unsigned long data is 32 bits in length
• Depends on specific behavior at an assumed data type length

The following example has several instances where code may not behave as expected.

Case number 1 is a special form of an integer expression with overflow being used in a 64-bit expression. The two
constants in line 7 are 32-bit integer constants, and the integer multiplication results in a 32-bit overflow with the
truncated folded constant value of 1,658,683,392 added to "l2". By using the type suffix "L" to specify a long type
on at least one of the constants, as shown in line 9, the multiplication will be done with 64-bit constants. Similarly,
either constant could have been explicitly cast to a type of long.

Case 2 illustrates a hexadecimal constant with the 2**31 bit set. Because the significant bits of the constant in line 15
will fit into 32 bits, it has a type of unsigned int. The bitwise complement will yield an unsigned int constant of value
0x7fffffff. In ILP32 mode, the assignment and operator would effectively turn off the 2**31 bit. In LP64 mode, the
unsigned int would be converted to a long with the value 0x000000007fffffff; effectively turning off 33 bits of the
value on "l1". Line 16 would have the same result since leading zeros are insignificant in determining the data type
of the constant. Lines 18 and 19 of the example show use of either an explicit cast or a type suffix, respectively, to be
certain that the constant is treated as a 64-bit value. These two lines will turn off the 2**31 bit in both LP64 and
ILP32 mode.

In case 3, the constant is a 32-bit unsigned int with a value of 4,294,967,295 in both ILP32 and LP64 mode. The
addition is done as an unsigned long, which is cast to a type long. In ILP32, the result has a value of l1–1 because of
the truncation to 32 bits. In LP64 mode, the addition result is a 64-bit long with a value of l1 + 4,294,967,295.

Case 4 is an example of code that presumes to know the number of bits in a long data type. The code is attempting to
extract bits 11–26 from the long variable l2 as a signed quantity. The left shift in line 34 is depending on truncation
occurring at bit 32 and while the code will work in ILP32 mode, it will not port to LP64 mode. Code which assumes
to know the size of any data type other than char is not portable. Code that assumes the size of a long or unsigned
long data type will certainly be a problem porting to LP64 mode. Line 36, where

8 = number of bits per char and should be represented as an architecture dependent #define
27 = one more than the highest bit desired in the result
16 = size of the field being extracted

will yield identical results in both LP64 and ILP32 modes.

1 long l1, l2;
2

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 39

3 void foo(void) {
4
5 /* case 1—constants are int.
6 */
7 l1 = l2 + 20000000 * 30000000; /* 32 bit multiplication. */
8
9 l1 = l2 + 20000000L * 30000000; /* 64 bit multiplication. */
10
11
12 /* case 2—constant is an unsigned int. leading zeros are not
13 ** significant.
14 */
15 l1 &= ~(0x80000000); /* turns off left most 33 bits. */
16 l1 &= ~(0x0000000080000000); /* turns off left most 33 bits. */
17
18 l1 &= ~((long)0x80000000); /* turns off bit 2**31 */
19 l1 &= ~(0x80000000L); /* turns off bit 2**31 */
20
21 /* case 3—code depending on truncation at 32 bits on overflow.
22 */
23 l1 += 0xffffffff; /* l1 = l1—1 in ILP32 mode on
24 2's complement system */
25 /* l1 = l1 + 4,292,967,295
26 in LP64 mode. */
27
28 /* case 4—assuming that the size of a long is 32 bits and depending
29 ** on truncation of bits at 32 and beyond on shift left.
30 */
31 /* isolating bits 11 to 26 as a signed number—bit 0 is least
32 ** significant bit.
33 */
34 l1 = (l2 << 5)>> 16; /* depends on truncation at bit 32 */
35
36 l1 = (l2 << (8 * sizeof(l2)- 27))>> (8 * sizeof(l2)—16);
37 }

Recommendation
Usage of all constants including symbolic constants established with preprocessor #define statements should be
reviewed. Special attention should be given to:

• long or unsigned long expressions containing constants used in integer subexpressions which may overflow the
maximum or underflow the minimum values expressible in 32 bits.

• Expressions containing octal or hexadecimal constants whose high order bit is 2**31.
• Expressions depending on truncation at bit 32 on an overflow.
• Left shift expressions that assume truncation at bit 32.

lint Assistance
Unfortunately, other than the warning about overflow in the constant folding on line 7, lint cannot assist you in
locating porting problems of these types.However, there is compiler flag -qlonglit that will make default integral
literal of type long instead of int.

Sizeof(void *) != Sizeof(int)
As the term LP64 implies and the table illustrates, in LP64 mode, pointers are 64 bits in length and aligned on 8-byte
boundaries. This change in size will present a problem when porting existing ILP32 code to LP64 if:

• Pointers are converted to int or unsigned int with the expectation that the pointer value will be preserved.
• The code assumes that pointers and int are the same size in an arithmetic context.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 40

• Expects a pointer as the return value from a function lacking a declaration in scope, implicitly declared to return
an int or declared to return any data type that is 32 bits or less in size.

Truncation of a 64-bit Pointer Value When Converted to a Smaller Integral Type
As in the case of an LP64 long, assignment of an LP64 pointer value to a 32-bit data type variable will result in
truncation of the pointer value. The pointer value cannot reliably be reconstructed from the int or unsigned int. If the
address value being converted is in range of 0 to 4 GB, which happens to fit in 32 bits, the code may appear to work
only to fail with a different memory layout.

Since ANSI-conforming C compilers are required to provide a diagnostic, usually a warning, for integral to pointer
and pointer to integral assignments, existing source code is likely to have an explicit cast on these assignments.
These explicit casts have been introduced to suppress the diagnostics from the compiler and lint. In LP64 mode, if
the conversions are to any type less than 64 bits, these conversions are likely to be a source of porting problems. The
following example shows a combination of explicit and implicit pointer to integer conversions done at assignment
time that could ultimately lead to problems.

1 int i;
2 long l;
3 char * chptr;
4 void * voidptr;
5
6 extern void bar_int(int, int);
7 extern void bar_long(long, long);
8
9 void foo() {
10
11 i = chptr; /* implicit—loss of bits */
12 i = voidptr; /* implicit—loss of bits */
13 i = (int)chptr; /* explicit—loss of bits */
14 i = (int)voidptr; /* explicit—loss of bits */
15
16 bar_int(chptr, (int)voidptr); /* loss of bits—both args */
17
18 l = chptr;
19 l = (long)chptr;
20 bar_long(chptr, (long)voidptr);
21
22 }

Recommendation
Code involving conversions of pointers from or to integral values should be reviewed. If these pointer to integral
conversions are absolutely necessary, the integral type should be either long or unsigned long and an explicit cast to
long or unsigned long should be used.

Fully prototyped function declarations should be in scope at the point of all calls, allowing the C compiler and/or lint
to scrutinize pointer to integral conversions of function arguments.

lint Assistance
Lint will not only flag all occurrences of nonconforming implicit pointer to integer conversions, but also flag all
explicit conversions that may lose significant bits.

 (11) improper pointer/integer combination: op "="
 (11) conversion of pointer loses bits
 (12) improper pointer/integer combination: op "="
 (12) conversion of pointer loses bits
 (13) conversion of pointer loses bits

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 41

 (14) conversion of pointer loses bits
 (16) improper pointer/integer combination: arg #1
 (16) conversion of pointer loses bits
 (16) conversion of pointer loses bits
 (18) improper pointer/integer combination: op "="
 (20) improper pointer/integer combination: arg #1

Assumption That Pointers and int Are Same Size in Arithmetic Context
With the exception of a pointer +/- an integer value and pointer difference, pointers may not directly be used with
arithmetic or bitwise operators. There are times when a pointer must be explicitly cast to an integral type to be used
with these operators. Such an example would be the UnixWare kernel's use of bitwise shifts and bitwise AND
operations to determine the memory segment containing a particular address. These explicit casts should be to either
long or unsigned long, which will preserve the 64-bit values in LP64 mode and the 32-bit values in ILP32 mode.

The following example contains source code from the Bourne shell command which does its own memory
management. The code on line 9 assumes that the size of a pointer is the same as an int which is incorrect in LP64
mode. The result is that 64-bit pointer will be converted to a 32-bit value and OR'ed with the BUSY bit. The 32-bit
integer result is then cast back to a pointer and 32 bits of the address have been lost.

1 #define BUSY 01
2
3 void foo(void) {
4 struct blk *p, *word;
5 word = (struct blk *)(((int)p) | BUSY);
6
7 /* correctly casting to 64-bit integer */
8 word = (struct blk *)(((unsigned long)p) | BUSY);
9 }

Recommendation
All pointer casts to integer types should be to either long or unsigned long. The source will then work for the ILP32
and the LP64 compilation models.

lint Assistance
As in the previous example, lint will flag pointer to integer conversions which may result in loss of bits.

(5) conversion of pointer loses bits

Pointer Return Type or Argument Types in the Absence of a Prototyped Function
Declaration
This is a specific form of the porting issues dealing with 64-bit values used as function parameters and function
return types in the absence of a prototyped function declaration in scope. In LP64 mode, a null pointer value (integer
constant zero) used as an argument to a function without a prototyped function declaration may be passed only a 32-
bit zero. The high order 32 bits will be undefined. Likewise, in LP64 mode, a 64-bit pointer returned by a function to
a callee that does not have a prototyped function declaration in scope will be treated as an int and truncated to 32
bits.

ptrargsret.1.c:
1 extern func2();
2 extern func2_A(char *);
3 extern char * func3(char *);
4
5 #define NULL 0
6
7 void foo () {

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 42

8 char * ptr1;
9 char * ptr2;
10 char * ptr3;
11
12 ptr1 = func1(NULL); /* no function declaration visible */
13 ptr2 = func2(NULL); /* implicit return type & old style param list */
14 ptr2 = func2_A(NULL);/* implicit return type */
15
16 ptr3 = func3(NULL);
17 }

ptrargsret.2.c:
1 char * func1 (arg)
2 char * arg;
3 {
4 return arg;
5 }
6
7 char * func2 (arg)
8 char * arg;
9 {
10 return arg;
11 }
12
13 char * func2_A (char * arg) {
14 return arg;
15 }
16
17 char * func3 (char * arg) {
18 return arg;
19 }

Recommendation
As recommended previously, prototyped function declarations should be visible at all call sites. Both the compiler
and lint should be used to locate all places where:

• Functions appear to be declared implicitly
• Functions are declared with an "old-style" parameter list
• Functions appear to have an implicit return type
• lint reports that function types or arguments appear to be declared or used inconsistently across source files.

The combination will clearly locate problems in K&R or ANSI C source code and once corrected for LP64 mode
will also work in ILP32.

lint Assistance
If lint is run on all source files that make up a binary, it will flag:

• Implicitly declared functions (at the point of call)
• Functions declarations with "old-style" parameter lists (flagged at the point of call)
• Functions with an implicit return type of int
• Argument types used inconsistently function return types used or declared inconsistently

ptrargsret.1.c:
 (1) no type specifiers present: assuming "int"
 (2) no type specifiers present: assuming "int"
 (12 improper pointer/integer combination: op "="

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 43

 (13 improper pointer/integer combination: op "="
 (14 improper pointer/integer combination: op "="

implicitly declared to return int
 (12) func1

called lacking visible prototype declaration
 (13) func2
ptrargsret.2.c:

name defined but never used
foo ptrargsret.1.c(7)

value type used inconsistently
func1 ptrargsret.2.c(3) char *() :: ptrargsret.1.c(12) int ()
func2 ptrargsret.2.c(9) char *() :: ptrargsret.1.c(13) int ()
func2_A ptrargsret.2.c(13) char *() :: ptrargsret.1.c(14) int ()

value type declared inconsistently
func2 ptrargsret.2.c(9) char *() :: ptrargsret.1.c(1) int ()
func2_A ptrargsret.2.c(13) char *() :: ptrargsret.1.c(2) int ()

Objects Change Size
Data objects that contain pointer, long, long long, or long double data types will have different sizes in ILP32 and
LP64 modes. While the long long data type is currently 8 bytes in both models, the alignment restrictions differ.
Both the size and alignment of long long will change before hardware availability. The following simplistic example
of a linked list C data structure that can be used to illustrate the size difference.

 struct dummy {
 struct dummy *next;
 struct dummy *prev;
 int data;
 char *name;
 };

In an ILP32 model, the structure occupies 16 bytes of memory. In the LP64 model, this structure is 32 bytes in size.
The size increase is the result of doubling the size of the three pointers (12 bytes) and an additional 4 bytes of
alignment padding preceding the last pointer.

This change in data structure sizes may not be a problem. If the data is to be solely used by the binary that produced
the data or another program compiled for the same compilation model, the size difference is not an issue with the
exception of a potential size problem. A problem does exist where an LP64 model binary must consume data
produced by a ILP32 model binary or where the data flow is in the opposite direction.

With careful design, compatible data structures can be defined to allow sharing of data between binaries from
different models.

#if #model(lp64) or #if #model(ilp32)

will allow declaration of a structure that is binary data compatible between compilation models.

 struct shared_models {
 #ifdef #model(lp64)
 long 64bit_value;
 int 32bit_value;

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 44

 int other_32bit_value;
 long double big_fp_value;
 #else
 long long 64bit_value;
 long 32bit_value;
 int other_32bit_value;
 long double big_fp_value;
 int padding;
 #endif
 };

The above structure illustrates a C data structure that is binary data compatible in either ILP32 or LP64 mode. The
declaration preserves the alignment and size of of each structure member.

In cases where conformance to the preferred LP64 alignments is not feasible, the structure declaration can be
wrapped in a set of #pragma pack directives to cause the structure layout to match that of the ILP32 model.

#pragma pack (4) /* set to ILP32 most strict alignment */
struct s {
....
....
};
#pragma pack () /* return to alignment of current model */

Sharing of pointer values between ILP32 and LP64 applications is meaningless. In serious database-oriented
applications, pointers rarely appear in declarations of data written to mass storage devices. These applications are
normally concerned about efficient use of storage and already avoid pointers. File offsets can be expressed in terms
of the 64-bit data type available in each model.

In cases where an LP64 program must deal with an ILP32 data structure that contains pointers, more effort is
required. Assuming that data written out in pointer fields is irrelevant or expressed in terms of some offset and will
be filled in when the structure is memory resident, a new data structure that encapsulates the old data can be defined.
Care must be taken to preserve the alignments in the old structure.

Integer Constants
The type is determined by shape and value; leading and high-order zeroes only serve to denote octal and have no
other effect on size. General rules:

• Decimal constants find first signed type that holds the value, small or large.
• Other bases find first signed or unsigned type that holds the value, small or large.
• Suffixes (combinations of u or U, and l or L, and ll or LL) generally restrict the choices.
• Porting code that uses integer constants must:

− Consider that integer constants may be more than 32 bits
− Do not assume that long or unsigned long data is 32 bits
− Do not depend on the specific behavior at an assumed data type length.

Integer constant examples include:

* Expression truncated at 32 bits
long1 = long1 + 20000000 * 30000000; /* 32 bit expression */
long2 = long2 + 20000000L * 30000000; /* 64 bit expression */

 * Expression depends on 32 bit truncation

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 45

 long1 += 0xffffffff; /* long1-1 for ILP32 Long1 +4294967295 for LP64 */

 * Constant has int size, not full size (leading zeroes do not increase the size)

 long1 &= ~0xffff0000; /* clears 48 bits */
 long1 &= ~0x00000000ffff0000; /* clears 48 bits */
 long2 &= ~ (long) 0xffff0000; /* clears 16 bits)*/
 long2 &= ~0xffff0000L; /* clears 16 bits */

 * LONG_MIN, LONG_MAX, ULONG_MAX will have different values in LP64

Type Hexadecimal Equation
LONG_MIN 0x8000000000000000L -(2**63)
LONG_MAX 0x7FFFFFFFFFFFFFFFL (2**63)-1
 ULONG_MAX 0xFFFFFFFFFFFFFFFFL (2**64)-1

 * Shifts expecting 32 bit operands can be hidden in macro expansions:

 ulong1 = (ulong1 << 5) >> 16; /* ILP32: keeps bits 11-26 LP 64: bits 11-58 */
 long1 = (long1 << 5) >> 16; /* ILP32: might sign extend 11-26 LP64 bits 11-58 */
 ulong1 = (ulong1 & 0x7fff800) >> 11;

 long1 = (long1 << (CHAR_BIT * sizeof(long) -27))
 >> (CHAR_BIT * sizeof(long)—16);

Stack Layout Changes due to Larger Data Elements
System data types such as time_t become 8 bytes long; Fixed Size Data Types defined in <sys/types.h>. For
example:

Fixed Size Data Types ILP32 and IA-32 LP64
signed unsigned Size (bits) Align (bytes) Size (bits) Align (bytes)
 int8_t uint8_t 8 1 8 1
 int16_t int16_t 16 2 16 2
 int32_t int32_t 32 4 32 4
 int64_t it64_t 64 8 64 8

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 46

Part 2. Migrating DYNIX/ptx Programs to AIX 5L on
IA-64

This part includes information specific to migrating C, assembly language, and C++ applications from DYNIX/ptx to
AIX 5L on IA-64.

Migrating C Applications
In addition to the information covered in other sections of this manual, the following factors should be considered
when migrating your DYNIX/ptx C applications to AIX 5L on IA-64:

• C language incompatibilities
• C header file incompatibilities
• C compilation incompatibilities
• Linker incompatibilities
• Environment differences
• Shell Differences
• Tool Differences
• API incompatibilities
• ABI incompatibilities
• Licensing changes
• Installation changes

The remainder of this section discusses each of the preceding items. Note that additional features or options that are
supported by AIX 5L on IA-64 are not described here. The list includes only incompatibilities that may prevent an
application that previously ran under DYNIX/ptx from running or from running as expected on AIX 5L on IA-64.
Refer to the IBM AIX 5L on IA-64 documentation for information on additional features or options.

C Language Incompatibilities
Any extensions to ISO C or implementation-defined differences that may cause incompatibilities are documented in
the following subsections.

Preprocessor Directives
The following table lists the DYNIX/ptx preprocessor directives and pragmas that are not supported on AIX 5L on
IA-64. Per the ANSI C standard, pragmas not supported by an implementation will be ignored. However, depending
on the desired effect, you may want to replace an unsupported pragma with an equivalent facility on AIX 5L on IA-
64, to rewrite your code to eliminate the use of an unsupported pragma entirely, or to address the original problem
that caused use of the pragma in a different manner.

DYNIX/ptx Preprocessor
Macro Name

Description Equivalent Macro
Under AIX 5Lon IA-

64/ Recommendation
#assert name (token) Associates name with token. name

can then be used in conditional
preprocessing directives.

Supported for C, C++

#unassert name (token) Unassociates name with token. If
token is not specified, all associations
for name are removed.

 Supported

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 47

DYNIX/ptx Preprocessor
Macro Name

Description Equivalent Macro
Under AIX 5Lon IA-

64/ Recommendation
#pragma int_to_unsigned name Identifies name as a function whose

type was int in a previous release of
the C compiler, but whose type is
unsigned in the current release.

None.

#pragma pack(n) Defines n as the strictest alignment for
any structure member. n must have a
value of 1, 2, or 4.

Consider using "#pragma
options align=packed"
and "#pragma options
align=reset".

#pragma sequent_* Varies. None.
#pragma weak symbol[=definition] Declares symbol as weak. A weak

symbol is similar to a global symbol
but has lower precedence.

 Will be supported

Predefined Macros
The following predefined macro, which is recognized by the DYNIX/ptx C compiler, is not recognized by the AIX
5L on IA-64 compiler:

__IDENT__

It is recommended that any applications that use the __IDENT__ predefined macro be updated to replace
__IDENT__ with __LINE__.

Assembly Language Macros
Assembly language macros, a Sequent extension to ISO C, are not supported on AIX 5L on IA-64. Assembly
language macros begin with the keyword asm. You must recode any application that uses assembly language macros
to eliminate them. Note, however, that assembly language functions called from C programs are supported. See also
"Migrating Assembly Language Programs" later in this section.

C Header File Incompatibilities
This information will be provided in a future version of this document.

C Compilation Differences

Specifying a Compilation Mode
Under DYNIX/ptx, you specified the compilation mode by passing a flag to the compiler or the default compilation
mode, -Xt, was assumed. On AIX 5L on IA-64, the command used to invoke the C compiler determines the default
compilation mode. The following table describes these commands.

AIX 5L C
Compiler
Invocations

Description

xlc Invokes the compiler for C or C++ source files with a default language level of ansi,
and specifies the compiler option -qansialias to allow type-based aliasing.

cc Invokes the compiler for C or C++ source files with a default language level of
extended and specifies the compiler options -qnoro and -qnoroconst (for placement
of string literals or constant values in read/write storage).

c89 Invokes the compiler for C or C++ source files with a default language level of ansi,
and specifies the compiler options -ansialias and -qnolonglong (disabling use of
longlong), and sets -D_ANSI_C_SOURCE (for ANSI-conformant headers).

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 48

In addition, threaded applications must be compiled using the "_r" variation of the invocation. For example, "cc_r "
sets the same compilation mode as "cc", but also allows creation of POSIX-threaded applications.

The following table shows the DYNIX/ptx compilation mode options and the closest corresponding invocation on
AIX 5L on IA-64. Using the listed equivalent option does not guarantee syntactical or semantic compatibility, but it
may reduce your porting effort. The default for all modes is to produce 32-bit binaries unless the -q64 option is
specified or the OBJECT_MODE environment variable is set to 64.

DYNIX/ptx Compatibility Mode Option Closest AIX 5L on IA-64 Equivalent
-Xs None
-Xt (default compilation mode) cc -qlanglevel=classic
-Xa xlc
-Xc c89

C Compiler Option Incompatibilities
The following table lists and describes the DYNIX/ptx C compiler options that have a different meaning on AIX 5L.
Any makefile that uses these options must be updated appropriately.

Option DYNIX/ptx Description AIX 5L on IA-64 Description Recommendation
-v Perform more and stricter

semantic checks and enable
certain lint-like checks on
the named C files.

Instruct the compiler to report
information on the progress of the
compilation.

Use lint on the C source
file before compiling the
program.

-# List on standard error the
compiler components and
their arguments as called
by cc.

List on standard error the full
pathname of the compiler
components and their arguments
as called by cc but do not execute
them.

Use -# and then reinvoke
the compiler with the
same command line minus
"-#".

DYNIX/ptx C compiler options that are not supported on AIX 5L are listed in the following table. Any makefile that
references these options must be updated either to use the corresponding option on AIX 5L or to eliminate the
option.

Unsupported
DYNIX/ptx C

Compiler Options

Description Equivalent AIX 5L on IA-64
Option/Recommendation

-## List on standard error the full pathname of the
compiler and its components.

Use -# and then reinvoke the
compiler with the same
command line minus
"-#".

-### Provide the same functionality as -##, but no
execution is performed.

Use -#.

-Aname(token) Associate name with the specified token as if
by a #assert preprocessing directive.

 Supported as on DYNIX/ptx

-A- Ignore preassertions and predefined macros
(other than those that begin with __).

Not Supported

-H Cause the path name of each file included
during the current compilation to be listed on
standard error, one per line.

None.

-KPIC Generate position-independent code. None. The AIX 5L C compiler
produces PIC by default.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 49

Unsupported
DYNIX/ptx C

Compiler Options

Description Equivalent AIX 5L on IA-64
Option/Recommendation

-Kminabi Direct the compilation system to use a version
of the C library that minimizes dynamic
linking without changing the application's ABI
conformance.

None.

-Kthread Create a threaded application. By default,
applications are non-threaded.

Invoke the compiler with the
"xlc_r" command or the
appropriate _r-suffixed
command.

-Q{y|n} Enable/disable writing version information to
the final output file. -Qy is the default behavior
under DYNIX/ptx.

None.

-q{l|p} Produce code that counts the number of times
each source line is executed.

For -ql, none. For -qp, "cc -qp -
dn" is equivalent to "cc -p"
under AIX 5L on IA-64.

-V Print the version number of the compiler on
standard error.

None.

-Wc,-i Treat all variables that could be declared
volatile as if they were declared volatile. This
option was intended for use on programs that
should have volatile on some variable
declarations but do not.

None. Any variables that
should be typed as volatile
must be declared to be of
volatile type.

-Wc,-Og Generate exactly the same code as would be
generated for -g when no optimization level is
specified.

None; the -qoptimize=0 option
provides minimum optimization
under AIX 5L on IA-64.

-Wc,-O0 Provide default code optimization.
Optimizations that would increase code size or
that require significant additional compilation
time are not performed.

None; -qoptimize=0 is the
default optimization option
under AIX 5L on IA-64.

-Wc,-O1 Same as -Wc,-O0 plus invariant code motion,
strength reduction, and code duplication. No
function inlining is performed.

None; refer to the optimization
option descriptions in the IBM
cc(1) man page or the C
documentation for information
on the optimizations available
with AIX 5L on IA-64.

-Wc,-O2 Same as -Wc,-O1 plus inlining of small user-
defined functions found in the same .c file.

None; refer to the optimization
option descriptions in the IBM
cc(1) man page or the C
documentation for information
on the optimizations available
with AIX 5L on IA-64.

-Wc,-O3 Same as -Wc,-O2 plus inlining of intrinsic
library functions.

None; refer to the optimization
option descriptions in the IBM
cc(1) man page or the C
documentation for information
on the optimizations available
with AIX 5L on IA-64.

-Wc,-SO Send the assembly language output files to
standard output.

None.

-Wc,-i386 Perform i386 specific optimizations and
generate code suitable for i386 processors.

None; this option is obsolete.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 50

Unsupported
DYNIX/ptx C

Compiler Options

Description Equivalent AIX 5L on IA-64
Option/Recommendation

-Wc,-i486 Perform i486 specific optimizations and
generate code suitable for i486 processors.

None; this option is obsolete.

-Wc,-P5 Perform Pentium specific optimizations and
generate code suitable for Pentium processors.

None; this option is obsolete.

-Wc,-P6 Perform optimizations specific to the Pentium
Pro and generate code suitable for Pentium
Pro processors.

None; this option is obsolete.

-Wc,-Pmmx Perform optimizations specific to the Pentium
II and generate code suitable for Pentium II
processors.

None; this option is obsolete.

-Wc,-seq Assert the -Xs option (Sequent compatibility
mode) and recognize the non-ANSI keywords
shared, private, and fortran. The macros
__STDC__, __STDC_VERSION__, and
__STRICT_ANSI__ are not predefined. This
option was intended to support porting from
pre-ANSI C to ANSI C.

None; this option is obsolete.

-Wc,-pw Suppress "portability" warnings generated
during compilation process.

None.

-Wc,-Y Treat extern and static variables as shared
rather than private.

None.

-Wc,+abi-socket or
-Wc,+bsd-socket

Search the library paths for a file name
cc_options located in a directory named abi-
socket or bsd-socket. respectively. The library
paths are those specified by -L,
-YL, -YU, -YP or /lib:/usr/lib if nothing is
specified.

None. The default under AIX
5L on IA-64 is BSD sockets.

-Wofl,-option Use information in the program to perform
ordering for locality.

None. None of the -Wofl
options are supported in AIX
5L on IA-64.

-W0,xstring Place all literal strings in read-only memory
segment. Literal strings used in a const char *
context are normally placed in a read-only
segment while those in a char * context are
normally placed in the read-write (.data)
segment.

When the C compiler is
invoked as "xlc", both const
char * and char * literal strings
are placed in read-only
memory. You can use the -
qnoro option to override this.
When the C compiler is
invoked as "cc", both are
placed in read-write memory,
unless you specify the -qro
option on the command line.

-W0,-
xstring_merge_ro

Create only one copy of identical read-only
(const char *) literal strings.

This is the default on AIX 5L
on IA-64 when the C compiler
is invoked as "xlc". When the
C compiler is invoked as "cc",
multiple copies are created
unless you specify the -qro
option on the command line.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 51

Unsupported
DYNIX/ptx C

Compiler Options

Description Equivalent AIX 5L on IA-64
Option/Recommendation

-W0,-
xstring_merge_rw

Create only one copy of identical read/write
(char *) literal strings.

This is the default on AIX 5L
on IA-64 when the C compiler
is invoked as "xlc". When the C
compiler is invoked as "cc",
multiple copies are created.

-W0,-xstring_merge Shorthand for specifying both
-W0,-xstring_merge_ro and
-W0,-xstring_merge_rw.

This is the default in AIX 5L
on IA-64 when the C compiler
is invoked as "xlc". When the C
compiler is invoked as "cc",
multiple copies are created.

-W0,-noflatstk Set up a standard stack frame for every
function when optimizing code. By default,
the -O option causes the stack frame of certain
functions to be flattened.

None; users do not have control
over this optimization.

-W1,-resvfptr Reserve the frame pointer register so that it
will not be used as a scratch register when
optimizing code. By default, the -O option
allows the frame pointer register to be used as
a scratch register when a frame pointer is not
needed.

None.

-Xs Use the Sequent compatibility mode of
compilation, which is closely compatible with
the pre-ANSI C compiler. This disables
recognition of the ANSI keywords const,
volatile, and signed, and enables recognition
of the non-ANSI keyword fortran. The
compiler warns about language constructs that
have differing behavior between ANSI C and
pre-ANSI C and uses the pre-ANSI C
interpretation. The macros __STDC__,
__STD_VERSION__, and
__STRICT_ANSI__ are not predefined.

None; this option is obsolete.

-Xt Use the transition mode of compilation. The
compiler warns about language constructs that
have differing behavior between ANSI C and
pre-ANSI C and uses the pre-ANSI C
interpretation. The predefined macro
__STDC__ has the value 1. The predefined
macro __STD_VERSION__ has the value
199409L. The predefined macro
__STRICT_ANSI__ is not defined. This was
the default compilation mode under
DYNIX/ptx V4.5.

No equivalent option, but
-qlanglvl=classic may suffice
for some programs or consider
invoking the compiler as cc.
For more information on the cc
invocation, refer to "C
Compilation", earlier in this
section.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 52

Unsupported
DYNIX/ptx C

Compiler Options

Description Equivalent AIX 5L on IA-64
Option/Recommendation

-Xa Use the ANSI mode of compilation. The
compiler warns about language constructs that
have differing behavior between ANSI C and
pre-ANSI C and uses the ANSI interpretation.
The predefined macro __STDC__has the
value 1. The predefined macro
__STD_VERSION__ has the value 199409L.
The predefined macro __STRICT_ANSI__ is
not defined.

Use the -qlanglvl=ansi option
or invoke the compiler as xlc.
For more information on the
xlc invocation, refer to "C
Compilation", earlier in this
section.

-Xc Use the conformance mode of compilation.
The compiled language and associated header
files are assumed to be strictly ANSI C
conforming. That is, no non-ANSI support is
provided. The predefined macro
__STDC__has the value 1. The predefined
macro __STD_VERSION__ has the value
199409L. The predefined macro
__STRICT_ANSI__ has the value 1.

Use the -qlanglvl=ansi option
or invoke the compiler as c89.
For more information on the
c89 invocation, refer to "C
Compilation", earlier in this
section.

-Yc, pathname Use the directory specified by pathname as the
location of the tools for the component
specified by c.

Use the -Bpathname -tc option.
pathname must end in '/' and c
can be one or more of the
following:

p preprocessor
a assembler
l linkage editor
c compiler front-end
b compiler back-end

Linker Differences (ld)
The DYNIX/ptx linker options listed in the following table are not supported on AIX 5L on IA-64. These options
must be replaced with the equivalent option on AIX 5L on IA-64 or removed from any makefiles that reference
them.

 Unsupported
DYNIX/ptx

Linker
Options

 DYNIX/ptx Description Equivalent AIX 5L on IA-64
Option or

Recommendation

 -Bfull Same as -Bexport, but does not support a symbol
list.

 Use -Bexport.

 -R path Specify library search directories to the runtime
linker. path is a colon-separated list of directory
pathnames. If present and not NULL, it is
recorded in the output object file and passed to
the runtime linker.

 Use the LD_RUN_PATH or
LD_LIBRARY_PATH
environment variables to
specify library search
directories to the runtime linker.

 -T* Ordering for locality options. None.
 -O* Ordering for locality options. None.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 53

 Unsupported
DYNIX/ptx

Linker
Options

 DYNIX/ptx Description Equivalent AIX 5L on IA-64
Option or

Recommendation

 -Uf[v] Supply a dummy value (zero) for each undefined
symbol and proceed to completion. This
overrides the default behavior of listing
undefined symbols and terminating with an error
message.

 None.

 -Ur[v] Make additional passes through the list of
libraries to resolve symbols.

 None.

 -w Turn off the warning about file offsets and
memory segments that are not congruent. This
option is intended for use with the -M option
only.

 None.

 -YL,dirlist Change the default directory used for finding
libraries-the first default directory searched by ld
(/lib under DYNIX/ptx) is replaced by dirlist.

 None; use -YP,dirlist and
specify all directories
containing libraries to be
searched in the order in which
they must be searched.

 -YU,dirlist Change the default directory used for finding
libraries--the second default directory searchcd
by ld (/usr/lib under DYNIX/ptx) is replaced by
the directory specified by dirlist.

 None; use -YP,dirlist and
specify all directories
containing libraries to be
searched in the order in which
they must be searched.

 -z nopage0 Do not bind anything to address zero. This
option allows runtime detection of null pointers.

 None.

 -z defexec:
execfile

 Use dynamic symbols in the executable called
execfile to resolve references that would
otherwise be undefined in a new shared object.
This option is ignored unless used with -G and
 -z defs.

 None.

 -z nooverlap Issue a fatal error if segment attributes specified
in a mapfile cause segment addresses to overlap.
By default, this option is off with only a warning
issued.

 None.

 -z objlist:objfile Get the names of object or archive files from the
file specified by objfile.

 None.

 -z searchself When creating a shared object, mark the object
so that the dynamic linker looks for symbols to
bind within the object first, before any other
shared objects are searched. This overrides the
dynamic linker's normal breadth-first searching
algorithm. This option is the default for shared
libraries built with -Bsymbolic.

 None.

Environment Differences
By default, temporary files for the compilation tools are stored in /tmp; many of the tools use /usr/tmp. You can set
the TMPDIR environment variable to change the location of temporary files.

The default compilation mode is 32-bits unless the OBJECT_MODE environment variable is set or the -q64
compilation option is specified.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 54

Shell Differences
Information on shell differences may be useful for migrating applications that include scripts.

Shell Invocation
The following table shows the differences in shell invocations between DYNIX/ptx and AIX 5L on IA-64.

Shell Invocation DYNIX/ptx AIX 5L on IA-64
Invoke default shell /bin/sh. Bourne shell. /usr/bin/sh. Korn shell.
Invoke restricted shell /bin/rsh, /bin/sh -r for Bourne

shell. /bin/rksh for Korn shell.
/usr/bin/Rsh, /usr/bin/bsh -r for Bourne
shell.

Invoke remote shell /usr/bin/resh. User's shell
invoked.

/usr/bin/rsh, /usr/bin/remsh. User's shell
invoked.

Invoke Bourne shell /bin/sh /usr/bin/bsh
Invoke Korn shell /bin/ksh /usr/bin/sh, /usr/bin/ksh
Invoke C Shell /bin/csh /usr/bin/csh

Bourne Shell Differences
Bourne shell differences between DYNIX/ptx and AIX 5L on IA-64 are listed in the following table.

DYNIX/ptx AIX 5L on IA-64
${parameter:?word} -- if parameter is not set or
is null, print word and exit from the shell

If parameter is not set or is null, print parameter:
word and exit from the shell

[[=c=]] -- Matches a single character in the class
to which c belongs.

Not supported

[[.cc.]] -- Matches any character which has the
same relative order in the current collation
sequence as cc.

Not supported

Default search path is /bin:/usr/bin Default search path is
/usr/bin:/etc:/usr/sbin:/usr/ucb:$HOME/bin:/usr/bin/
X11:/sbin:.(current directory)

Supports newgrp special command Not supported
SIGHUP trap handled immediately No special handling for SIGHUP
Supports ulimit special command Same except does not support -n option, which sets

or displays the maximum file descriptor + 1, or the
-v option, which sets or displays the maximum
virtual memory size.

C Shell Differences
C shell differences between DYNIX/ptx and AIX 5L on IA-64 are listed in the following table.

DYNIX/ptx AIX 5L on IA-64
Supports built-in command alloc,
which displays the amount of dynamic
memory acquired

Not supported

Supports -n option to echo command
to suppress final newline

Not supported

Supports limit/unlimit built-in
commands

Same except doesn't support stacksize as a
resource

Argument list limit is 10240 bytes Argument list limit is 4096 bytes

Korn Shell Differences
Korn shell differences between DYNIX/ptx and AIX 5L on IA-64 are listed in the following table.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 55

DYNIX/ptx AIX 5L on IA-64
Conditional expression "-a
file" is same as "-e file"

Only true if file is a symbolic link that points to a file
that exists.

Tool Differences

Unsupported DYNIX/ptx Tools
The following tools that were available under DYNIX/ptx are not available under AIX 5L on IA-64:

cof2elf, cprs, hidesyms, lprof.

as
A new assembler is provided with AIX 5L on IA-64. For more information on the assembler, refer to the IBM as(1)
man page. See also "Migrating Assembly Language Programs.”

debug
TBD

dis
A new disassembler is provided with AIX 5L on IA-64. For more information on the disassembler, refer to the IBM
dis(1) man page.

make
AIX 5L does not support the following make(1) options, which are supported by DYNIX/ptx:

-b Compatibility mode to support old version of make
-Pn Supports parallel execution of commands in makefile

prof
Under DYNIX/ptx, the function name is the last field in the output displayed by prof(1). On AIX 5L on IA-64, it is
the first field.

lint
Where possible, we recommend that you remove lint from your DYNIX/ptx applications before porting them to AIX
5L. You can use lint's -j option to enable complaints about explicit narrowing conversions from casts and the -t
option to check portability to an LP64 implementation of C.

The following lint directives, supported under DYNIX/ptx, are not supported AIX 5L. Although it is not necessary to
remove them from your code, you should be aware that they will have no effect:

/* CONSTCOND / or /* CONSTANTCONDITION */
/* CASTOK */
/* EMPTY */
/* FALLTHRU / or /* FALLTHROUGH */
/* LINTED message */
/* PRINTFLIKEn */
/* PROTOLIBn */
/* SCANFLIKEn */
/* SYMUSED */
/* UNIONOK */

The following table lists lint options that were supported under DYNIX/ptx but are not supported AIX 5L. You must
remove these from any scripts that you port to the AIX 5L on IA-64 environment.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 56

Unsupported
DYNIX/ptx Lint

Options

Description

-m Suppress complaints about functions and external symbols that could be
declared static.

-F Print path names of files as they are processed.
-Idirname Search for header files in the directory specified by dirname before searching

the current directory and/or the standard place.
-j Enable complaints about explicit narrowing conversions from casts.
-k Alter the behavior of LINTED directives so that instead of suppressing

warning messages for the code following LINTED directives, lint prints an
additional message containing the comment inside the directive.

-K{thread | nothread} Turn on the appropriate preprocessor flags for threaded or non-threaded
applications.

-Ldirname Search for lint libraries in dirname before searching the standard place.
-s Produce one-line diagnostics only.
-V Print version number to standard error.
-W filename Write a .ln file to the file specified by filename, for use by cflow(1).
-R filename Write a .ln file to the file specified by filename, for use by cxref(1).
-W0,Ydirname Search for header files in dirname instead of the standard place.
-Wc,* Varies.
-Xs, -Xt, -Xa, -Xc Specify a compilation mode.
-YI,dirname Search for header files in dirname instead of the standard place.
-y Specify that the file is to be treated as if it contained a LINTLIBRARY

directive.

Other C Programming Tools Differences
The following table shows which options for the C programming tools are not supported on the AIX 5L on IA-64
environment. Refer to the next table for information on options which differ between DYNIX/ptx and AIX 5L on IA-
64.

Tool DYNIX/ptx
Options Not

Supported On AIX
5Lon IA-64

Option Description Recommendation

ar -V Print version number to standard error. None.
cb -V Print version number to standard error. None.
cflow -V Print version number to standard error. None.
cpp -T Use only the first eight characters to

distinguish preprocessor options. Provided
for backward compatibility.

None.

-Ydir Use the directory specified by dir in place
of the standard directory (/usr/include) to
search for include files.

None; can only specify
directory to look in first
(-Idir) rather than in
place of the standard
directory.

-H Print on standard error the pathnames of
included files.

None.

-V Print version number to standard error. None.

ctrace -b Use only basic functions in the trace code,
that is, those in ctype, printf, and string.

None.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 57

Tool DYNIX/ptx
Options Not

Supported On AIX
5Lon IA-64

Option Description Recommendation

-V Print version number to standard error. None.

cxref -d Disable printing declarations. None.
-l Disable printing local variables. None

-C Run only the first pass of cxref. None

-F Print the full pathnames of the referenced
files.

None.

-Lcols Modify the number of columns in the
LINE field.

None.

-V Print version number to standard error. None.

-W Change the default width of a field. None.

dump -Snumber or
-Snumber1,number2

Dump the core file segment with segment
number number or the range of core file
segments from number1 to number2.

None.

lex -V Print version number to standard error. None.
make -P[n] Permit n command sequences to be done in

parallel.
None.

nm -g Print only external (GLOBAL) symbols. Pipe the output through
grep: "nm a.out | grep
'GLOB' "

-e Print only WEAK and GLOBAL symbols. None.

-P Print information in a portable output
format as specified by POSIX.

None.

-I Sort symbols by index before they are
displayed.

None.

prof -V Print version number to standard error. None.
strip -r Do not strip static or external symbol or

relocation information.
None.

yacc -Q{y|n} Place version number information in
y.tab.c. The -Qn option, the default,
suppresses this.

None.

-V Print version number to standard error. None.

The following table lists C programming tools that provide the same functionality on DYNIX/ptx and AIX 5L but
through specifying different options.

Tool Functionality DYNIX/ptx Option AIX 5L on IA-64
Option

nm Prepend the name of the object file or
archive to each output line.

-A -r

Print the value and size of a symbol in
octal format

-t o -o

Print the value and size of a symbol in
hexadecimal format

-t x -x

API Incompatibilities
The following Sequent-specific library is not supported on AIX 5L. If your application references any function in
this library, you must recode to replace the function with an AIX 5L supported function.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 58

 /usr/lib/libseq.so (-lseq)

The following table lists the functions that comprise libseq.so. If your application uses any of these libseq functions,
you must either eliminate the call or replace the function with an equivalent function AIX 5L.

 Function Names Description Recommendation
and/or Equivalent

Function on AIX 5L
on IA-64

 acladd, acldel, aclchng, aclread, aclwrite,
aclerror, aclbtoa, aclatob, aclvalid

 Access control list (acl) operations TBD

 a_getacl, a_stat, a_lstat, a_setacl Get file access control list (acl)
information

 TBD

 atoll, strtoll, strtoull Convert string to long long integer TBD
 attach_proc Attach a process to a quad with the

specified resource
 TBD

 au_ctl, au_entry, au_getauthid,
au_setauthid, au_getpmask, au_set-mask

 Provide audit control TBD

 bdflush Flush modified disk buffers to disk TBD
 boot Boot the uptime kernel from the

standalone kernel on SCI-based
systems9

 TBD

 cd_getdevmap, cd_setdevmap, cd_suf Operate CD-ROM device TBD
 cfg_ctl, cfg_sys Provide device configuration control TBD
 cfg_findobj, cfg_idxobj, cfg_info_init,
cfg_info_free, cfg_gethdr, cfg_getobj,
cfg_nextobj, cfg_objidx

 Read and search device
configuration information

 TBD

 cfg_report_count, cfg_report_get,
cfg_report_overflow

 Extract reports from cfg_sys error
buffer

 TBD

 creat64, fopen64, fsetpos64, fgetpos64,
fseeko64, ftello64, ftw64, lockf64,
llseek, lseek64, mmap64, nftw64,
open64, statvfs64, getrlimit64,
setrlimit64, truncate64, ftruncate64

 Manipulate large files TBD

 DIO_Read, DIO_Write, DIO_Read64,
DIO_Write64, DIO_Readv64,
DIO_Writev64,
 DIO_Ainit, DIO_Await, DIO_Apoll*

 Provide synchronous/asynchronous
direct I/O on UNIX files and
character special files

 TBD

 detach_proc Detach a process from a previously
assigned quad

 TBD

 devt_to_name Find pathname of a device with the
specified dev_t

 TBD

 engdata_init, getengno, getquadno Get engine or quad information TBD
 engemptyset, engfillset, engaddset,
engdelset, engismember, engisempty

 Manipulate sets of engines TBD

 fstat64, lstat64, stat64 Get large file status TBD
 getbootflags, setbootflags Get/store system boot flags TBD
 get_disk_stats, get_ndisks, Get disk information TBD
 get_ntapes, get_tape_stats Get tape information TBD
 getgeombyname Get disk geometry by name TBD
 getpagesize Get system page size TBD
 getphysdev, setphysdevent, fgetphysdev, Get/control logical to physical TBD

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 59

 Function Names Description Recommendation
and/or Equivalent

Function on AIX 5L
on IA-64

dgetphysdev, endphysdevent device mappings
 get_process_stats Get resource utilization information TBD
 getswapstat Obtain summary swap space usage

statistics
 TBD

 getdtablemax Get maximum in-use descriptor
table index

 TBD

 getdtablesize/setdtablesize Get/set descriptor table size TBD
 getkerndata Get the contents of a kernel data

structure
 TBD

 getrgnname Get the region name of the caller or
the specified process

 TBD

 getscsiinfo, getscsimatch Get scsiinfo structure TBD
 gettimeofday_mapped Get current time of day TBD
 getusclk, usclk_init Get/initialize microsecond clock TBD
 addmntent, endmntent, getmntent,
hasmntopt, setmntent

 Get/control filesystem descriptor file
entry

 TBD

 lwp_trace Observe/control LWPs TBD
 mmap64, mmapq, mmap64q Map an open file into the

processes's address space
 TBD

 mptrace Provide multiprocess trace facility TBD
 nblocks Calculate number of blocks and

indirect blocks
 TBD

 ndb_ctl Provide device naming database
control

 TBD

 offline_all Take all but one active processor off
line

 TBD

 priv_ctl Vectored superuser privilege control TBD
 proc_ctl Manipulate process attributes TBD
 qexecl, qexecv, qexecle, qexecve,
qexeclp, qexecvp

 Execute a file with specified quad
placement

 TBD

 qfork, shfork, shqfork Create a new process TBD
 quademptyset, quadfillset, quadaddset,
quaddelset, quadismember,
quadisemptyset, quadandset, quadorset,
quaddiffset

 Manipulate sets of quads TBD

 quad_loc Locate the quad set containing a
specified resource

 TBD

 quotactl Manipulate disk quotas as 512-byte
blocks

 TBD

 rqcreate, rqdelete, rqgetattr, rqgeteattr,
rqsetattr, rqsethome, rqshutdown, rqstat

 Create a new system run
queue/control run queue created via
rqcreate

 TBD

 read_constab Read constab entries into a structure TBD
 rgn_* Create/control regions TBD
 shmatvw Attach a virtual window to a shared

memory segment
 TBD

 shmgetq Get shared memory segment
identifier associated with a quad

 TBD

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 60

 Function Names Description Recommendation
and/or Equivalent

Function on AIX 5L
on IA-64

 shmgetv Restrict paging policy to a set of
quads

 TBD

 sigcontext Get signal context TBD
 sigstack Set/get signal stack context TBD
 sync_op Create/control process

synchronization primitives
 TBD

 sys_boot Boot the uptime kernel from the
standalone kernel on SCI-based
systems

 TBD

 sysinfo Get/set system information strings TBD
 tmp_affinity Bind a process to a processor TBD
 tmp_ctl Allow processes to query status of

the processor and quad pool
resources

 TBD

 virtwin Create new virtually-windowed
address translations to a mapped
object

 TBD

 vm_ctl Examine/change virtual memory
tuning parameters

 TBD

 vm_getinfo Examine system memory
information

 TBD

ABI Incompatibilities
This information will be provided in a later version of this document.

Licensing Changes
This information will be provided in a later version of this document.

Installation Changes
This information will be provided in a later version of this document.

Migrating Assembly Language Programs
The AIX 5L compiler produces highly optimized code. It would be difficult to write assembly language programs
that produce better code than the compiler. If you rewrite your assembly language programs in C, you will only need
to recompile to take advantage of future compiler technology.

In contrast to the DYNIX/ptx compilation tools, in-line assembly code (e.g., asm ("XXX")) is not supported.

Migrating C++ Programs
The preceding information on migrating C applications also applies to migrating applications written in C++. The
following additional factors should also be considered for C++ applications: C++ compiler differences and C++
class libraries. The remainder of this section describes each of these factors.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 61

C++ Compiler Differences

Invoking the C++ Compiler
The DYNIX/ptx C++ compiler is invoked by the name "c++". The AIX 5L Visual Age 5.0 C++ compiler is invoked
by using the "xlC" command. See "Specifying a Compilation Mode" in the "C Compiler Differences" section for
optional invocations.

C++ source files can have ANY suffix except .o, .a, .c, .so if the -+ option is specified.

C++ Compiler Command Line Differences
The following table lists the DYNIX/ptx C++ command line options that are not supported by the AIX 5L C++
compiler. Any makefile file which references these options must be updated appropriately.

Unsupported
DYNIX/ptx C++

Compiler Option

DYNIX/ptx Description Equivalent AIX 5L on IA-64
Option/Recommendation

-@ file Place the contents of file at the current
position on the command line.

None.

-Aname(token) Associate name with the specified token as if
by a #assert preprocessing directive.

 –A is supported

-A- Ignore predefined assertions and predefined
preprocessor macros (except those beginning
with __).

 Supported

-abilngdbl Force values typed as long double to be 12
bytes instead of 8.

 –qlongdouble=80

-[no]alttok Allow use of digraph characters. Use -q[no]digraph.
-ansi Specify source conforms to ANSI standard. Use -langlvl=ansi.
-ansilibs Use ANSI standard libraries. None.
-B{dynamic|static} Specify whether static or dynamic libraries

should be linked.
Use -b{dynamic|static}.

-[no]bool Enable the bool keyword. –q[no]keyword=bool
-cfront{2|3} Specify that source written for cfront 2.1 or

cfront 3.0 is to be compiled.
TBD

-D- Ignore predefined preprocessor. None.
-d limit Set the driver error limit to the value

specified by limit.
None.

-d{y|n} Specify static or dynamic linking. Use -b{dynamic|static}.
-[no]dollar Allow '$' in identifiers. Use -q[no]dollar.
-dry Display main driver actions but do not

perform them.
Use -#.

-dryrun Display driver actions but do not perform
them.

Use -#.

-e limit Set the compiler error limit to the value
specified by limi.t.

Use -qmaxerr=limit:e.

-[no]eh Enable exception handling. Use -q[no]eh.
-[no]explicit Enable support for the explicit specifier on

constructor declarations.
 –qnokeyword=explicit

-Fmaxopt Enable maximum high-level optimization Use -O3.
-force Force the definition of virtual function tables

where the heuristic used by the compiler
provides no guidance.

Use -qvftable.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 62

Unsupported
DYNIX/ptx C++

Compiler Option

DYNIX/ptx Description Equivalent AIX 5L on IA-64
Option/Recommendation

-H Only preprocess source files and write a list
of all #include files to standard output.

None, but the -qmakedep option
provides similar output.

-help Display a quick-reference compiler option
summary before terminating.

None.

-
Idirname[:dirname…
]

Modify include file search path. -Idirname is supported, change
-Idir1:dir2 to -Idir1 -Idir2.

-include filename Include file specified by filename first
(before source files).

None.

-instant{all|used} Control template instantiation. See -qtempinc
-K{none|PIC|pic} Control generation of position-independent

code.
None; on AIX 5L on IA-64, all
code is position independent.

-keep Keep any temporary files created. None.
-Ldirname[:dirname] Add the directory specified by dirname to

the list of directories ld searches for
libraries.

-Ldirname is supported, change
-Ldir1:dir2 to -Ldir1 -Ldir2.

-[no]namespace Enable support for namespaces. –q[no]keyword=namespace
-newforinit Cause any declarations within a for

statement to have the scope of the block
contained within the for statement. This is
the default unless one of the following
options is specified (in which case -trdforinit
is the default): -version3, -cfront2,
-cfront3, -preansilibs.

 this is the default on AIX 5L on
IA-64. To get the old behavior
use: -qlanglvl=noansifor

-[no]newvec Allow overloading of operators new[] and
delete[].

None.

-nocrts Do not load default startup modules. None.
-nodefs Prevent the driver from passing any default

assertions, macros, include directories,
libraries or startup modules to the compiler
or linker.

None.

-noinline Prevent any inline function calls. Use -qnoinline.
-nolibs Prevent the driver from passing default

libraries to the linker.
None.

-O, -O1, -O2, -O3 Enable various optimization levels; -O
implies all.

Refer to the AIX 5L on IA-64
documentation for information on
optimization levels.

-preansilibs Use cfront-compatible versions of the
streams and complex libraries.

None.

-Qtool path Use path as the pathname to the compiler
tool specified by tool.

Use -Bpath -ttool. path must end
in '/'.

-Qinclude dir[:dir…] Use the specified directories instead of
/usr/include.

No exact equivalents but you can
use the -qnostdinc option to
prevent the standard locations
from being searched and the -Idir
option to specify which
directories to search.

-Qinstall path Specify the root directory of the C++
compiler install tree.

None.

-Qlib[:dir…] Specify the directories to be used instead of
/lib and /usr/lib.

None.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 63

Unsupported
DYNIX/ptx C++

Compiler Option

DYNIX/ptx Description Equivalent AIX 5L on IA-64
Option/Recommendation

-Qoption tool args Pass the arguments specified by args to the
specified compiler tool.

None.

-Qpath pathname Specify the directory to search first for
compilation tools and startup object files.

No equivalent option but you can
use -Bpath to specify the path for
the compiler or the compiler
component to use. To change the
path searched for startup object
files, you can modify the
configuration file pointed to by
/etc/ibmcxx.cfg.

-Q{y|n} Control the writing of tool version
information to the final output file. -Qn is
the default.

None.

-remarks Enable remark-level error messages. Use -qinfo=all.
-[no]restrict Control recognition of the restrict keyword; -

norestrict is the default.
None; restrict is not a valid
keyword on AIX 5L on IA-64.

-[no]rtti Control generation of runtime type
information.

Use -q[no]rtti.

-seqlngdbl Force long double to be 8 bytes long. Default on AIX 5L on IA-64, or
use
-qnoldbl128.

-shared Use shared versions of the C++ libraries
instead of static archive libraries.

None.

-[no]std Control use of the standard namespace. None.
-nostdincs Prevent the driver from passing any default

include directories to the compiler.
None.

-nostdlibs Prevent the driver from passing any default
library directories to the linker.

None.

-[not]strict Prevent the compiler from generating
warnings or messages about non-standard
constructs.

None; however, on AIX 5L on
IA-64, -qinfo=all may provide
some of the same information as -
strict.

-strictwarn Cause the compiler to generate warnings for
any constructs that do not conform to the
C++ standard.

None.

-suppress Suppress the definition of virtual function
tables where the compiler's heuristic
provides no guidance.

None.

-sysdefs Define preprocessor macros that describe the
current user and machine.

None.

-t Produce a C source from C++ source. None, option conflicts with AIX
5L on IA-64's -t option.

-temp dir Place temporary files in dir. None; use the TMPDIR
environment variable.

-terse Display compiler messages in a shorter form. None.
-time Display timing information for compiler

processes.
Use -qphsinfo.

-tpautooff Disable automatic instantiation of templates. None.
-trdforinit Cause any declarations within a for

statement to have the scope of the block
containing the for statement. This is the

None; on AIX 5L on IA-64,
declarations within a for
statement have the same scope as

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 64

Unsupported
DYNIX/ptx C++

Compiler Option

DYNIX/ptx Description Equivalent AIX 5L on IA-64
Option/Recommendation

default when one of the following options is
specified: -version3, -cfront2,
-cfront3, or -preansilibs.

the for statement.

-[no]typename Control the recognition of the typename
keyword. -typename is the default.

None; on AIX 5L on IA-64,
typename is a valid keyword.

-V Print the compiler's version number. TBD
-version3 Indicate that source files written for previous

versions of C++ are to be compiled.
No equivalent option but
specifying -langlvl=compat may
reduce your porting effort.

-[no]wchar Control recognition of the wchar_t
keyword. -wchar is the default.

 Use –q[no]keyword=wchar_t

-writefiles Pass the input files to the main driver via a
temporary file instead of the command line.

None.

-X{a|c|s|t} Specify that the source file to be compiled
contains C language source and select the C
dialect.

Use -qlanglvl=language. where
language is one of the following:
ansi, extended, or compat. Refer
to the IBM AIX 5L on IA-64
documentation for more
information on language levels.

-X{S|U} Control whether the variables of type char
are signed or unsigned. -XS is the default.

Use -qchars={signed|unsigned}.
On AIX 5L on IA-64, ` -
qchars=signed is the default.

-xar Instruct the main driver to build an archive
library instead of invoking the linking to
create an executable.

None.

-y Perform syntax checking only. Use -qsyntaxonly. On AIX 5L on
IA-64, the -y option enables
compile-time rounding of floating
point constants.

-Zm Indicate that the program contains a
misaligned structure member access.

None.

-Zp align Specify align as the maximum alignment for
a non-bitfield structure member.

None.

C++ Class Libraries
The DYNIX/ptx C++ compiler product includes the Rogue Wave Tools.h++ class library. TheAIX 5L C++ product
does not. Applications that depend on the Tools.h++ library will need to purchase them directly from Rogue Wave.

Migrating C and C++ Applications to AIX 5L on IA-64

10/03/00 Page 65

Part 3. References

[1] Steven Zucker, Endianness in Solaris, SunSoft Report, Feb. 1998

[2] Martin Hopkins, Endian Issue Recommendations, IBM Academy Report, Mar. 1995

[3] James R. Gillig, Endian-Neutral Software, Part 1, Dr. Dobb’s Journal, Oct. 1994

[4] James R. Gillig, Endian-Neutral Software, Part 2, Dr. Dobb’s Journal, Nov. 1994

[5] Cathy May et al, The PowerPC Architecture, Appendix D: Little-Endian Byte Ordering, Morgan Kaufmann
Publishers, May 1994.

[6] Apple/IBM/Motorola, PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, Appendix C: Bi-Endian Design, Nov. 1995

[7] RS—64 Bit Runtime Architecture and Software Conventions for IA-64, Chapter 4—Data Representation, Intel
Internal Document, Ref. No. SC-2135.

[8] IBM Corp., AIX Kernel Extensions and Device Support Programming Concepts

[9] IBM Corp., POWERstation and POWERserver: Hardware Technical Information General Architecture

