

ibm.com/redbooks

AIX 5L Porting Guide

Richard Cutler
Allan Cheng

Jacob Hsu
Jesper F Ljungberg

Peter Nutt
Michael Perzl

Practical advice and guidance when
porting to AIX 5L

Common problems explained
and solutions documented

Written by developers for
developers

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

AIX 5L Porting Guide

July 2001

SG24-6034-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (July 2001)

This edition applies to AIX 5L for POWER V5.1, Program Number 5765-E61, and AIX 5L for Itanium
V5.1, Program Number 5799-EAR.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix E, “Special notices” on page 593.

Take Note!

Contents

Figures . xiii

Tables. xv

Preface .xix
The team that wrote this redbook. xix
Comments welcome. xx

Chapter 1. Introduction . 1
1.1 Helpful terms and definitions . 1
1.2 AIX 5L benefits and features . 2
1.3 Approaches to porting . 3

1.3.1 Porting steps . 6
1.4 Coding practices . 8

Chapter 2. Endianness - byte ordering . 9
2.1 Endianness neutrality . 9

2.1.1 Endianness - byte ordering . 9
2.2 Dealing with endianness. 12

2.2.1 General solution guideline . 12
2.2.2 Nonuniform data referencing . 12
2.2.3 Exchanging and sharing data . 15

Chapter 3. Issues regarding 32-bit and 64-bit 19
3.1 Overview of programming models . 19

3.1.1 Available programming models. 19
3.1.2 Porting your code . 20

3.2 32-bit versus 64-bit computing . 21
3.2.1 Large virtual address space beyond the 4 GB barrier 22
3.2.2 Beyond large address space . 24
3.2.3 64-bit performance considerations . 24
3.2.4 Port to 64-bit or leave your application 32-bit 25
3.2.5 Applications requiring porting . 26

3.3 Migrating from 32-bit to 64-bit. 26
3.4 Conversion of 32-bit applications . 27

3.4.1 ILP32 and LP64 programming models . 28
3.4.2 32-bit and 64-bit application interoperability 30

3.5 ANSI C integer conversion rules. 31
3.6 C and C++ data type size issues . 32

3.6.1 C and C++ data type sizes in AIX 5L . 32
3.6.2 Different sizes for int and long in LP64 mode 38
© Copyright IBM Corp. 2001 iii

3.6.3 The sizeof() operator . 39
3.6.4 Data type specifications in (s)printf/(s)scanf 40
3.6.5 Structures and unions may change size 41

3.7 Data truncation. 42
3.7.1 Assignment of long to a smaller type . 43
3.7.2 Assignment of long to double . 44
3.7.3 Integer expression with potential overflow 46
3.7.4 Explicit cast improperly applied . 47

3.8 Pointer assignment and arithmetic . 48
3.8.1 Different byte sizes for int and pointers in LP64 mode 49
3.8.2 Assignment of 64-bit pointer value to a smaller integral type . . . 50
3.8.3 Assumption about pointers and int in arithmetic context 52
3.8.4 Address arithmetic and pointer arithmetic 54
3.8.5 Pointer to int is incompatible with pointer to long 55

3.9 Integer constants . 57
3.9.1 ANSI C rules for integer constants . 57
3.9.2 Untyped integral constants are int by default 59
3.9.3 General guidelines . 60
3.9.4 Integer expression with overflow in 64-bit expression 61
3.9.5 Hexadecimal constants. 61
3.9.6 Code depending on truncation at 32 bits on overflow 62
3.9.7 Wrong assumption about size of long integers 63
3.9.8 Bit shifts and bit masks. 64

3.10 C and C++ data type alignment issues . 65
3.10.1 C and C++ data type alignment in AIX 5L 65
3.10.2 Data alignment . 66
3.10.3 Data reordering . 67
3.10.4 User-defined padding . 68
3.10.5 Determining structure alignment . 69
3.10.6 Objects change size . 70
3.10.7 __align specifier . 72
3.10.8 Data inflation . 74

3.11 Lack of function prototypes. 75
3.11.1 Lack of prototyped function declaration 75
3.11.2 Pointer return or argument types without function prototype . . . 78

3.12 Data type promotion . 78
3.12.1 Sign extension . 78
3.12.2 Arithmetic between signed and unsigned numbers 80

Chapter 4. Setting up the development environment 83
4.1 Your development environment . 83
4.2 Online documentation . 83

4.2.1 AIX 5L online documentation . 83
iv AIX 5L Porting Guide

4.2.2 Compiler product information . 83
4.2.3 PartnerWorld for Developers . 83

4.3 Installing software on AIX . 84
4.3.1 Installing software using Web-based System Manager 84
4.3.2 Installing software using SMIT . 85
4.3.3 Installation with the command line interface (installp) 85

4.4 The License Use Manager . 86
4.4.1 Configuring LUM. 87
4.4.2 Activating the LUM server. 90
4.4.3 Enrolling a product license . 91
4.4.4 Enrolling a concurrent license. 91
4.4.5 Enrolling a simple nodelock license . 93

4.5 Shells available on AIX 5L . 93
4.6 Editors available on AIX 5L . 95
4.7 Source Code Control products under AIX 5L 95
4.8 Where to get GNU and other useful software for AIX 5L 96

4.8.1 AIX Toolbox for Linux Applications . 96
4.8.2 Other locations for GNU software for AIX 5L. 97
4.8.3 Downloading Nedit for AIX 5L . 97

4.9 Compilers available on AIX 5L for Power . 97
4.9.1 IBM C for AIX Version 5.0.2 . 97
4.9.2 IBM VisualAge C++ Professional for AIX Version 5.0.2. 98
4.9.3 Multiple command line drivers . 99
4.9.4 Installation directory . 100
4.9.5 Installation of compiler products . 100
4.9.6 Activating the IBM compilers . 103

4.10 Invoking the IBM compilers . 103
4.10.1 Default compiler drivers . 104

4.11 Online compiler documentation . 104
4.11.1 Viewing locally . 105
4.11.2 Viewing remotely . 106

4.12 The GNU compilers . 109
4.13 The lint code checker . 109
4.14 Debuggers available on AIX 5L . 110

4.14.1 Included debuggers . 110
4.14.2 idebug and irmtdbgc . 111

4.15 AIX 5L directories . 111
4.16 Header files . 112

4.16.1 Maximums and minimums . 113
4.16.2 Limiting resource usage with WLM . 115

Chapter 5. Porting . 117
5.1 Code clean - preparing your source code . 117
 v

5.1.1 Appropriate porting model . 117
5.1.2 API revisions . 118
5.1.3 Data type agreement . 118
5.1.4 Algorithm updates . 119
5.1.5 Software correctness . 119

5.2 System derived data types . 120
5.2.1 Data types defined by <sys/types.h> . 120
5.2.2 Data types defined by <inttypes.h>. 122

5.3 System derived constants and macros . 125
5.3.1 Constants and macros defined by <limits.h>. 126
5.3.2 Constants and macros defined by <inttypes.h>. 127

5.4 System specific differences . 133
5.4.1 System derived data types . 133
5.4.2 Application Programming Interfaces . 139
5.4.3 Threads . 141
5.4.4 The sizeof() operator . 141
5.4.5 Self-modifying code . 141
5.4.6 System specific commands . 141

5.5 AIX 5L porting programming tips . 143
5.5.1 General tips . 143
5.5.2 Int, long, and pointer. 144
5.5.3 Sign extension . 145
5.5.4 Data truncation . 145
5.5.5 Data type promotion . 146
5.5.6 Pointer truncation . 146
5.5.7 Structures. 147
5.5.8 Hardcoded constants . 147

5.6 AIX 5L porting guidelines . 147
5.6.1 Identify potential problems using grep commands 147
5.6.2 Identify potential problems using lint . 148
5.6.3 Compile and link the code and fix the discovered problems . . . 148
5.6.4 Fix alignment and padding problems . 149
5.6.5 C programming. 149

Chapter 6. Makefiles and the make command 155
6.1 Makefiles . 156

6.1.1 Command prefixes . 156
6.1.2 Default inference rules . 157
6.1.3 Single suffix default inference rules . 159
6.1.4 Double suffix default inference rules . 160
6.1.5 Special targets (the .targets). 160
6.1.6 Using the .POSIX special target . 162
6.1.7 Internal macros. 163
vi AIX 5L Porting Guide

6.1.8 Predefined macros . 167
6.2 The make command . 169

6.2.1 Environment variables . 172
6.2.2 Command line options to the make command 173
6.2.3 The MAKERULES macro on make for AIX 5L. 178
6.2.4 Exit values from the make command . 181

Chapter 7. System functions . 183
7.1 Priority manipulation. 183
7.2 CPU manipulation . 186
7.3 Memory locking/pinning . 188
7.4 How to determine system configuration . 189
7.5 Shared or mapped memory . 189
7.6 Signals . 194
7.7 Threads . 205
7.8 Semaphores . 205
7.9 Message queues . 211
7.10 Timers and cyclic signals . 215

Chapter 8. The compilers . 219
8.1 The C compiler . 219

8.1.1 C for AIX 5L compiler limits . 219
8.1.2 Environment variables affecting the compilers 219
8.1.3 Types of input files . 224
8.1.4 Output files . 227
8.1.5 Type conversions . 229
8.1.6 C compiler files and directories. 235
8.1.7 Command line arguments. 238
8.1.8 Predefined preprocessor macros . 243

8.2 GNU GCC for AIX 5L . 249
8.3 The C++ compiler . 250

8.3.1 Introduction . 250
8.3.2 Types of input files . 250
8.3.3 VisualAge C++ compiler files and directories 251
8.3.4 Command line arguments. 253
8.3.5 Predefined preprocessor macros . 255

8.4 Migrating to VisualAge C++ Version 5 . 255
8.4.1 New keywords . 255
8.4.2 Changes to digraphs in the C++ language 255

Chapter 9. AIX shared objects and libraries . 257
9.1 Terminology . 258

9.1.1 Static library . 258
9.1.2 Shared library . 258
 vii

9.1.3 Itanium-based system differences . 260
9.2 Creating a shared library on Power systems. 262

9.2.1 Traditional AIX shared object . 262
9.2.2 New style shared object . 267
9.2.3 Importing symbols from the main program 270
9.2.4 Initialization and termination routines . 270

9.3 Creating a shared object on Itanium-based systems. 270
9.4 Using a shared library . 271

9.4.1 On the compile line. 271
9.4.2 Searching at run time . 274
9.4.3 Shared or non-shared. 276
9.4.4 Lazy loading . 276

9.5 Run-time linking . 277
9.5.1 Rebinding system defined symbols. 280

9.6 Developing shared libraries . 281
9.6.1 The genkld command (Power only). 281
9.6.2 The slibclean command . 282
9.6.3 The dump command. 283
9.6.4 Using a private shared object . 286
9.6.5 The ldd and nm commands . 288

9.7 Programatic control of loading shared objects 289
9.7.1 The dlopen subroutine . 289
9.7.2 The dlsym subroutine . 290
9.7.3 The dlclose subroutine . 291
9.7.4 The dlerror subroutine . 291
9.7.5 Using dynamic loading subroutines . 291
9.7.6 Advantages of dynamic loading . 291

9.8 Shared objects and C++ . 292
9.8.1 Generating an exports file on Power . 292
9.8.2 The -qmkshrobj option . 292
9.8.3 Mixing C and C++ object files . 293

9.9 Order of initialization . 294
9.9.1 Priority values. 294

9.10 Troubleshooting . 298
9.10.1 Link failures on Power . 298
9.10.2 Run time tips . 299

9.11 Linker differences on Itanium-based systems 299
9.11.1 libelf.so instead of libld.a . 299
9.11.2 Mixed mode linking no longer valid . 299
9.11.3 Symbol resolution performed by run-time linker 300
9.11.4 AIX system calls for binding . 300
9.11.5 Linker options . 300
9.11.6 Import/export file support . 303
viii AIX 5L Porting Guide

9.11.7 Shared library . 304

Chapter 10. POSIX threads . 307
10.1 Introduction to threads . 307

10.1.1 Threads versus processes . 308
10.1.2 Thread library versions . 312

10.2 Thread scheduling . 322
10.2.1 Lightweight processes . 323
10.2.2 Bound thread scheduling . 324
10.2.3 Multiplexed thread scheduling . 325
10.2.4 Comparing bound and multiplexed threads 327
10.2.5 Scheduling scope, policy, and priority 328
10.2.6 Porting issues. 332

10.3 Thread creation, termination, and synchronization 332
10.3.1 Creating threads . 333
10.3.2 Termination of threads . 335
10.3.3 Joining threads . 343
10.3.4 Porting issues. 344

10.4 Synchronized access to data objects . 345
10.4.1 Synchronization . 345
10.4.2 Mutex . 347
10.4.3 Condition variables . 349
10.4.4 Semaphore . 351
10.4.5 Porting issues. 353

10.5 Threads and signals . 354
10.5.1 Signals . 355
10.5.2 Signal handlers and signal masks. 355
10.5.3 Signal generation . 355
10.5.4 Handling signals . 356
10.5.5 Signal delivery . 358
10.5.6 Porting issues. 359

10.6 Thread specific data . 359
10.6.1 Keys . 359
10.6.2 Porting issues. 362

10.7 Compiling and linking . 362
10.7.1 Reentrant functions and thread safe functions 362
10.7.2 Compiling and linking . 363
10.7.3 Porting issues. 366

10.8 Tuning . 367
10.9 Multiheap malloc . 369

10.9.1 Using multiheap malloc. 370
10.9.2 Parameters of malloc multiheap . 370

10.10 Quick reference . 371
 ix

10.10.1 AIX implementations of threads . 371
10.10.2 POSIX interfaces . 372
10.10.3 X/Open UNIX 98 thread interfaces . 376
10.10.4 POSIX options . 378
10.10.5 Supported thread models . 379
10.10.6 Mappings to POSIX/UNIX 98 threads 379
10.10.7 Limits and default values . 386
10.10.8 Inspecting a process and its kernel threads 389

10.11 Example: The Mandelbrot set . 391
10.11.1 References . 395

Chapter 11. C++ templates . 397
11.1 Using C++ templates . 397
11.2 AIX 5L template implementations . 397

11.2.1 Generated function bodies . 399
11.3 Simple code layout method . 400

11.3.1 Disadvantages of the simple method 400
11.4 Preferred template method . 402

11.4.1 The -qtempinc option . 403
11.4.2 Contents of the tempinc directory . 404
11.4.3 Forcing template instantiation . 405

11.5 Shared objects with templates . 406
11.5.1 Templates and makeC++SharedLib . 407
11.5.2 Templates and -qmkshrobj . 408

11.6 Virtual functions . 409

Chapter 12. Test and debug . 411
12.1 dbx . 411

12.1.1 Small example . 411
12.2 debug_message.c and dbx. 415

12.2.1 Endianness and 32-bit/64-bit problem. 424
12.3 idebug . 436

Appendix A. Sample programs . 451
A.1 Makefile sample programs . 451

A.1.1 The find_spec_targets_aix.ksh sample program 451
A.1.2 The find_spec_targets_gnu.ksh sample program. 452
A.1.3 The find_predef_macro_aix.ksh sample program 453
A.1.4 The find_predef_macro_gnu.ksh sample program 454
A.1.5 The find_internal_macro_aix.ksh sample program. 455
A.1.6 The hwinfo.c sample program . 456

A.2 POSIX threads sample programs . 459
A.2.1 mandelbrot1.c . 459
A.2.2 mandelbrot2.c . 461
x AIX 5L Porting Guide

A.2.3 mandelbrot3.c . 463
A.2.4 mandelbrot4.c . 466
A.2.5 mandelbrot5.c . 470

Appendix B. Default inference rules for the make commands 477
B.1 Single suffix inference rules . 477
B.2 Double suffix inference rules. 491

Appendix C. C compiler options . 527
C.1 Licensing compiler options . 527
C.2 Standards compliance compiler options . 527
C.3 Optimization and performance compiler options 529

C.3.1 Aliasing . 530
C.3.2 Inlining . 531
C.3.3 Side effects. 532
C.3.4 Code size reduction . 532
C.3.5 Compile time optimization . 533
C.3.6 Performance data collection . 533
C.3.7 Loop optimization . 537
C.3.8 Processor and architectural optimization . 538
C.3.9 Optimization spreading across several files 539
C.3.10 Optimization flags (-O and family) . 539
C.3.11 Limiting of optimization options . 540
C.3.12 Other optimization options . 541

C.4 Data alignment compiler options . 544
C.5 Floating point and numeric compiler options . 546

C.5.1 Sizes. 546
C.5.2 Rounding of floating points . 547
C.5.3 Traps . 548
C.5.4 Single precision . 548
C.5.5 Other options . 550

C.6 Parallelization compiler options . 552
C.7 Source Code compiler options . 553
C.8 Compiled code compiler options. 559
C.9 Compilation mode compiler options . 562
C.10 Diagnostics compiler options . 564
C.11 Debugging compiler options . 569
C.12 Linking and libraries compiler options. 572

C.12.1 Placing string literals and constants . 572
C.12.2 Static and dynamic linking and libraries . 573
C.12.3 Directories . 576
C.12.4 Other linker options . 576

C.13 Target platform compiler options . 578
 xi

C.14 GCC options specific for AIX 5L . 580
C.14.1 AIX options . 580
C.14.2 Power and PowerPC options . 581
C.14.3 Flags specific to Intel Itanium-based systems 588

Appendix D. Using the additional material . 591
D.1 Locating the additional material on the Internet 591
D.2 Using the Web material . 591

D.2.1 System requirements for downloading the Web material 591
D.2.2 How to use the Web material . 591

Appendix E. Special notices . 593

Appendix F. Related publications . 597
F.1 IBM Redbooks. 597
F.2 IBM Redbooks collections. 597
F.3 Other resources . 597

F.3.1 C and C++ language. 598
F.3.2 C and C++ Development on AIX. 598
F.3.3 VisualAge C++ and C for AIX compilers . 599
F.3.4 Threads. 599
F.3.5 Standards . 599

F.4 Web sites . 599

How to get IBM Redbooks . 601
IBM Redbooks fax order form . 602

Abbreviations and acronyms . 603

Index . 605

IBM Redbooks review . 617
xii AIX 5L Porting Guide

Figures

1. Porting methods. 4
2. Porting steps . 7
3. Byte ordering: little-endian and big-endian . 10
4. Nonuniform data reference using pointer. 13
5. Nonuniform data reference using union. 13
6. Using macros to neutralize endianness effect . 14
7. Determining the endianness at run time . 15
8. endian conversion macros . 16
9. Typical performance versus problem size curve . 23
10. Layout of sample data structure on 32-bit and 64-bit platforms. 38
11. Data truncation during assignment . 43
12. Code example longdouble.c . 45
13. Potential data truncation . 46
14. Truncation of a 64-bit pointer value . 51
15. Wrong assumption about pointer and integer size. 53
16. Pointers to different data types are not compatible 55
17. ANSI C language syntax definition for integer constants. 58
18. Different structure padding in ILP32 and LP64 mode 67
19. Rearranged structure to match the alignment in ILP32 and LP64 mode . . 68
20. User-defined structure padding . 69
21. Code example funcproto1.c . 76
22. Code example funcproto2.c . 77
23. Code example signext.c to demonstrate sign extension in LP64 mode . . 79
24. Code example showing comparisons . 81
25. Changing your default login shell from ksh to /usr/local/bin/tcsh 94
26. The Source Code Control System . 96
27. Example of variable parameter function . 152
28. Example of <stdarg.h> usage . 153
29. A very simple makefile . 155
30. Simple use of the make command . 156
31. A simple makefile that uses the default .o.c inference rule 157
32. Make which uses the default inference rule .o.c to build foobar 157
33. Makefile that uses the default rule on how to make .o from .a files 158
34. Source files and the domove script . 159
35. Running the makefile from Tru64 on AIX 5L . 159
36. Test to see if make supports the .POSIX special target 163
37. A makefile that uses $% and $@. 165
38. make used without a makefile . 171
39. Verifying which make you are using and changing to GNU make 172
40. Using a shell script to obtain a parallel make. 175
© Copyright IBM Corp. 2001 xiii

41. Simple makefile that uses a variable in the PATH to the source files . . . 176
42. Using $(MACHINE) to build programs for different implementations. . . . 177
43. Makefile used with solaris.mk and hpux.mk files 179
44. Using make rules from Solaris with the AIX 5L make command 180
45. Trying to use make rules from HP-UX with AIX 5L make 181
46. Compiler diagnostics message format. 221
47. A severe error message. 222
48. Severe error message displayed with the -qsrcmsg flag 222
49. A very simple source file (foo.c). 224
50. PowerPC assembler version of the bar.c. 226
51. A preprocessed .i file . 228
52. Using the -M flag to generate a .u target file . 229
53. Disassembling a program . 237
54. Trying to undefine __LINE__ . 247
55. Trying to redefine __TIME__ using #define . 247
56. Changing -qchars to get warnings . 248
57. A simple C program that uses #defines to determine build information. . 249
58. Compiling and running the program in Figure 57. 249
59. Executables created using static library and shared library. 259
60. Sample development directory structure . 273
61. Illustration of objects in fish.o and animals.o . 295
62. 1:1 thread model . 325
63. M:1 thread model . 326
64. M:N thread model . 327
65. State transitions for a common multiplexed thread 330
66. Thread specific data, simplified view . 360
67. Output from mandelbrot1.c, 35 horizontal lines . 392
68. Charts of execution time . 394
69. Stack template declaration. 398
70. Stack template member function definition . 399
71. Selecting the program to debug. 440
72. Distributed debugger main panel . 442
73. Breakpoint at line 55 . 443
74. Variables in thread 16 . 444
75. Stepping through the code one line at a time . 445
76. New breakpoint at line 66 . 446
77. Dereferencing a pointer value . 447
78. Contents of a dereferenced structure pointer . 448
79. Structure contents for the next thread . 449
xiv AIX 5L Porting Guide

Tables

1. Basic porting steps . 6
2. Basic C and C++ type sizes in bits in the ILP32 and LP64 model. 28
3. Comparison of C and C++ type sizes in bytes for AIX 5L 32
4. Cardinality of types with the same size in ILP32 and LP64 mode. 33
5. Cardinality of types with different sizes in ILP32 and LP64. 34
6. Integer constants defined by the system header file <limits.h>. 34
7. Floating point constants defined by the system header file <float.h> . . . 35
8. Long double constants for Power systems . 36
9. Long double constants for Itanium-based systems 37
10. Types of integer constants and their assigned ANSI C data type 59
11. Common integer constants and their types in ILP32 and LP64 59
12. Common integer constants and their values in ILP32 and LP64. 60
13. Data type alignment in bytes for AIX 5L . 65
14. Output of code example in Figure 24 for ILP32 and LP64 modes. 81
15. License certificate locations . 91
16. C for AIX Version 5 packages . 101
17. VisualAge C++ Professional for AIX Version 5 packages 101
18. Compiler driver extensions . 104
19. Limits imposed by AIX 5L . 113
20. System derived type description . 120
21. Relation between system derived and base data types 121
22. Fixed size integer data types defined by <inttypes.h> 123
23. Derived data types holding the smallest signed integer data types. . . . 123
24. Derived data types holding the smallest unsigned integer data types. . 123
25. Most efficient signed data types with the specified number of bits 124
26. Most efficient unsigned data types with the specified number of bits . . 124
27. Derived integer data types to hold any data pointer 125
28. Derived integer data types to hold maximum integer values. 125
29. Integer constants defined by <limits.h> for ILP32 and LP64 mode 126
30. Integer constants defined by <limits.h> for ILP32 mode 127
31. Integer constants defined by <limits.h> for LP64 mode 127
32. Constants for the minimum and maximum of some integer types. 128
33. Constants for the minimum and maximum of least sized integer types 128
34. Minimum and maximum constants for the most efficient integer types . 129
35. Minimum and maximum constants for the largest integer types 130
36. Maximum constants for the largest pointer data types 130
37. Predefined format string macros for (s)printf . 131
38. Rules to derive other format string macros from signed format. 131
39. Format string macros . 132
40. Predefined format string macros for (s)scanf() 132
© Copyright IBM Corp. 2001 xv

41. Format string macros . 133
42. Pointer data types cptr32, __cptr32, cptr64, and __cptr64 134
43. Pointer data types ptr32, __ptr32, ptr64, and __ptr64. 134
44. Pointer data types caddr_t, intptr_t, uintptr_t, and ptrdiff_t 135
45. Data types clock_t, dev_t, and time_t . 136
46. Data types fpos_t, fpos64_t, off_t, and off64_t 136
47. Data types gid_t, mode_t, pid_t, and uid_t . 137
48. Data types size_t, ssize_t, and wint_t . 138
49. Argument type for memory allocation routines 140
50. Argument types for file positioning routines. 140
51. The .c.a inference rules. 158
52. Comparison of special target support . 161
53. Internal macro support . 167
54. Predefined macros . 168
55. Search list for makefiles for the different make commands. 170
56. Environment variables and the make command 172
57. Switches used by the different make commands 173
58. Example of AIX 5L default priorities . 183
59. Priority manipulation subroutines . 184
60. AIX 5L system configuration determination . 189
61. AIX 5L shared or mapped memory subroutines 190
62. Signals . 194
63. Standard signal functions . 196
64. Semaphore subroutines . 205
65. System V style message queue subroutines. 211
66. Timer and cyclic interrupt subroutines. 215
67. Compiler limits . 219
68. OBJECT_MODE settings and the compiler behavior 220
69. Diagnostic messages their severity and the compiler response 221
70. Error types and return codes . 222
71. Type conversions to signed integer types . 230
72. Type conversions to unsigned Integer types . 231
73. Type conversions to floating-point types . 233
74. Directory structure of the C compiler . 236
75. Files used by the C compiler . 237
76. ANSI standard predefined preprocessor macros 244
77. AIX 5L specific predefined preprocessor macros 245
78. Directory structure of the VisualAge C++ compiler 251
79. Files used by the VisualAge C++ compiler . 252
80. Specific predefined macro for C++ . 255
81. The -G option . 277
82. Order of initialization of objects in prriolib.a. 297
83. Linker flag comparison . 301
xvi AIX 5L Porting Guide

84. Operations similarities for processes and threads. 312
85. AIX POSIX thread conformance . 312
86. Thread management . 314
87. Execution scheduling . 316
88. Synchronization . 318
89. Thread specific data . 319
90. UNIX 98. 320
91. Non-portable thread routines in AIX 5L . 322
92. Attributes of the pthread_attr_t type for AIX 5L 333
93. Cancellation point functions . 339
94. Function where cancellation points may occur 340
95. Effect of calling pthread_join . 343
96. List of AIX interfaces that are not thread-safe. 363
97. AIX 5L C driver programs . 365
98. AIX implementation of threads . 371
99. POSIX threads . 372
100. X/Open UNIX 98 . 376
101. Supported POSIX thread options for AIX 5L . 378
102. Not supported POSIX thread options for AIX 5L 378
103. Supported thread models . 379
104. Mapping of Solaris threads to POSIX/UNIX 98 threads 380
105. Mapping of Compaq Tru64 CMA threads to POSIX/UNIX 98 threads . 381
106. Mapping of HP-UX DCE threads to the POSIX/UNIX 98 threads 384
107. Default values for pthreads attributes in AIX 5L 388
108. Description of example programs . 391
109. Timing data for mandelbrot programs . 392
110. Single suffix rules . 477
111. Double suffix rules . 491
112. Licensing options. 527
113. Standards compliance options . 527
114. Aliasing options . 530
115. Inlining options . 531
116. Side effects options . 532
117. Code size reduction options . 532
118. Compile time optimization options. 533
119. Performance data collection options . 533
120. Loop optimization options . 537
121. Processor and architectural options . 538
122. Multiple file optimization . 539
123. Optimization flags . 539
124. Restricting optimization . 540
125. Other optimization flags. 541
126. Data alignment compiler options . 544
 xvii

127. Floating point size . 546
128. Rounding of floating points options . 547
129. Floating point traps . 548
130. Single precision options . 548
131. Other floating point options . 550
132. Parallelization options . 552
133. Source code options . 553
134. Compiled code options . 559
135. Compiler mode options . 562
136. Compiler diagnostics options . 564
137. Debugging options . 569
138. String literal options . 572
139. Linking options . 573
140. Directory search options . 576
141. Other linker options . 576
142. Target environment options. 578
143. AIX options for GNU GCC. 580
144. RS/6000 and pSeries specific options for GNU GCC 581
145. Itanium specific options for GNU GCC . 588
xviii AIX 5L Porting Guide

Preface

When porting an application to a new platform or operating system, there are
things you have to know and questions you have to ask, such as:

 • What programming models are available?

 • How are threads implemented?

 • What link options do I need?

 • Why do my makefiles not work any more?

We have tried to condense all of these questions (and answers) into one
document, and this redbook is the result. It has been designed to provide
guidance and reference materials for system and application programmers
who have been given the task of porting applications (using the C and C++
languages) to the AIX 5L operating system. This redbook assumes the reader
is familiar with the C and/or C++ programming languages and UNIX operating
systems. The purpose of this book is to make your life easier.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Richard Cutler is an AIX and RS/6000 Technical Specialist at the ITSO,
Austin Center. Before joining the ITSO, he worked in the RS/6000 Technical
Center in the UK, where he assisted customers and independent software
vendors with porting their applications to AIX.

Allan Cheng is an Advisory I/T Specialist in IBM Denmark. He has six years
of experience in the IT industry. He holds a Ph.D. degree in computer
science, a bachelor’s degree in mathematics, and has five years experience
in academic research and teaching. His areas of expertise include technical
project management, consulting, AIX-based technical solution architecture
(HW/SW), ERP- systems, Oracle and DB2 databases, UNIX operating
systems, development, and C-programming.

Jacob Hsu is an Advisory Technical Consultant in IBM Australia. He has 10
years of experience in AIX/6000 field. He holds a master’s degree in Applied
Mathematical Science from the University of Georgia. His areas of expertise
include AIX, RS6000, SP, Firewall, Networking (Router, Switch...), and
Windows NT. He is also an MS Windows NT MCP.
© Copyright IBM Corp. 2001 xix

Jesper F Ljungberg is an Advisory I/T Specialist in IBM Denmark. He has
six years of experience in the IT industry. He has worked at IBM for three and
a half years. His areas of expertise include technical project management,
consulting, solution design, C programming, DB2, Oracle, AIX, and the
RS/6000 hardware platform. He is still working on getting his master’s degree
in Computer Science.

Peter Nutt is a Senior I/T Specialist in IBM United Kingdom. He has recently
joined IBM and spent the last 11 years in the real-time simulation and data
acquisition world using C, C++, Ada, and FORTRAN. His areas of expertise
cover code porting, real-time systems, and video-on-demand.

Michael Perzl is an I/T specialist from IBM Germany. He works in Pre-sales
Technical Support within the Web Server Sales division of the Enterprise
Systems Group of EMEA Central Region. His main responsibility is AIX
technical support and porting support for ISVs and other customers. Besides
AIX, he has worked with most major UNIX derivatives over the last ten years.
He holds a MSc degree in Computer Science and a PhD in Mathematics, both
from Munich Technical University.

Thanks to the following people for their invaluable contributions to this project:

International Technical Support Organization, Austin Center
Wade Wallace

IBM Austin
Vandana Kumar, Jim Pedersen, Ron Saint Pierre

IBM United Kingdom
Mike Pearson

Nokia Denmark
Morten Ryttov Pedersen

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

 • Fax the evaluation form found in “IBM Redbooks review” on page 617 to
the fax number shown on the form.

 • Use the online evaluation form found at ibm.com/redbooks
xx AIX 5L Porting Guide

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

 • Send your comments in an Internet note to redbook@us.ibm.com
 xxi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xxii AIX 5L Porting Guide

Chapter 1. Introduction

In the middle of porting an application from one platform to another, you find
yourself missing one piece of information and the man pages seem to lead
you in circles - where can you go for information? This redbook has been
written to help you port applications to the AIX 5L operating system by
detailing the most common problems encountered, demonstrating important
concepts with source code examples, and generally providing a source of
reference material. It is focused on the porting process from an UNIX-based
platform to AIX 5L and does not cover the porting of Microsoft Windows
applications, as they are usually very much tied to the underlying operating
system. Well-written programs that adhere to industry standards (such as
POSIX.1, UNIX 95, and UNIX 98) and standard language definitions (such as
ANSI C or ANSI C++) that refrain from using non-standard extensions and do
not rely on platform-specific dependencies can usually be ported quite easily
to a new operating system with a minimum amount of extra work besides
recompiling and debugging.

In most cases, when an application is ported from a reasonably up-to-date
UNIX-based operating system, the changes may be confined to becoming
more compliant with industry standards or perhaps with a newer version of
the same standard. Thus, after these changes are made, migration usually
will require nothing more than a simple recompile. However, there are some
exceptions. This redbook covers the various migration scenarios and those
instances that require additional changes to the application source and/or the
way the application is built. It also covers the development environment with
regards to AIX 5L and the IBM C and C++ language compilers with their
respective command line options.

1.1 Helpful terms and definitions

The following terms are used throughout the book. It is vital that you become
familiar with the terminology used, because some terms seem very similar
but have subtle yet important differences.

Source platform Term used to describe the system (hardware and
operating system) that the application is currently
running on.

Target platform Term used to describe the new operating
environment that the application is being moved
to. In the context of this book, the target operating
system is AIX 5L.
© Copyright IBM Corp. 2001 1

Power systems A term used to collectively describe systems with
processors from the POWER, POWER2,
PowerPC, POWER3, or RS64 families. All
IBM ^ pSeries and RS/6000 systems fall
into this category.

Itanium-based systems A term used to collectively describe systems with
Intel® ItaniumTM processors.

1.2 AIX 5L benefits and features

If you are a developer working on AIX for the first time, you may be
wondering, what is AIX and why should I port my code? AIX 5L is a unique
and open enterprise class high-performance UNIX-based operating system
that supports two different hardware platforms. AIX 5L supports both Power
systems and Itanium-based systems. When your application can run under
AIX 5L, you have the ability to choose the processor type of your system and
the configuration. Systems range from entry level workstation/server systems
to large high capacity, high availability systems with software compatibility
right through the range. If you want raw power, the IBM ^ range leads
the field. If your application already runs on Linux, the AIX Toolbox for Linux
Applications CD contains a collection of open source and GNU software built for
AIX 5L for Power systems and Itanium-based systems. These tools provide the
basis of the development environment of choice for many Linux application
developers. All the tools are packaged using the easy to install RPM format.
AIX’s advanced technology and a strong Linux affinity make it the most open
UNIX-based operating system in the industry.

More information on the Toolbox CD can be found in the IBM Redbook
Running Linux Applications on AIX, SG24-6033.

Some of the main benefits and features of AIX 5L are as follows:

 • Supports both 32-bit and 64-bit application environments with no
performance penalty

 - Flexibility

 • Supports both Power and Itanium-based systems

 - Choice

 • New JFS2 file system

 - Very large file support

 • WebServer enhancements
2 AIX 5L Porting Guide

 - More caching of dynamic content

 • System and network security enhancements

 • Network, I/O scalability and RAS enhancements

 - Improved throughput and reliability

 • Workload management tool

 - Assign system resources the way you want

 • Strong Linux affinity

 - Flexibility and choice

1.3 Approaches to porting

Porting an application involves at least two platforms: one (or more) source
platform(s) and a target platform. When porting an application to run on
another platform, a number of factors need to be considered:

 • Is anything being changed as part of the port to the target platform? For
example, is the application being changed from 32-bit to 64-bit, or altered
to use a different database system?

 • Are all required third party packages (such as databases and class
libraries) available on the target platform? Does the target platform
support the same (or compatible) versions of those products?

An exercise is truly a port if the hardware and operating systems are the only
things that are changed. For example, moving an application running on
HP-UX with a database product to run on AIX 5L with the same version of the
same database product is truly a port. However, moving the application from
HP-UX and database product A to AIX 5L with either another version of
database A or database product B is not just a port. In addition to making
changes to the application, because the underlying operating system has
changed, other changes will be required because of the change in database
product. The changes are likely to be significant if a different product is used
rather than just a different version of the same product. This concept is
illustrated in Figure 1 on page 4. Assume that the source platform is HP-UX
10, and the application currently runs with Version 4 of database product A.
The target platform is AIX 5L with Version 5 of database product A.
Chapter 1. Introduction 3

Figure 1. Porting methods

If Version 4 of database A is supported on AIX 5L, there are three possible
methods that could be used to achieve the objective:

Method A The original code is modified to use Version 5 of database A
while remaining on the source platform. Once this combination
is proven, the code is moved to the AIX 5L system with Version
5 of database A and the port completed. Testing can be
performed and the results compared against the reference
source platform to prove correct operation.

Method B The code is moved to the AIX 5L system running Version 4 of
database A. Testing can be performed against the reference
source platform to prove correct operation. When you are
satisfied that the code is functioning correctly, checkpoint the
configuration. After this has been done, the operating system
change (from HP-UX to AIX 5L) is complete. The database can
now be upgraded to Version 5, and enhanced code can be
tested against the checkpoint configuration.

Original
code

Original
code

Modified
code

Modified
code

Source platform Target platform
AIX 5L

A

A

B

B
C

4 AIX 5L Porting Guide

Method C If approach A or B cannot be followed, for example, Version 4 of
the database is not supported on AIX 5L, or Version 5 is not
supported on HP-UX 10, then it will be necessary to port the
code directly to use Version 5 of the database on AIX 5L.

We recommend that before you start the port, checkpoint your source code
and test it to ensure correct operation. The checkpoint should include a full
recompile, rebuild, and test cycle. The writers of this guide have all been
involved in porting projects where time has been lost because the code did
not behave correctly on the target system. Deeper investigation uncovered
that the source tree used for the port included a buggy software update that
was not in the original source tree. Thus, the claim often heard when porting
that ‘It works OK on the source system!’ cannot be trusted unless you have
tested it yourself.

Very often, it will not be possible to use either method A or method B because
of software support issues. Using the context of the example described
above, if Version 5 of database A is not available for HP-UX 10, then method
A is not feasible. Similarly, if Version 4 of database A is not available for AIX
5L, then method B would not be an option. In some circumstances, method C
is the only available option to move from the source platform to the target
platform.

We suggest that, if possible, either method A or B shown in Figure 1 on
page 4 should be used, since they have the lower risk. Method C may seem
the easiest and quickest approach, but if things start to go wrong, there is
more to check and no immediate reference platform that can be used to verify
results. Of course, method C can work and may give you no problems at all;
the choice is yours.
Chapter 1. Introduction 5

1.3.1 Porting steps
Within this guide, porting activity has been broken into seven main steps (see
Table 1 and Figure 2 on page 7).

Table 1. Basic porting steps

Step Name Description

1 Prepare Do the groundwork to enable the porting of your
application. At this stage, there should be no actual coding
but some research to understand the differences (if any)
between the source and target platforms. Consider 32-bit
and 64-bit issues, data endianness, and any
implementation specific functionality that is used.
Chapter 2, “Endianness - byte ordering” on page 9 and
Chapter 3, “Issues regarding 32-bit and 64-bit” on page 19
provide more information.

2 Configure Set up your development environment so that it is ready to
start building your application. This is described in
Chapter 4, “Setting up the development environment” on
page 83. The environment includes your preferred shell,
makefiles, implementation specific features, compile and
link flags, and so forth.

3 Build Chapter 5, “Porting” on page 117 through to Chapter 8,
“The compilers” on page 219 contain information that may
help you with compile and link problems. It is not unusual
for code to go through several iterations of Steps 2 and 3
before a clean build is produced.

4 Test/debug The code crashes - what can I do? Chapter 12, “Test and
debug” on page 411 provides help with debug hints, tips,
and other useful utilities.

5 Performance
monitoring

Your code is running! How much CPU is it using? Can
the code use more standard features? Performance
tuning of applications is outside the scope of this book.
AIX 5L contains a number of performance monitoring
tools.

6 Enhance The code is running correctly under AIX 5L but there may
be extra performance, standards compliance, or
functionality that may be obtained by code enhancement.
Chapter 9, “AIX shared objects and libraries” on page 257
to Chapter 11, “C++ templates” on page 397 discusses a
variety of things that may be useful to you.
6 AIX 5L Porting Guide

Figure 2. Porting steps

7 Build distribution
pack

Will you have to support multiple systems or distribute
your application to others?
Refer to Chapter 20, “Packaging Software for
Installation” of AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs, which can
be found in the AIX 5L online documentation, for
information on packaging software for use with the AIX
installp command.

Step Name Description

Step 8:
Relax

Step 7:
Build Distribution Pack

Step 6:
Enhance

Step 5:
Performance Monitoring

Step 4:
Test/Debug

Step 3:
Build

Step 2:
Configure

Step 1:
Prepare
Chapter 1. Introduction 7

It should be noted that if the application is already running on a Linux system,
you have the option to recompile it and then run it natively on AIX 5L. Many
applications recompile and run without change. The AIX Toolbox for Linux
Applications CD contains GNU and other commonly used tools helpful for
recompiling an application for use on AIX. AIX Affinity with Linux uses a
Application Programming Interface (API) approach to providing Linux
application interoperability. This approach is not an environment or an
additional operating system layer or wrapper in which to run Linux
applications. It is the integration of Linux compatible APIs and header files
into AIX 5L. Thus, recompiled Linux applications are native AIX applications
and have access to all the reliability, scalability, and availability of AIX. The
result is a tighter integration of the application to the operating system than
can be achieved with an Application Binary Interface (ABI) approach. For
more information, please refer to the following URL:

http://www.ibm.com/servers/eserver/linux

1.4 Coding practices

Much of the material presented in this book is not specific to any one vendor,
nor is it specific to AIX 5L. Instead, it is just good coding practice to follow
industry standards. There are many books available covering this topic,
however some worthy of note are listed below.

 • The C Programming Language, Second Edition, by Kernighan, et al

 • The Design and Evolution of C++, by Stroustrup, et al

 • The Annotated C++ Reference Manual, by Ellis, et al

 • C++ Primer, Third Edition, by Lippman, et al

 • Programming Languages - C, found at:

http://web.ansi.org/public/std_info.html

(Look for ANSI/ISO/IEC 9899-1999.)

 • Programming Languages - C++, found at:

http://web.ansi.org/public/std_info.html

(Look for ANSI/ISO/IEC 14882-1998.)
8 AIX 5L Porting Guide

Chapter 2. Endianness - byte ordering

This chapter covers endianness (otherwise known as byte ordering) issues
and describes techniques for handling them. Byte ordering issues are often
encountered by developers during the process of migrating applications,
device drivers, and/or data files from one type of architecture to another.

2.1 Endianness neutrality

Although both PowerPC and Itanium architectures support big-endian (BE)
and little-endian (LE) implementations, the endianness of AIX 5L running on
Itanium-based systems and Power systems is different. AIX 5L for
Itanium-based systems is little-endian, and AIX 5L for Power systems is
big-endian. In order for an application or a device driver to use the same
source code base on both platforms, it must either be endian neutral, or use
conditional compilation to select appropriate code modules. A program
module is considered endian neutral if it retains its functionality while being
ported across platforms of different endianness. In other words, there is no
relation between its functionality and the endianness of the platform it is
running on.

2.1.1 Endianness - byte ordering
Endianness refers to how a data element and its individual bytes are stored
and addressed in memory. Logically, in a multi-digit number, the digit with a
higher order of magnitude is more significant. For example, in the four-digit
number 8472, the 4 is more significant than the 7. Similarly, in multibyte
numerical data, the larger the value that the byte is holding, the more
significant it is. For example, the hexadecimal value, 0x123456, can be
divided into three bytes: 0x12, 0x34, and 0x56 with arithmetic values of
0x120000, 0x3400, and 0x56. Obviously, byte 0x12 is the largest value;
therefore, it is the most significant byte, while byte 0x56 is the smallest part
and thus the least significant byte.

Most computers available today address memory in bytes while manipulating
it in words (of multiple bytes). When a word is placed in memory, starting from
the lowest address, there are only two sensible options: Either place the least
significant byte first (known as little-endian) or place the most significant byte
first (known as big-endian). The two different approaches are shown in
Figure 3 on page 10.
© Copyright IBM Corp. 2001 9

Figure 3. Byte ordering: little-endian and big-endian

In the register layout shown in Figure 3, a is the most significant byte, and h is
the least significant byte. The figure also shows the byte order in memory. On
big-endian systems, the most significant byte will be placed at the lowest
memory address. On little-endian systems, the least significant byte will be
placed at the lowest memory address.

POWER, PowerPC, most RISC-based computers, IBM 370 computers, and
Internet protocol (IP) are some examples of platforms that use the big-endian
data layout. Intel processors, Compaq Alpha processors, and some
networking hardware are examples of systems that use the little-endian data
layout.

There is an endless debate going on in the computer world about the merits
of each approach; little-endian is claimed to be the most logical byte ordering
while big-endian is claimed to be the most natural or intuitive one. Since a

hgfedcba
063

h

0

g

1

f

2

e

3

d

4

c

5

b

6

a

7

a

7

b

6

c

5

d

4

e

3

f

2

g

1

h

0

h

7

g

6

f

5

e

4

d

3

c

2

b

1

a

0

little-endian memory

address

address

bit

big-endian memory

register (always big-endian)

address
10 AIX 5L Porting Guide

well-written application or device driver can handle both, this issue will not be
discussed.

Of course, there is also the endianness of bits within one byte to consider, but
it is pretty safe to assume that every system is big-endian when it comes to
bit ordering in memory. In data transmission, however, it is possible to have
either bit order.

2.1.1.1 Summary of general attributes of storage models
 • The big-endian model addresses individual bytes in a multibyte data

element from most significant byte to least significant byte (from left to
right), which is similar to how data elements are referenced (from left to
right).

 • With the little-endian model, data elements and individual data bytes
within a data element are referenced in opposite directions.

 • The starting address of a data element in both storage models remains the
same across the two data storage models.

 • Individual bytes within a multibyte data element are addressed in a
reversed order between the big-endian and little-endian data storage
models.

 • For single-byte data types, endianness is of no consequence; characters
(or other single-byte data types) are at the same (starting) addresses in
both storage models.

 • The endian dependency becomes a potential problem if internal bytes
and/or a proper subset of a data element are referenced individually
and/or multiple data elements are referenced as an aggregated, single
data element.

 • Packing bit fields into a single data element can be problematic if the data
needs to be stored to a persistent storage device shared by a machine
using the other data storage model. But it is not an issue if the data is not
shared between big-endian and little-endian machines. The internal
locations of bit fields in a data element are of no consequence between
the two data storage models if the bit fields are referenced as defined.
Though code will work correctly (in its endianness), comments associated
with code may need to be changed to present the internal bit patterns in a
reversed order.
Chapter 2. Endianness - byte ordering 11

2.2 Dealing with endianness

This section describes the causes of endianness issues and
recommendations for correcting them. In general, if a program module is
endian neutral, the compiler will basically resolve the byte order difference
between big-endian and little-endian if data is referenced consistently. That is
to say:

 • The multibyte data element is not referenced partially (individual byte or
proper subset).

 • Multiple data elements are not referenced as a single large data element.

Non-uniform data referencing is one source of endianness problem. It is often
featured by data type mismatches resulting from either data element casting,
use of a union data structure, or the use and manipulation of bit fields.

Sharing data across platforms is the second common source of endianness
problem. For example, a big-endian system retrieves database data stored by
a little-endian system.

Exchanging of data between devices of different endianness and devices on
a network is the third source of endianness problems. For example, AIX on
Power systems uses the big-endian model, but the PCI bus uses the
little-endian model. TCP/IP protocols requires data to be sent in network byte
order, which is the big-endian model.

2.2.1 General solution guideline
If you believe your code has a degree of endian sensitivity, you should:

 • Identify the endianness dependency code by using lint or inspecting the
code.

 • Manually change the machine independent part of the code to make it
endian neutral.

 • Rewrite the machine dependent part of the code if the problems cannot be
easily resolved.

2.2.2 Nonuniform data referencing
The nonuniformity in data referencing is a strength of the C language and
makes the language very popular for programming system-level software,
including operating systems and device drivers. The language features that
enable this strength include type casting, pointer manipulation, bit fields,
structures, unions, and flexible type checking. However, these very same
12 AIX 5L Porting Guide

features are also sources of endianness portability issues. For example, the
C source shown in Figure 4 refers to an integer as a group of four bytes.

Figure 4. Nonuniform data reference using pointer

Figure 4 shows the memory layout of the 32-bit integer val on little-endian
and big-endian systems after the assignment on line 6. We may achieve the
same effect by using the union shown in Figure 5.

Figure 5. Nonuniform data reference using union

The endianness problem surfaces on line 7 where we expect to read val byte
by byte, starting with the most significant one. As we can deduce from the

1 int main(void) {
2 int val;
3 char *ptr;
4
5 ptr = (char*) &val; /* pointer ‘ptr’ points to ‘val’ */
6 val = 0x89ABCDEF; /* four bytes constant */
7 printf(“%X.%X.%X.%X\n”, ptr[0], ptr[1], ptr[2], ptr[3]);
8 exit(0);
9 }

89

3

AB

2

CD

1

EF

0address

big-endian
EF

3

CD

2

AB

1

89

0address

little-endian

1 union {
2 int val;
3 char c[sizeof(int)];
4 } u;
5 int main(void) {
6 u.val = 0x89ABCDEF; /* four bytes constant */
7 printf(“%X.%X.%X.%X\n”, u.c[0], u.c[1], u.c[2], u.c[3]);
8 exit(0);
9 }
Chapter 2. Endianness - byte ordering 13

figure, this program will give us EF.CD.AB.89 on little-endian platforms,
rather than the 89.AB.CD.EF we may have been expecting.

2.2.2.1 Technique 1: Using macros and directives
To make the code portable, we use macros and conditional compile
directives, as shown in Figure 6.

Figure 6. Using macros to neutralize endianness effect

The program will be ready for little-endian platforms by making just one
change on line 3: changing the definition of BYTE_ORDER from
BIG_ENDIAN to LITTLE_ENDIAN.

2.2.2.2 Technique 2: Use compile time option
A better way to implement this is to define the value of BYTE_ORDER on the
compiler command line. This removes the need to edit every file in a device
driver or application when compiling on a new platform with a different byte
order. Instead, you may only have to edit the makefiles used to build the
driver or application.

2.2.2.3 Technique 3: Testing memory layout
Another approach is to test the memory layout of a predefined constant. For
example, we know that the layout of a 32-bit integer variable with a value of 1
will be 00.00.00.01 for big-endian and 01.00.00.00 for little-endian. By looking
at the first byte of the constant, we will be able to tell the endianness of the
running platform and then take the appropriate action.

Figure 7 shows an example of determining the endianness at run time.

1 #define BIG_ENDIAN 0
2 #define LITTLE_ENDIAN 1
3 #define BYTE_ORDER BIG_ENDIAN
4 int main(void) {
5 int val;
6 char *ptr;
7 ptr = (char*) &val;
8 val = 0x89ABCDEF;
9 #if (BYTE_ORDER == BIG_ENDIAN)
10 printf(“%X.%X.%X.%X\n”, u.c[0], u.c[1], u.c[2], u.c[3]);
11 #else /*! BYTE_ORDER == BIG_ENDIAN*/
12 printf(“%X.%X.%X.%X\n”, u.c[3], u.c[2], u.c[1], u.c[0]);
13 #endif /*BYTE_ORDER == BIG_ENDIAN*/
14 exit(0);
15 }
14 AIX 5L Porting Guide

Figure 7. Determining the endianness at run time

The previous example tests the first byte of the multibyte integer, _endian_,
to determine if it is 0 or 1. If it is 1, the running platform is assumed to be
little-endian. Of course, the drawback to this approach is that the variable
must be tested each time a data access of this type is performed, thus adding
additional instructions to the code path, which of course adds a performance
penalty.

The intended platform for an application or a device driver, along with the
endianness of that platform, is known at compile time. Given that both device
drivers and applications have performance considerations, using a compile
time definition is the best method of selecting the appropriate endian-specific
code segment.

2.2.3 Exchanging and sharing data
In general, these problems are typically handled by the application or data
sender, which usually performs some operations on the data to convert the
data to the canonical form and then sends the data. The data receiver reads
the data and performs some operations to convert the data from canonical
form to a usable form. In the case of the networking code, the data receiver
may be either little-endian or big-endian.

2.2.3.1 Sharing data
The application programs must choose their own canonical form, decide that
data will not be shared, or provide utilities to convert between the forms. XDR

1 const int endian = 1;
2 #define is_bigendian() ((*(char*)&endian) == 0)
3
4 int main(void) {
5 int val;
6 char *ptr;
7 ptr = (char*) &val;
8 val = 0x89ABCDEF;
9 if (is_bigendian()) {
10 printf(“%X.%X.%X.%X\n”, u.c[0], u.c[1], u.c[2], u.c[3]);
11 } else {
12 printf(“%X.%X.%X.%X\n”, u.c[3], u.c[2], u.c[1], u.c[0]);
13 }
14 exit(0);
15 }
Chapter 2. Endianness - byte ordering 15

(eXternal Data Representation) is one of the protocols that provide a
canonical data format for sharing data across heterogeneous systems.

In Figure 8, we define two macros, BE_u32() and u32_BE(), to convert a
32-bit integer from big-endian to native endian and from native endian to
big-endian respectively. The macros will not do any conversion on a
big-endian platform.

Figure 8. endian conversion macros

2.2.3.2 Exchanging data
One good example of exchanging data is the TCP/IP protocol, which
specifies its data format in big-endian byte order. Any device driver dealing
with the protocol will have to convert data from the native endianness of the
running platform to big-endian before sending the data and convert it from
big-endian to native-endian after receiving it from the network. This
conversion can be performed by a macro that swaps data to and from a

1 #if (BYTE_ORDER == BIG_ENDIAN)
2 # define BE_u32(i) (i)
3 # define u32_BE(i) (i)
4 #else /*BYTE_ORDER*/
5 # define BE_u32(i) (\
6 (((i)&0xFF000000) >> 24) + \
7 (((i)&0x00FF0000) >> 8) + \
8 (((i)&0x0000FF00) << 8) + \
9 (((i)&0x000000FF) << 24) \
10)
11 # define u32_BE(i) (\
12 (((i)&0xFF000000) >> 24) + \
13 (((i)&0x00FF0000) >> 8) + \
14 (((i)&0x0000FF00) << 8) + \
15 (((i)&0x000000FF) << 24) \
16)
17 #endif /*BYTE_ORDER*/
18
19 int main(void) {
20 int val;
21
22 val = 0x89ABCDEF;
23 printf(“BE(val) = %.4x\n”, u32_BE(val));
24 exit(0);
25 }
16 AIX 5L Porting Guide

specific byte order. If the native endianness is the same as the targeted byte
order, the macro will do nothing.

Network communication
In fact, in the case of TCP/IP, there are a set of conversion routines defined in
POSIX to perform such operations. The routines include htonl(), ntohl(),
htons() and ntohs(). The s in the routine name represents short and the l
represents a 32-bit quantity. One reason that the conversion to native
endianness (or host endianness) is necessary is that math operations are
performed on data items, such as IP addresses (32 bits in IPv4), and TCP
port values. These routines are defined as macros on AIX 5L on both Power
and Itanium-based systems. The macros only perform the conversion when
on little-endian Itanium-based systems. Although the macros perform no real
work on Power systems, they should still be used in an application source to
ensure endian neutral code.
Chapter 2. Endianness - byte ordering 17

18 AIX 5L Porting Guide

Chapter 3. Issues regarding 32-bit and 64-bit

When preparing to port, some decisions have to be made regarding 32-bit
and 64-bit programming models. This chapter is intended to shed light on
related issues that should be considered upfront. We recommend that you
use the AIX 5L environment that matches your source environment. In other
words, avoid moving from a 32-bit to a 64-bit programming model as part of
the process of migrating to AIX, because this means the exercise is no longer
a true port but rather a development activity. If you wish to develop the
application using the 64-bit programming model, we suggest you treat the
migration to AIX as two steps (port to AIX 32-bit environment, test and verify,
and then migrate to 64-bit) rather than one. This matches up with Method B,
as described in Section 1.3, “Approaches to porting” on page 3, rather than
Method C.

3.1 Overview of programming models

The first step in porting your source code to AIX 5L is to choose a
programming model. The term programming model refers to the instruction
set and data storage types (among other things) which are provided by the
compilation tools and execution environment on a particular operating
system.

3.1.1 Available programming models
AIX 5L provides you with two different programming models:

 • ILP32

 • LP64

3.1.1.1 ILP32
This is the native 32-bit environment for AIX 5L. Table 2 on page 28 shows
the bit storage quantities for base types in this environment, where the
address space is restricted to 32 bits. This programming model is the most
appropriate when porting 32-bit applications to AIX 5L. More specifically, this
model:

 • Is appropriate for “compile-and-go'' software

 • Has better cache use due to smaller data sizes

 • Provides automatic data conversion in and out of kernel space

 • Is a fully supported environment, and not just an intermediate step during
the transition to 64 bits
© Copyright IBM Corp. 2001 19

3.1.1.2 LP64
This is the native 64-bit environment for AIX 5L. Table 2 on page 28 shows
the bit storage quantities for base types in this environment, where the
theoretical address space is [0..264-1]. The LP64 programming model:

 • Is the industry-wide 64-bit model

 • Provides all the features (apart from data type size and alignment) of the
ILP32 model

 • Is appropriate for new and high-end application software

Bear in mind that 64-bit applications can only run on 64-bit hardware.
Itanium-based systems and the following 64-bit Power systems are capable
of running 64-bit user applications:

 • RS/6000 7013 Models S70 and S7A
 • RS/6000 7015 Models S70 and S7A
 • RS/6000 7017 Models S70, S7A, and S80
 • RS/6000 7025 Models H80 and F80
 • RS/6000 7026 Models H70, H80, and M80
 • RS/6000 7043 Models 260 an d270
 • RS/6000 7044 Models 170 and 270
 • IBM ^ pSeries 680 Model S85
 • IBM ^ pSeries 640 Model B80
 • IBM ^ pSeries 660 Model 6H1
 • IBM ^ pSeries 620 Model 6F1

32-bit Power systems can not run 64-bit applications.

3.1.2 Porting your code
Once you have chosen the AIX 5L programming model you want your
program to use, consider the issues discussed in the following sections.

3.1.2.1 Porting code to the LP64 programming model
Well-written code (see Section 1.4, “Coding practices” on page 8) that does
not depend on a specific byte order or external data formats, and uses
function prototypes, appropriate system header files, and system-derived
data types throughout, will probably compile and run correctly in the LP64
model. This generally applies to shareware and freeware source code.

For other source code, porting to this model can be non-trivial. Among the
things that might make a port challenging are:

 • Code that depends on relative integer sizes (int and long)
20 AIX 5L Porting Guide

 • Code that depends on the specific size of pointers and integers

 • Code that uses function calls without full prototype declarations

 • Code that depends on the specific size and alignment of objects that differ
between the 32-bit and 64-bit architectures

 • Changes in fundamental system data types (which may have been
privately defined, which is not recommended)

3.1.2.2 64-bit kernel
The 64-bit AIX 5L kernel is the only kernel provided on Itanium-based
systems. For Power systems, both 32-bit and 64-bit kernels are provided.
The 64-bit kernel can be installed and enabled on 64-bit machines.

Kernel extensions and device drivers must be compiled in 64-bit mode to be
loaded into the 64-bit kernel. The 64-bit kernel provides the environment for
porting and developing kernel extensions.

3.2 32-bit versus 64-bit computing

Applications continue to incorporate more and more functionality with every
release and thus become more complex. As data sets grow in size, the
address space requirements of these applications continue to grow. Certain
classes of applications already exceed the 4 GB address space limitations of
today’s 32-bit systems. Some examples of these types of applications
include:

 • Database applications, especially those that perform data mining

 • Web caches and Web search engines

 • Components of CAD/CAE simulation and modeling tools

 • Scientific and technical computing applications, such as computational
fluid dynamics

The primary objective for the development of 64-bit computing has been to
make these and other large applications run efficiently.

Before going through the effort of converting an application from 32-bit to
64-bit, it is important to understand whether the conversion will lead to a
measurable benefit in scalability and performance. To make that
determination, it is important to understand the benefits of 64-bit systems and
what changes to the application are needed to take advantage of these
benefits.
Chapter 3. Issues regarding 32-bit and 64-bit 21

The Intel Itanium chip is an implementation of the Intel Itanium architecture,
and AIX 5L for Itanium-based systems has a 64-bit kernel. For Power
systems, both 32-bit and 64-bit kernels are provided. The 64-bit kernel can be
installed and enabled on 64-bit machines. This combination offers software
developers the following features (not previously available on 32-bit
systems)(:

 • Full 64-bit addressing that expands the address space available to
applications beyond the 4 GB limit on 32-bit systems

 • Large process data space mapped in a large virtual address space

 • Support for large data structures and executables

 • Large file support using standard system library calls

 • Large file caches on systems with large physical memory

 • 64-bit data elements with instructions for performing efficient arithmetic
and logical computations as operations, using full-register widths, the
full-register set, and new instructions

 • Greater scalability of system derived data types, for example, time_t and
dev_t

3.2.1 Large virtual address space beyond the 4 GB barrier
The curve in Figure 9 on page 23 shows a typical performance versus
problem size behavior for an application running on a machine with a large
amount of physical memory installed. For very small problem sizes, the entire
program can fit into the on-chip data cache and therefore runs the fastest.
Only very few programs fit completely into the on-chip data cache, so for
small programs the performance penalty is not that high if they still can fit into
the external data cache. Even that number of programs is not very high.
However, for some applications, the data area of the program becomes large
enough that the program uses the entire 4 GB virtual address space available
to a 32-bit application.
22 AIX 5L Porting Guide

Figure 9. Typical performance versus problem size curve

Despite the 32-bit virtual address limit, 32-bit applications can still handle
large problem sizes, usually by splitting the application data set between
memory and disk. However, the performance penalty involved with such a
step is very large, as transferring data to and from a disk drive takes orders of
magnitude longer than memory-to-memory transfers.

Many servers today can easily handle more than 4 GB of physical memory,
with high-end desktop machines following the same trend, but no single
32-bit program can directly address more than 4 GB at once. A 64-bit
application, however, can use the 64-bit virtual address space to allow up to
18 ExaBytes (1 ExaByte is approximately 1018 bytes) to be directly
addressed; thus, larger problems can be handled directly in memory. If the
application is multithreaded and scalable, then more processors can be
added to the system to speed up the application even further. These kind of
applications are limited only by the amount of physical memory in the
machine.

It may not seem obvious at first, but the ability to handle larger problems
directly in physical memory is the most significant performance benefit of
64-bit machines. Potential examples of applications include:

 • Database servers have improved performance when they can load
significant portions of the database into memory.

 • Larger CAD/CAE models and simulation programs may need to be able to
map the entire simulation model into virtual memory.

 • Larger scientific computing problems can fit into the physical memory
beyond the 4 GB barrier.

relative
performance

log problem size

32-bit virtual
address limit

hardware physical
address limit

on chip data cache

external data cache
Chapter 3. Issues regarding 32-bit and 64-bit 23

 • Web servers and Web caches can hold more pages in memory, thus
reducing latency times.

Therefore, applications that are clearly limited by the 32-bit address space
should make the transition to 64-bit mode.

3.2.2 Beyond large address space
Other reasons why you would want to make the transition of your application
from a 32-bit to a 64-bit system environment include:

 • Some I/O bound applications can trade off memory for disk I/O. By
restructuring I/O bound applications to map larger portions of data into
memory on large physical memory machines, disk I/O can be reduced.
This reduction in disk I/O can improve performance because disk I/O
transfers are more time-consuming than memory access.

 • Many databases require data sets larger than 2 GB. It is simpler to store
information for a large data set in a single file. 64-bit applications can use
the standard I/O routines to access files larger than 2 GB.

 • Computation with 64-bit integer quantities can be performed using the
wider data paths of a 64-bit processor to gain performance.

 • System interfaces have been enhanced, or limitations removed, because
the underlying data types that underpin those interfaces have become
larger.

3.2.3 64-bit performance considerations
When applications are compiled in 32-bit mode (ILP32) on AIX 5L, these
applications usually perform better than when they are recompiled in 64-bit
mode (LP64). Some of the reasons for this include:

 • 64-bit programs are larger. Depending on the application, the increase in
the program size can increase cache and TLB (translation lookaside
buffers) misses and place greater demands on physical memory.

 • 64-bit long division is more time-consuming than 32-bit integer division.

 • 64-bit programs that use 32-bit signed integers as array indexes require
additional instructions to perform sign extension each time an array is
referenced.

Here are some ways to improve the performance of your 64-bit application:

 • Avoid performing mixed 32-bit and 64-bit operations, such as adding a
32-bit data type to a 64-bit type. This operation requires the 32-bit type to
be sign-extended to clear the upper 32 bits of the register.
24 AIX 5L Porting Guide

 • Avoid 64-bit long division whenever possible.

 • Eliminate sign extension during array references. Change unsigned int,
int, and signed int variables used as array indexes to long variables.

3.2.4 Port to 64-bit or leave your application 32-bit
Software developers must determine if the application they want to port:

 • Can benefit from more than 4 GB of virtual address space, for example,
for more buffer pool, for mapping files into memory, and for shmat and mmap

 • Can benefit from more physical memory (greater than 4 GB) and, if so, is
the user of the application likely to implement it on a system with more
than 4 GB

 • Needs 64-bit size integers

 • Needs larger files and data structures than those supported on 32-bit
systems

 • Is restricted by 32–bit interface limitations

 • Can benefit from full 64-bit registers to do efficient 64-bit arithmetic

The disadvantages of 64-bit applications are:

 • 64-bit applications require more stack space to hold the larger registers.

 • Applications have a bigger cache footprint due to the larger pointer size.

 • 64-bit applications do not run on 32-bit platforms.

3.2.4.1 Estimating the effort of conversion
If the application does not necessarily need any of the features present in
64-bit operating environments, there is little reason to force a transition,
especially if you want the application to be ported as quickly as possible. The
application can remain as a 32-bit application and still run on a 64-bit
operating system without requiring any code changes or recompilation. In
fact, 32-bit applications that do not require 64-bit capabilities should probably
remain 32-bit to maximize portability. As an example of this, most of the
AIX 5L user commands, such as ls, cat, and vi, still use the 32-bit
programming model, since there is no advantage in them being converted to
64-bit.

3.2.4.2 Large files support
If an application requires only support for large files, it can remain 32-bit and
use the large files interface. However, if the application uses files larger than
2 GB, you might want to convert it to a 64-bit application instead of using the
Chapter 3. Issues regarding 32-bit and 64-bit 25

large file APIs directly; as in 64-bit system environments, the standard APIs
can handle large files directly.

3.2.4.3 System limits removed
The 64-bit system interfaces are inherently more capable than some of their
32-bit equivalents. Application programmers concerned about year 2038
problems (when 32-bit time_t runs out of time) can use the 64-bit time_t.
While the year 2038 seems a long way off, applications that do computations
concerning future events, such as insurance programs or mortgages, might
require the expanded time capability.

3.2.4.4 Application programming interfaces
The 32-bit application programming interfaces (APIs) supported in the 64-bit
operating environment are the same as the APIs supported in the 32-bit
operating environment. Thus, no changes are required for 32-bit applications
between the 32-bit and 64-bit environments. However, recompiling as a 64-bit
application may require cleanup of your code. See the general rules defined
later in this chapter and platform specific rules in Chapter 5, “Porting” on
page 117 for guidelines on how to clean up your code for 64-bit applications.

The 64-bit APIs are basically the UNIX 98 family of APIs. Their specification is
written in terms of derived types. The 64-bit versions are obtained by
expanding some of the derived types to 64-bit quantities. Correctly written
applications using these APIs are portable in source form between 32-bit and
64-bit environments.

3.2.5 Applications requiring porting
Applications with the following characteristics will almost certainly need
changes when being ported from 32-bit to 64-bit system environments:

 • Read and interpret kernel memory directly

 • Use the /proc file system to access 64-bit processes

 • Use a library that has only a 64-bit version

 • Device drivers

 • Interoperability issues

3.3 Migrating from 32-bit to 64-bit

Most applications are written in one or more high-level languages. Since
applications written in assembly or macro assembly will need complete
26 AIX 5L Porting Guide

rewrites, porting issues will generally be discussed in terms of the
C language. Variations of the problems occur with other languages too.

Most well-written programs will compile and run without change, where
"well-written" implies the use of good programming practices, including:

 • Conformance to the ANSI/ISO C standard

 • Portability considerations high in the design, implementation, and
maintenance phases of the software cycle

 • Use of prototyped functions declarations throughout

In reality, however, portability issues are often the first to be sacrificed to
meet completion schedules and performance issues or are forgotten in the
software maintenance cycle. In other cases, production code may also be
written without regard for portability. The base of much of the source code to
be ported to AIX 5L has existed for a long time and been through many
maintenance and enhancement cycles. Therefore, it may have been quite
easy during these processes to assume, implicitly or explicitly, either
absolute or relative sizes of integers (int), long integers (long), and pointer
data types to become part of the source code. These assumptions, in
combination with the changes in size and alignment of basic data types, are
the source of most problems porting existing source code to a 64-bit system.

This section details the areas where problems may occur and explains how
the C compiler, in combination with lint, can be used to isolate and correct
problems. Most solutions to the problems described here are not tied
specifically to AIX 5L but are generally applicable when migrating from 32-bit
to 64-bit environments.

3.4 Conversion of 32-bit applications

Application developers have to deal with two basic issues when converting
their 32-bit applications into 64-bit applications:

 • Data type consistency and the different data model

 • Interoperation between applications using different data models

It is usually better to maintain a single source with as few #ifdefs as possible
than to maintain multiple source trees. Therefore, it is best to write code that
works correctly in both 32-bit and 64-bit environments. At best, the
conversion of current code might require only a recompilation and relinking
with the 64-bit libraries. For those cases where code changes are required,
AIX 5L includes tools that help make the transition easier.
Chapter 3. Issues regarding 32-bit and 64-bit 27

3.4.1 ILP32 and LP64 programming models
The ANSI/ISO C standard specifies that C must support four signed and four
unsigned integer data types, namely char, short, int, and long. Unfortunately,
there are only a few requirements imposed by the ANSI standard on the sizes
of these data types. According to the standard, int and short should be at
least 16 bits, and long should be at least as long as int, but not smaller than
32 bits.

A different data type model is used in the 64-bit environment than in the 32-bit
environment. The C and C++ data type model used for 32-bit applications is
the ILP32 model, so named because integers (int), long integers (long), and
pointers are 32 bits. The LP64 data model is the C and C++ data type model
for 64-bit applications. This programming model was agreed upon by a
consortium of companies across the industry. It is so named because long
integers (long) and pointers in this data model are 64-bit quantities. The
standard relationship between C and C++ integral data types still holds true:

sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long)

The LP64 data model is the emerging standard on 64-bit UNIX-based
systems provided by all major system vendors. Applications that transition to
the LP64 data model are therefore highly portable to other LP64 vendor
platforms.

Table 2 lists the basic C and C++ data types and their corresponding sizes in
bits for both the ILP32 and LP64 programming models.

Table 2. Basic C and C++ type sizes in bits in the ILP32 and LP64 model

C and C++ data type ILP32 LP64

char 8 unchanged

short 16 unchanged

int 32 unchanged

long 32 64

long long 64 unchanged

pointer 32 64

enum 32 unchanged

float 32 unchanged

double 64 unchanged

long double 64 unchanged
28 AIX 5L Porting Guide

Using appropriate compiler options, the size of long double can be increased
to 128 bits for both ILP32 and LP64 models on Power systems.

Some fundamental changes occur when an application is moved from the
ILP32 programming model to the LP64 programming model:

 • Long integers (long) and integers (int) are no longer the same size.

 • Pointers and integers (int) are no longer the same size.

 • Pointers and long integers (long) are 64 bits and are aligned on 64-bit
boundaries.

 • Certain predefined types, such as size_t and ptrdiff_t are 64-bit integral
types.

These differences can potentially have a big impact during the porting
process in the following areas:

 • Data truncation

 • Pointer assignment and arithmetic

 • Constants

 • Bit shifts and bit masks

 • Bit fields

 • Enumerated types

 • Data alignment and data sharing

 • Casting

 • Lack of function prototypes

 • Data type promotion

When porting 32-bit applications to 64-bit environments, most of the
problems that will be encountered due to changed data type sizes are:

 • Different sizes for int (32 bits) and long (64 bits) and interchangeable use
of them

 • Different sizes for int (32 bits) and pointers (64 bits) and interchangeable
use of them

 • Due to different data type sizes, objects (for example, structs) may change
their size and alignment

It is most likely that most code you end up changing incorrectly assumes the
following relation:

sizeof(int) == sizeof(void *) == sizeof(long)
Chapter 3. Issues regarding 32-bit and 64-bit 29

3.4.2 32-bit and 64-bit application interoperability
Some restrictions apply when objects, such as data and memory, are shared
between 32-bit and 64-bit applications. These restrictions also apply when
objects are shared between 32-bit applications and the 64-bit version of the
operating system.

3.4.2.1 Same size and alignment
If data is shared between 32-bit and 64-bit applications, then all data items
must have the same size and alignment within both applications.

3.4.2.2 Shared memory
32-bit applications can only attach to shared memory segments which exist in
32-bit virtual address space.

3.4.2.3 Message queues
The size of a message queue is defined as type size_t. On a 32-bit system
size_t has a size of four bytes (32 bits) while on a 64-bit system it is eight
bytes (64 bits). If the 64-bit application wants to exchange data with 32-bit
applications using message queues, it has to make sure that the size of the
message queue does not exceed the largest 32-bit unsigned value (232-1).

3.4.2.4 Memory-mapped files
Memory-mapped files that should be shared between 32-bit applications have
to be mapped into a 32-bit virtual address space.

3.4.2.5 Symbols
Symbols within 64-bit executables of AIX 5L are assigned 64-bit values. If an
application wants to extract 64-bit values from the symbol table of a 64-bit
executable, it needs 64-bit data fields. The nlist64 subroutine runs in both
32-bit and 64-bit mode and can read both 32-bit and 64-bit files in both 32-bit
and 64-bit modes.

3.4.2.6 Large files
32-bit applications can open, create, and use large files with the large file
enabled programming environment. A large file is a file that is 2 GB or greater
in size. However, when creating or opening large files, the 32-bit application
must specify the O_LARGEFILE flag with the open system call or use the
open64 system call.

The use of lseek within a 32-bit application to position a file pointer is limited
to the 2 GB mark. To position the file pointer beyond that mark the lseek64
subroutine should be used.
30 AIX 5L Porting Guide

3.5 ANSI C integer conversion rules

To better understand the occurrence of possible conversion problems when
migrating from ILP32 mode to LP64 mode, it helps to understand the integer
conversion rules for ANSI C. The conversion rules that seem to cause the
most problems between 32-bit and 64-bit integral values are the following (we
assume here that negative integer numbers are represented by the
twos-complement):

 • Integral promotion

 - The general rule for converting from one integer type to another is that
the mathematical value of the result should equal the original
mathematical value if that is possible. For example, if an unsigned
integer has the value 20 and this value is to be converted to a signed
type, the resulting value should be 20 also.

 - If it is not possible to represent the original value of an object of the
new type, then there are two cases. If the result type is a signed type,
then the conversion is considered to have overflowed and the result
value is technically not defined. If the result type is an unsigned type,
then the result must be that unique value of the result type that is equal
(congruent) mod 2n to the original value, where n is equal to the
number of bits used in the representation of the result type. If signed
integers are represented using twos-complement notation, then no
change of representation is necessary when converting between
signed and unsigned integers of the same size.

 • Conversion between signed and unsigned integers

 - When an unsigned integer is converted to a signed integer of the same
size, the conversion is considered to overflow if the original value is too
large to be represented exactly in the signed representation (that is, if
the high-order bit of the unsigned number is 1). However, many
programmers and many programs depend on the conversion being
performed quietly and with no change of representation to produce a
negative number.

 - If the destination type is longer than the source type, then the only case
in which the source value will not be representable in the result type is
when a negative signed is converted to a longer, unsigned type. In that
case, the conversion must necessarily behave as if the source value
were first converted to a longer signed type of the same size as the
destination type, and then converted to the destination type.

 - If the destination type is shorter then the source type, and both the
original type and the destination type are unsigned, the conversion can
Chapter 3. Issues regarding 32-bit and 64-bit 31

be effected simply by discarding high-order bits from the original value;
the bit pattern of the result representation will be equal to the
n low-order bits of the original representation. This same rule of
discarding works for converting signed integers in twos-complement
from to a shorter unsigned type. Note that this rule will not preserve the
sign of the value in case of overflow, but the action on overflow is not
defined anyway.

For a more detailed discussion of the conversion rules, refer to the ANSI C
standard and see Section 1.4, “Coding practices” on page 8.

3.6 C and C++ data type size issues

This section describes the C and C++ language data types in AIX 5L and
differences in size between the data types in 32-bit and 64-bit programming
models. It also describes the porting issues that may be encountered and
methods that can be used to write programs so that they are not impacted by
those differences.

3.6.1 C and C++ data type sizes in AIX 5L
Support for a 64-bit address space and larger scalar arithmetic ranges in
LP64 mode naturally requires changes in at least some of the basic C and
C++ data types. Details of the size characteristics (in bytes) of C and C++
language base data types in each programming model are shown in Table 3.

Table 3. Comparison of C and C++ type sizes in bytes for AIX 5L

AIX 5L for Power systems AIX 5L for Itanium-based
systems

Data type ILP32 Model LP64 Model ILP32 Model LP64 Model

char 1 1 1 1

short 2 2 2 2

int 4 4 4 4

long 4 8 4 8

long long 8 8 8 8

float 4 4 4 4

double 8 8 8 8

long double 8 / 16 8 / 16 8 / 16 8 / 16
32 AIX 5L Porting Guide

The differences between the LP64 programming model and the others are the
size of long, long long, pointer, and long double data types. As shown in
Table 3 on page 32, pointers and long integers in LP64 mode are eight bytes
(64 bits) while in a 32-bit application context they are only four bytes (32 bits).
The size of long double floating point types has changed for performance
considerations.

Although the 32-bit Power model supports 16-byte (128 bits) long double
variables with 128-bit alignment the default size for long double in Power is
8 bytes (64 bits) when the -qlongdouble or -qldbl128 option is used with the
compiler.

In Section 5.2, “System derived data types” on page 120, commonly derived
data types already defined by the operating system, such as time_t are
explained in further detail.

The cardinality of data types which have the same byte sizes in ILP32 and
LP64 mode is shown in Table 4.

Table 4. Cardinality of types with the same size in ILP32 and LP64 mode

pointer 4 8 4 8

ILP32 mode & LP64 mode

Data type min. value max. value

signed char -128 127

unsigned char 0 255

signed short -32,768 32,767

unsigned short 0 65,535

int -2,147,483,648 2,147,483,647

unsigned int 0 4,294,967,295

AIX 5L for Power systems AIX 5L for Itanium-based
systems

Data type ILP32 Model LP64 Model ILP32 Model LP64 Model
Chapter 3. Issues regarding 32-bit and 64-bit 33

The cardinality of data types which have different sizes in ILP32 and
LP64 mode is shown in Table 5.

Table 5. Cardinality of types with different sizes in ILP32 and LP64

The system header file <limits.h> defines the following integer constants that
should be used instead of the literal constants above, as seen in Table 6.

Table 6. Integer constants defined by the system header file <limits.h>

ILP32 mode LP64 mode

Data type min. value max. value min. value max. value

signed long -2,147,483,64
8

2,147,483,647 -9,223,372,03
6,854,775,80
8

9,223,372,03
6,854,775,80
7

unsigned long 0 4,294,967,295 0 18,446,744,0
73,709,551,6
15

void * 0 4,294,967,295 0 18,446,744,0
73,709,551,6
15

Constant Description Numeric value

CHAR_BIT number of bits per char 8

SCHAR_MAX biggest signed char 127

SCHAR_MIN smallest signed char -SCHAR_MAX-1

UCHAR_MAX biggest unsigned char 255

SHRT_MAX biggest signed short 32,767

SHRT_MIN smallest signed short -SHRT_MAX-1

USHRT_MAX biggest unsigned short 65,535

INT_MAX biggest signed int 2,147,483,647

INT_MIN smallest signed int -INT_MAX-1

UINT_MAX biggest unsigned int 4,294,967,295

LONG_MAX biggest signed long INT_MAX or
9,223,372,036,854,775,807

LONG_MIN smallest signed long INT_MIN or
-LONG_MAX-1
34 AIX 5L Porting Guide

Note that the value of LONG_MAX, LONG_MIN and ULONG_MAX depends
on the programming model in use (ILP32 or LP64).

The system header file <float.h> defines the float constants (shown in
Table 7) that should be used.

Table 7. Floating point constants defined by the system header file <float.h>

ULONG_MAX biggest unsigned long UINT_MAX or
18,446,744,073,709,551,615

Constant Description Numeric value

FLT_RADIX Exponent radix 2

FLT_MANT_DIG Number of bits in the
significand

24

FLT_EPSILON 1ulp when exponent = 0 1.1920928955078125e-7

FLT_DIG Number of decimal digits of
precision

6

FLT_MIN_EXP Exponent of smallest
NORMALIZED float number

-125

FLT_MIN Smallest NORMALIZED float
number

1.1754943508222875e-38

FLT_MIN_10_EXP Minimum base 10 exponent
of NORMALIZED float

-37

FLT_MAX_EXP Exponent of largest
NORMALIZED float number

128

FLT_MAX Largest NORMALIZED float
number

3.4028234663852886e+38

FLT_MAX_10_EXP Largest base 10 exponent of
NORMALIZED float

38

DBL_MANT_DIG Number of bits in the
significand

53

DBL_EPSILON 1ulp when exponent = 0 2.2204460492503131e-16

DBL_DIG Number of decimal digits of
precision

15

Constant Description Numeric value
Chapter 3. Issues regarding 32-bit and 64-bit 35

Since the default size for long double on Power systems is 8 bytes (64 bits),
the same as for double, the values of the constants in Table 8 only change to
the shown values when using the -qlongdouble or -qldbl128 compiler options.

Table 8. Long double constants for Power systems

DBL_MIN_EXP Exponent of smallest
NORMALIZED double
number

-1021

DBL_MIN Smallest NORMALIZED
double number

2.2250738585072014e-308

DBL_MIN_10_EXP Minimum base 10 exponent
of NORMALIZED double

-307

DBL_MAX_EXP Exponent of largest
NORMALIZED double
number

1024

DBL_MAX Largest NORMALIZED
double number

1.7976931348623158e+308

DBL_MAX_10_
EXP

Largest base 10 exponent of
NORMALIZED double

308

Constant Description Numeric value

LDBL_MANT_DIG Number of bits in the
significand

106

LDBL_EPSILON 1ulp when unbiased
exponent = 0

0.2465190328815661891911651
7665087070E-31

LDBL_DIG Number of decimal digits
of precision

31

LDBL_MIN_EXP Exponent of smallest
NORMALIZED long
double number

DBL_MIN_EXP

LDBL_MIN Smallest NORMALIZED
long double number

((long double) DBL_MIN)

LDBL_MIN_10_EX Minimum base 10
exponent of
NORMALIZED long
double

DBL_MIN_10_EXP

Constant Description Numeric value
36 AIX 5L Porting Guide

For Itanium-based systems, the values for long double use 80 of the 128 bits
and are shown in Table 9. For 64-bit long double, obtained using the
-qlongdouble=64 compiler option, the values are as for double.

Table 9. Long double constants for Itanium-based systems

LDBL_MAX_EXP Exponent of largest
NORMALIZED long
double number

DBL_MAX_EXP

LDBL_MAX Largest NORMALIZED
long double number

0.1797693134862315807937289
714053023E+309

LDBL_MAX_10_
EXP

Largest base 10 exponent
of NORMALIZED long
double

DBL_MAX_10_EXP

Constant Description Numeric value

LDBL_MANT_DIG Number of bits in the
significand

64

LDBL_EPSILON 1ulp when unbiased
exponent = 0

1.0842021724855044340075E-1
9

LDBL_DIG Number of decimal digits
of precision

18

LDBL_MIN_EXP Exponent of smallest
NORMALIZED long
double number

-16381

LDBL_MIN Smallest NORMALIZED
long double number

3.36210314311209350626e-493
2

LDBL_MIN_10_EX Minimum base 10
exponent of
NORMALIZED long
double

-4931

LDBL_MAX_EXP Exponent of largest
NORMALIZED long
double number

16384

LDBL_MAX Largest NORMALIZED
long double number

1.18973149535723176502e+49
32

LDBL_MAX_10_
EXP

Largest base 10 exponent
of NORMALIZED long
double

4932

Constant Description Numeric value
Chapter 3. Issues regarding 32-bit and 64-bit 37

3.6.2 Different sizes for int and long in LP64 mode
In ILP32 mode, both int and long data types are 32 bits in size. Because of
this similarity, these types may have been used interchangeably in production
code. As shown in Table 3 on page 32, in LP64 mode, the data type long is
64 bits in length. A general guideline is to review the existing use of long data
types throughout the source code. If the values to be held in such variables,
fields, and parameters will fit in the range of [-231...231-1] or [0...232-1], then
it is probably best to use int or unsigned int, respectively.

Obviously, the size difference of data types means that applications will
require changes when being ported from a 32-bit to a 64-bit platform,
particularly when related to data structures. For example, a 32-bit application
is expecting to read the following data structure from memory located on a
device controller:

01 struct {
02 long length; /* buffer length field */
03 char * buffer; /* pointer to memory on the controller */
04 int flags; /* miscellaneous flags */
05 } memio_t;

All three variables are stored on the device controller as 32-bit values. This
example only considers the issue of data type size. When reading data from a
device controller, the endianness of the memory being read and the
endianness of the device driver performing the read operation must also be
considered. See Chapter 2, “Endianness - byte ordering” on page 9, for a
discussion of endian issues.

Figure 10 shows the layout of the data structure in both 32-bit and 64-bit
models.

Figure 10. Layout of sample data structure on 32-bit and 64-bit platforms

0 1 2 3 4 5 6 7 8 109 11address

32-bit

length buffer flags

0 1 2 3 4 5 6 7 8 109 11 12 13 14 15 16 17 18 19address

64-bit

length buffer flags
38 AIX 5L Porting Guide

Only one of the structures corresponds to the data read from the device
controller. Since the device driver using this definition works correctly in a
32-bit ILP32 model, if the same structure is used on a 64-bit LP64 model, the
driver will not work correctly. This is because the size of a long differs
between the two environments. Instead, the structure must be defined using
types of the correct size in the particular compilation environment.

To yield the same result as on a 32-bit model, the code must be guarded with
a preprocessor directive to produce a conditional compile section of code.
The compiler will then use the correct definition for the compilation model.
The result will be similar to the following:

01 struct {
02 #ifdef __64BIT__
03 int32_t length; /* buffer length field */
04 __ptr32 buffer; /* pointer to memory on the controller */
05 #else /*__64BIT__*/
06 long length; /* buffer length field */
07 char* buffer; /* pointer to memory on the controller */
08 #endif /*__64BIT__*/
09 int flags; /* miscellaneous flags */
10 } memio_t

See Section 5.2, “System derived data types” on page 120 for commonly
derived data types already defined by the operating system. The use of these
data types (specified by the ANSI C standard) guarantees a specific size of a
data type on all platforms.

3.6.3 The sizeof() operator
The sizeof() operator is used to obtain the size of a type or data object. The
result is a constant integer value. In ANSI C, the result of sizeof() has the
unsigned integer type size_t defined in the header file <stddef.h>. Traditional
C implementations often use int or long as the result type.

In LP64 mode, the sizeof() operator has the effective data type of
unsigned long. If the result of sizeof() is passed to a function expecting an
argument of type int, or assigned or cast to an int, this truncation might cause
the loss of data in some cases. Consider the code fragment below:

01 long a[50];
02 unsigned char size = sizeof(a);

In ILP32 mode the size of the array a is 200 bytes (as longs are 4 bytes in
size). However, in LP64 mode, the size of the array a is 400 bytes (as longs
are 8 bytes in size).
Chapter 3. Issues regarding 32-bit and 64-bit 39

3.6.3.1 Recommendation
It is recommended that you check throughout your code to see that all
variables have the appropriate cardinality for the range of possible values, so
that no undesired side-effects can occur.

3.6.3.2 lint assistance
Unfortunately, neither the VisualAge C compiler nor lint help you find
occurrences of this type of error. However, the GNU C Compiler produces the
following warning when invoked with the -Wall option:

.... warning: large integer implicitly truncated to unsigned type

3.6.4 Data type specifications in (s)printf/(s)scanf
In source code written for 32-bit environments, variables of type int, long, and
pointer are often interchanged with no impact on the application, since the
types are all the same size. When moving code to the 64-bit environment, the
difference in size can cause problems. Even simple things, such as calls to
the printf or scanf family of routines, are affected. Consider the following code
example:

01 struct devinfo_t { } devinfo;
02
03 (void) printf("addr(devinfo) = %x\n", (void *) &devinfo);

3.6.4.1 Recommendation
Consider the following recommendations when using format specifiers with
the printf()/scanf() family of routines:

 • The format strings for printf, sprintf, scanf, and sscanf have to be changed
for long arguments. The long size specification, l (lower case L), should be
prepended to the conversion operation character in the format string to
identify a long integer data type. For example:

printf(“%ld\n”, 7FFFFFFFL);

 • The format strings for printf, sprintf, scanf, and sscanf have to be changed
for pointer arguments. The conversion operation specified in the format
string should be changed from %x to %p in order to work in both the 32-bit
and 64-bit environments. For example:

printf(“%p\n”, argv[0]);

This prints the value of the pointer in hexadecimal format.

 • Do not use a hardcoded field width to format pointers. For example, the
following is used to print pointers zero padded to eight digit hexadecimal
digits:
printf(“0x%08p\n”, argv[0]);
40 AIX 5L Porting Guide

If you want to ensure that the hexadecimal value is zero padded to the
appropriate value for the execution mode, use the * (asterisk) format
option. The following example will pad to eight hexadecimal digits in 32-bit
mode and 16 hexadecimal digits in 64-bit mode:

printf(“0x%0*p\n”, (int) (2*sizeof(argv[0])), argv[0]);

 • Macros for specifying the (s)printf and (s)scanf format specifiers are
provided in the ANSI C header file <inttypes.h>. These macros prepend
the format specifier with an l or ll to specify the argument as a long or
long long type, given that the number of bits in the argument is built into
the name of the macro.

 - Macros for (s)printf format specifiers exist for printing 8-bit, 16-bit,
32-bit, and 64-bit integers, the smallest integer types, and the largest
integer types, in decimal, octal, unsigned, and hexadecimal form. For
example:

int64_t i;
printf("i = %" PRIx64 "\n", i);

 - Macros for (s)scanf format specifiers exist for reading 8-bit, 16-bit,
32-bit, and 64-bit integers, and the largest integer type in decimal,
octal, unsigned, and hexadecimal form.

uint64_t u;
scanf("%" SCNu64 "\n", &u);

3.6.4.2 lint assistance
Unfortunately neither the VisualAge C compiler or lint help you find
occurrences of this type of error. However, the GNU C Compiler produces the
following warning when invoked with the -Wall option for the code example
above:

.... warning: unsigned int format, pointer arg (arg 1)

3.6.5 Structures and unions may change size
The 64-bit environment can affect the size of structures and unions. Because
pointers and long integers (long) are 64-bit values in LP64 mode, structures
and unions that include pointers or long data types are bigger in size than the
same structures in 32-bit mode.

3.6.5.1 Structures
Consider the following code example, which describes a simple double-linked
list:

struct dlinklist_t {
char *text;
Chapter 3. Issues regarding 32-bit and 64-bit 41

int value;
struct dlinklist_t *prev;
struct dlinklist_t *next;

};

The size of this structure in ILP32 mode is 16 bytes (4+4+4+4 bytes) while in
LP64 mode the sum of all member sizes is 28 bytes (8+4+8+8 bytes) but due
to alignment issues (see Section 3.10, “C and C++ data type alignment
issues” on page 65), the size of struct dlinklist_t in LP64 mode is 32 bytes.

3.6.5.2 Unions
Problems arise in LP64 mode when the use of unions is based on
assumptions such as:

sizeof(double) == 2 * sizeof(long) or sizeof(long) == 4 * sizeof(char)

Consider the following code example that wrongly assumes that an array of
two long integers overlays a double:

union double_overlay_wrong {
double d;
unsigned long x[2];

}

The correct way to do it in LP64 mode would be to change the long to an int:

union double_overlay_correct {
double d;
unsigned int x[2];

}

3.7 Data truncation

Truncation problems can arise when assignments are made between 64-bit
and 32-bit data items. Since integers (int), long integers (long), and pointers
are 32 bits in ILP32, a mixed assignment between these data types did not
represent any problem. It does, however, in LP64 mode, as long integers
(long) and pointers are no longer the same size as integers (int). In LP64
mode, data truncation can occur during:

 • Assignment of long to a smaller type

 • Assignment of long to double

 • Integer expression with potential overflow is converted to a long

 • Explicit cast is improperly applied
42 AIX 5L Porting Guide

3.7.1 Assignment of long to a smaller type
The assignment of a long integer value to a smaller type will result in
truncation of the 64-bit value. See Section 3.5, “ANSI C integer conversion
rules” on page 31 for the rules used in this conversion. This truncation may
have been exactly the intention of the code, but where int and long variables
have been used interchangeably while implicitly or explicitly assuming that
they are interchangeable, this may be an unexpected source of problems. For
example, consider the following code example shown in Figure 11.

Figure 11. Data truncation during assignment

3.7.1.1 Recommendation
Examine all instances of narrowing assignment, particularly where the source
is of type long or unsigned long, and decide whether such narrowing may be
a problem or is intended. Use an explicit cast at the point of an intended
narrowing conversion (lines 14 to 16) to indicate to the compiler and to lint
that such narrowing is being done by design.

3.7.1.2 lint assistance
lint will report implicit narrowing integral conversions associated with the
assignment operator (=), as shown in the following lint output:

"truncate.c", line 9: warning: conversion from long may lose accuracy
"truncate.c", line 10: warning: conversion from long may lose accuracy
"truncate.c", line 11: warning: mismatched type in function argument
"truncate.c", line 11: warning: conversion from long may lose accuracy

01 extern long dosomething(int);
02
03 int main(int argc, char *argv[])
04 {
05 int i1, i2, i3;
06 long l1, l2, l3;
07
08 /* implicit truncation occurs in the next 3 statements */
09 i1 = l1;
10 i2 = i2 * l2;
11 i3 = dosomething(l3);
12
13 /* use explicit casting to obtain the intended narrowing */
14 i1 = (int) l1;
15 i2 = (int) i2 * l2;
16 i3 = (int) dosomething((int) l3);
17 }
Chapter 3. Issues regarding 32-bit and 64-bit 43

"truncate.c", line 11: warning: conversion from long may lose accuracy
"truncate.c", line 14: warning: conversion from long may lose accuracy
"truncate.c", line 15: warning: conversion from long may lose accuracy
"truncate.c", line 16: warning: conversion from long may lose accuracy
"truncate.c", line 16: warning: conversion from long may lose accuracy

The reason for the warnings above is that

 • A long value is assigned to an int value (lines 9, 10, 11, 14, 15, 16).

 • The expressions in line 10 and 15 are of type long as i2 is promoted from
type int to type long before the multiplication.

 • In line 11, a long value is passed as a parameter to the function
dosomething, therefore possibly truncating the long value according to the
ANSI C integer conversion rules.

3.7.2 Assignment of long to double
On 32-bit systems, the code can safely assume that the data type double can
contain an exact representation of any value stored in a long or pointer data
type. In ILP32 mode, long is 32 bits and double is 64 bits, with a mantissa of
53 bits.

The standard double floating-point representation is given by the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754, 1985) as:

where:

is the sign ()
is the exponent value
are the significand digits,

When converting code which makes this assumption (from ILP32 mode to
LP64 mode), this assumption is no longer valid, as longs and pointers grow to
64 bits. For example, the code example shown in Figure 12 on page 45
behaves differently in 32-bit and 64-bit mode.

xdouble s 2
e

fk
k 1=

53

� 2 k–×××= 1021– e 1024≤ ≤

s 1±
e
fk 0 fk 2<≤
44 AIX 5L Porting Guide

Figure 12. Code example longdouble.c

When compiled as a 32-bit program (in ILP32 mode), the value of l1 can be
assigned to the double d without loss of precision:

% xlc -q32 -o longdouble32 longdouble.c
% ./longdouble32
ILP32 mode: long = double is OK
%

However, when compiled as a 64-bit program (in LP64 mode), the value of l1
is truncated when assigned to the double d and therefore the condition in
line 12 can never be true:

% xlc -q64 -o longdouble64 longdouble.c
% ./longdouble64
LP64 mode: long = double is NOT OK
%

3.7.2.1 Recommendation
Examine all assignments of a long to a double, as they will most likely result
in a loss in accuracy. If this is the case, you may try using long double,
although, ideally, code should be written so that data casting of this type is
not required.

3.7.2.2 Compiler assistance
The -qwarn64 option of the VisualAge C compiler can help you by finding
occurrences where a variable of type long might overflow in ILP32 mode and

01 #include <stdio.h>
02
03 int main(int argc, char *argv[])
04 {
05 long l1 = 111111111111111111L;
06 long l2;
07 double d;
08
09 d = l1;
10 l2 = d;
11
12 if (l1 == l2)
13 printf("ILP32 mode: long = double is OK\n");
14 else
15 printf("LP64 mode: long = double is NOT OK\n");
16 }
Chapter 3. Issues regarding 32-bit and 64-bit 45

therefore suffer precision loss if being assigned to a variable of type double.
Here is the relevant output:

line 5.13: 64-bit portability: constant which will overflow in 32-bit mode
may select unsigned long int or long int in 64-bit mode

3.7.3 Integer expression with potential overflow
Arithmetic expressions are evaluated following the usual arithmetic
conversions of all operands to a common type as defined by the ANSI C
integer conversion rules. The type of the expression is this common type. For
an expression containing integral operands, that implies that small operands
will be converted to int as needed, to represent all values of the original type.
The common type will only be larger than an int if an operand of the
expression is an unsigned int, long, or unsigned long. What this means for
LP64 mode is that expressions not containing a long or unsigned long type
will be evaluated in terms of 32-bit values and yield a 32-bit result.

The example in Figure 13 illustrates an instance where, in LP64 mode, the
actual results may not be what the original intention might have been.

Figure 13. Potential data truncation

If the user intended to get a 64-bit result from the multiplication, lines 6 and 7
are incorrect. Both source statements contain a 32-bit multiplication with the
result truncated to 32 bits and cast, implicitly in line 6 and explicitly in line 7,
to a 64-bit long value. Lines 9 and 10 show the correct way to get a 64-bit
multiplication of two smaller types. By casting either operand to a long prior to
the multiplication, the other operand is implicitly cast to a long.

3.7.3.1 Recommendation
In order to have integral expressions produce results which are 64 bits long,
at least one of the operands must have a data type of long or unsigned long.

01 int x, y;
02 long l;
03
04 void dosomething(void)
05 {
06 l = x * y; /* 32-bit multiply, potential truncation */
07 l = (long) (x * y); /* 32-bit multiply, potential truncation */
08
09 l = (long) x * y; /* 64-bit multiply, no truncation */
10 l = x * (long) y; /* 64-bit multiply, no truncation */
11 }
46 AIX 5L Porting Guide

Therefore, if none of the operands involved is of type long, an appropriate
cast to long or unsigned long should be applied to one of the operands. That
cast will have the effect of percolating up the expression tree to yield a 64-bit
result.

3.7.3.2 lint assistance
In the case demonstrated in Figure 13 on page 46, lint is not able to assist
you, as it would have to guess what your original intention might have been. It
is therefore recommended that you check throughout your code for these
cases. A cast applied to an expression of int or unsigned int type, implicitly or
explicitly, will only yield a 64-bit sign or zero extended representation of the
32-bit value.

3.7.4 Explicit cast improperly applied
Expressions can sometimes be very tricky because of the conversion rules.
Therefore, you should be very explicit about how you want the expression to
be evaluated by adding casts wherever necessary. Consider the following
example:

01 int main(int argc, char *argv[])
02 {
03 int i, val;
04 long l;
05
06 val = l / i; /* implicit truncation to 32 bits */
07 val = (int) l / i; /* l is truncated to 32 bits before division */
08 val = (int) (l / i); /* result of division is truncated to 32 bits */
09 }

The code example above shows the division of a long integer variable l by an
integer variable i. The result is then assigned to the integer variable val. The
effective evaluation of the expressions in lines 6 through 8 is:

 • In line 6, the expression l / i is evaluated with data type long and the result
is then implicitly truncated to int before assignment to val.

 • In line 7, the expression l / i is evaluated with data type int due to the
explicit cast to operand l, and the result is then assigned to val.

 • In line 8, the expression l / i is evaluated with data type long and the result
is then explicitly truncated to int before assignment to val.

3.7.4.1 Recommendation
Explicit narrowing casts should be used on expressions, not operands, so
that the expression may be evaluated with greater precision if any of the
Chapter 3. Issues regarding 32-bit and 64-bit 47

operands involved has greater precision than the explicit cast, therefore
forcing all other operands to be converted to its data type.

Line 8 illustrates a properly applied explicit cast that will yield identical results
to line 6.

Line 7 shows a similar statement with an explicit cast, but in this case the
result of the expression may be different, as the cast is applied to the long
variable before the division.

3.7.4.2 Compiler and lint assistance
Both the VisualAge C compiler and lint will help you spot occurrences where
you might want to change the evaluation of expressions by applying explicit
casts. The relevant compiler output (with the -q64 -qwarn64 switches) is:

line 6.18: 64-bit portability: possible loss of digits through conversion
of long int type into int type.
line 7.9: 64-bit portability: possible loss of digits through conversion of
long int type into int type.
line 8.9: 64-bit portability: possible loss of digits through conversion of
long int type into int type.

Here is the relevant lint output:

line 6: warning: conversion from long may lose accuracy
line 7: warning: conversion from long may lose accuracy
line 8: warning: conversion from long may lose accuracy

3.8 Pointer assignment and arithmetic

When migrating from 32-bit environments to 64-bit environments, it is crucial
to avoid pointer corruption. Some of the possible problems are:

 • Assigning an int (32 bits) or a 32-bit hexadecimal constant to a pointer
type variable (64 bits) or casting a pointer to an int will yield an invalid
address, and will cause errors when the pointer is dereferenced. Also, the
comparison of an int to a pointer may cause unexpected results.

 • Pointers are converted to int or unsigned int with the expectation that the
pointer value will be preserved, as casting a pointer to an int will result in
data truncation.

 • Without proper function prototypes, functions that return pointers will
return truncated return values, as the functions are implicitly declared to
return an int that is just 32 bits, instead of the expected 64 bits of a
pointer.
48 AIX 5L Porting Guide

 • The code assumes that pointers and int are the same size in an arithmetic
context, as pointer arithmetic usually is a source of problems in migration.
The ANSI C standard dictates that incrementing a pointer yields adding
the size of the data type to which it points to the pointer value. For
example, if the variable p is a pointer to long, then the operation (p+1)
increments the value of p by 4 bytes in ILP32 mode and by 8 bytes in
LP64 mode. Therefore, casts between long* to int* are problematic
because of the size differences of pointer objects (32 bits versus 64 bits).

3.8.1 Different byte sizes for int and pointers in LP64 mode
The assumption that an int and a pointer have the same size is not true for
the LP64 mode. Because ints and pointers are the same size in the ILP32
environment, a lot of code falsely relies on this assumption. Pointers are
often cast to int or unsigned int for address arithmetic. Instead, pointers can
be cast to long because long and pointers are the same size in both ILP32
and LP64 worlds. Rather than explicitly using unsigned long, you should use
the predefined data type uintptr_t (from <inttypes.h>) instead, because it
makes the code more portable and therefore safe against future changes.
Consider the following code example:

01 #define PAGESIZE 4096
02
03 int main(int argc, char *argv[])
04 {
05 unsigned char *p;
06
07 p = (unsigned char *) ((unsigned int) p + PAGESIZE);
08 }

3.8.1.1 Compiler assistance
The Visual Age C compiler with the -qwarn64 switch turned on helps you
identify such errors. These are the compiler warnings for line 7:

64-bit portability: possible truncation of pointer through conversion of
pointer type into unsigned int type

64-bit portability: possible incorrect pointer through conversion of
unsigned int type into pointer

3.8.1.2 Recommendation
The solution to the above problem is to change the program to use the
generic pointer type uintptr_t (line 9) from <inttypes.h> (line 1):

01 #include <inttypes.h>
02
03 #define PAGESIZE 4096
Chapter 3. Issues regarding 32-bit and 64-bit 49

04
05 int main(int argc, char *argv[])
06 {
07 unsigned char *p;
08
09 p = (unsigned char *) ((uintptr_t) p + PAGESIZE);
10 }

3.8.2 Assignment of 64-bit pointer value to a smaller integral type
As in the case of an LP64 long, assignment of a LP64 pointer value to a
32-bit data type variable will result in truncation of the pointer value. The
pointer value cannot be reconstructed from the int or unsigned int. If the
address value being converted is in the range of [0..232-1], which is the
unsigned range of 32 bits, the code may appear to work only to fail whenever
an address is used beyond the 4 GB memory range.

Since ANSI-conforming C compilers are required to provide a diagnostic,
usually a warning, for integral to pointer and pointer to integral assignments,
existing source code is likely to have an explicit cast on these assignments.
These explicit casts have been introduced to suppress the diagnostics from
the compiler and lint. In LP64 mode, if the conversions are to any type less
than 64 bits, these conversions are very likely to be a source of porting
problems. The example in Figure 14 on page 51 shows a combination of
explicit and implicit pointer to integer conversions that could ultimately lead to
problems.
50 AIX 5L Porting Guide

Figure 14. Truncation of a 64-bit pointer value

3.8.2.1 Recommendation
Code involving conversions of pointers from or to integral values should be
reviewed. If these pointer to integral conversions are absolutely necessary,
the integral type should be either long or unsigned long and an explicit cast to
long or unsigned long should be used. Even better would be to use the
generic pointer data type uintptr_t from <inttypes.h>.

Fully prototyped function declarations should be in scope at the point of all
calls, allowing the C compiler and lint to scrutinize pointer to integral
conversions of function arguments and return values. See Section 3.11, “Lack
of function prototypes” on page 75 for more information.

3.8.2.2 lint assistance
The lint code checking tool will not only flag all occurrences of
non-conforming implicit and explicit pointer to integer conversions, but also
flag all explicit conversions that may lose significant bits. Here is the relevant
output of examining the code shown in Figure 14 with lint:

01 extern void dosomething_int(int, int);
02 extern void dosomething_long(long, long);
03
04 int main(int argc, char *argv[])
05 {
06 int i;
07 long l;
08 int *ptrint;
09 void *ptrvoid;
10
11 i = ptrint; /* implicit loss of upper 32 bits */
12 i = ptrvoid; /* implicit loss of upper 32 bits */
13 i = (int) ptrint; /* explicit loss of upper 32 bits */
14 i = (int) ptrvoid; /* explicit loss of upper 32 bits */
15
16 dosomething_int(ptrint, (int) ptrvoid);
17
18 l = ptrint;
19 l = ptrvoid;
20 l = (int) ptrint; /* implicit loss of upper 32 bits */
21 l = (int) ptrvoid; /* implicit loss of upper 32 bits */
22
23 dosomething_long(ptrint, (int) ptrvoid);
24 }
Chapter 3. Issues regarding 32-bit and 64-bit 51

line 11: warning: illegal combination of pointer and integer, op =
line 11: warning: conversion from "PTR int" may lose accuracy
line 12: warning: illegal combination of pointer and integer, op =
line 12: warning: conversion from "PTR void" may lose accuracy
line 13: warning: conversion from "PTR int" may lose accuracy
line 14: warning: conversion from "PTR void" may lose accuracy
line 16: warning: mismatched type in function argument
line 16: warning: illegal combination of pointer and integer, op PARAMETER
line 16: warning: conversion from "PTR void" may lose accuracy
line 16: warning: conversion from "PTR int" may lose accuracy
line 18: warning: illegal combination of pointer and integer, op =
line 19: warning: illegal combination of pointer and integer, op =
line 20: warning: conversion from "PTR int" may lose accuracy
line 21: warning: conversion from "PTR void" may lose accuracy
line 23: warning: mismatched type in function argument
line 23: warning: illegal combination of pointer and integer, op PARAMETER
line 23: warning: conversion from "PTR void" may lose accuracy

Implicit pointer to integer conversion takes places in lines 11, 12, and 16,
while explicit pointer to integer conversion occurs in lines 13, 14, 16 (second
argument), 20, 21, and 23 (second argument).

3.8.3 Assumption about pointers and int in arithmetic context
Pointers may not be used directly with arithmetic or bitwise operators, with
the exception of adding and subtracting integer values, and computing the
difference between two pointers. There are times when a pointer must be
explicitly cast to an integral type to be used with these operators. Such an
example would be the AIX 5L kernel's use of bitwise shifts and bitwise AND
operations to determine the memory segment containing a particular address.
These explicit casts should be to either long or unsigned long, which will
preserve the 64-bit values in LP64 mode and the 32-bit values in ILP32
mode. Consider the example in Figure 15 on page 53, which tries to mimic
the scenario mentioned previously.
52 AIX 5L Porting Guide

Figure 15. Wrong assumption about pointer and integer size

3.8.3.1 Recommendation
The code on line 11 assumes that the size of a pointer is the same as an int,
which is true in ILP32 mode but false in LP64 mode. The result is that the
64-bit pointer p is converted to a 32-bit value and ORed with the BUSY bit.
The 32-bit integer result is then cast back to the pointer p, so the upper
32 bits of its address have been lost. The correct way to perform this
operation is:

 • To cast the pointer to an unsigned long (as pointers and long integers
(long) are guaranteed to have the same byte size as each other in both
ILP32 and LP64 mode), as shown in line 13.

or

 • To cast the pointer to the generic pointer data type uintptr_t as defined in
the ANSI C header file <inttypes.h>. This data type is guaranteed to have
the same byte size as a pointer in both ILP32 and LP64 modes, as
demonstrated in line 15.

3.8.3.2 lint assistance
lint will help you to find occurrences of this type of error, as it will flag pointer
to integer conversions, which may result in loss of bits. The relevant lint
output is:

line 11: warning: conversion from "PTR strty(036)" may lose accuracy
line 13: warning: bitwise " OR " involving a "ulong"
line 15: warning: bitwise " OR " involving a "ulong"

01 #include <inttypes.h>
02
03 #define BUSY 01
04
05 struct blk_t { } blk;
06
07 void dosomething(void)
08 {
09 struct blk *p, *word;
10
11 word = (struct blk *) (((int) p) | BUSY);
12
13 word = (struct blk *) (((unsigned long) p) | BUSY);
14
15 word = (struct blk *) (((uintptr_t) p) | BUSY);
16 }
Chapter 3. Issues regarding 32-bit and 64-bit 53

The last two lines of the lint output do not indicate a possible error; they just
warn you that you are about to perform bit manipulation with a pointer value
(lines 13 and 15).

3.8.4 Address arithmetic and pointer arithmetic
In general, using pointer arithmetic is preferable to using address arithmetic,
because pointer arithmetic is independent of the data model, whereas
address arithmetic may not be. Pointer arithmetic usually leads to simpler
code. However, if the assumption that an int and a pointer have the same size
has been made (which is not true for LP64 mode), then address arithmetic
may fail when pointer arithmetic is independent of the employed data model.
Consider the following code example:

01 #define ADD_NUM_PTRS 100
02
03 int *start;
04 int *end;
05
06 start = (int *) malloc(4 * ADD_NUM_PTRS);
07 end = (int *) ((unsigned int) start + 4 * ADD_NUM_PTRS);

3.8.4.1 Recommendation
Instead of using address arithmetic, it is better to use pointer arithmetic, as it
is:

 • Independent of the employed data model

 • Easier to read and understand

Therefore, the above code example should be changed to:

01 #define ADD_NUM_PTRS 100
02
03 int *start;
04 int *end;
05
06 start = (int *) malloc(sizeof(start) * ADD_NUM_PTRS);
07 end = p + ADD_NUM_PTRS;

Not only is the incorrect assumption that a pointer to an int occupies only
4 bytes (as done in lines 6 and 7) corrected, but the truncation of the new
value for the pointer end during the casting to unsigned int is corrected as
well.
54 AIX 5L Porting Guide

3.8.4.2 lint assistance
lint will help you to find occurrences of this type of error, as it will flag pointer
to integer conversions that may result in loss of bits. The relevant lint output
is:

line 7: warning: conversion from "PTR int" may lose accuracy

3.8.5 Pointer to int is incompatible with pointer to long
Pointers to different data types are not compatible in C, and a pointer to one
type should not be assigned to a pointer of another type. For historical
reasons, however, most compilers do not stringently enforce this restriction
and comply with the ANSI/ISO C Standard by issuing a warning. In source
code, where int and long have been used interchangeably, pointers to int and
long may have also been used interchangeably. In LP64 mode, these point to
objects of different size, and subsequent dereference of such a pointer will
clearly result in undefined behavior. Consider the code example shown in
Figure 16.

Figure 16. Pointers to different data types are not compatible

Both the C compiler and lint report the incompatibility of pointer assignments
in lines 9, 10, 15, and 16 in Figure 16. In addition to the obvious object size
mismatches that would occur if these pointers were dereferenced, the
alignment requirements for int and long are different in LP64 mode. If a
pointer to long is used to reference a memory address that is not 8-byte

01 extern void dosomething_int(int *);
02 extern void dosomething_long(long *);
03
04 int main(int argc, char *argv[])
05 {
06 int *iptr1, *iptr2;
07 long *lptr1, *lptr2;
08
09 lptr1 = iptr1;
10 iptr2 = lptr2;
11
12 lptr1 = (long *) iptr1;
13 iptr2 = (int *) lptr2;
14
15 dosomething_int(lptr1);
16 dosomething_long(iptr1);
17 }
Chapter 3. Issues regarding 32-bit and 64-bit 55

aligned, an alignment fault will occur. This will, in turn, require intervention by
the operating system and degrade application performance.

Lines 12 and 13 in Figure 16 on page 55, while valid C code, still present the
same problems as lines 9 and 10. The explicit casts have probably been
introduced into the source code to suppress the warnings from the C compiler
and lint.

Any pointer type may be assigned to or from a void*. Any code which
effectively assigns an int* to a long*, or the reverse, through an intermediate
void* variable or function parameter may exhibit the undefined behavior
possible in the above example.

3.8.5.1 Recommendation
Examine all instances of incompatible pointer assignments, particularly those
involving a long* data type. The type of the object pointed to should be made
consistent, and that choice should be based on the range of values to be held
by the object.

For cases where the types pointed to are intentionally different, as with char*
pointers returned from older memory allocation or memory management
routines, use an explicit cast to indicate to the compiler and to lint that this is
intentional. A better solution is to bring the code up to ANSI C specifications
and use void* for generic pointers. Remember to take any alignment issues
into account.

3.8.5.2 Compiler and lint assistance
Both the C compiler and lint will help you identify incompatible pointer
assignments. The compiler in ANSI mode (xlc or c89) actually will refuse to
compile the example Figure 16 on page 55 because of these incompatible
pointer assignments (which are considered errors). Here is the relevant
compiler output for xlc -q64 -qwarn64 filename.c:

line 9.9: Operation between types "long*" and "int*" is not allowed.
line 10.9: Operation between types "int*" and "long*" is not allowed.
line 15.19: Function argument assignment between types "int*" and "long*"
is not allowed.
line 16.20: Function argument assignment between types "long*" and "int*"
is not allowed.

However, the compiler in extended mode (cc) will compile the code example
above and will only issue warnings instead of errors.

Here is the relevant lint output:

line 9: warning: illegal pointer combination, op =
56 AIX 5L Porting Guide

line 10: warning: illegal pointer combination, op =
line 15: warning: illegal pointer combination, op PARAMETER
line 16: warning: illegal pointer combination, op PARAMETER

3.9 Integer constants

A loss of data can occur in some constant expressions because of lack of
precision. These types of problems are very hard to find and may have gone
unnoticed so far. You should therefore be very explicit about specifying the
type(s) in your constant expressions and add some combination of qualifiers
{u,U,l,L} to the end of each integer constant to specify exactly its type. You
might also use casts to specify the type of a constant expression.

3.9.1 ANSI C rules for integer constants
Integer constants may be specified in decimal, octal, or hexadecimal
notation. Figure 17 on page 58 shows the ANSI C language syntax definition
for integer constants. The rules for determining the radix of an integer
constant are:

 • If the integer constant begins with the letters 0x or 0X, then it is in
hexadecimal notation, with the characters a through f (or A through F)
representing the numbers 10 through 15.

 • If the integer constant begins with the digit 0, then it is in octal notation.
Leading and high-order zeroes only serve to denote octal notation and
have no other effect.

 • Otherwise, it is in decimal notation.

The letters l or L may immediately follow the integer constant to indicate a
constant of type long. The lower case letter l should not be used as it can be
easily confused with the digit 1. The suffix letters u or U indicate an unsigned
constant.
Chapter 3. Issues regarding 32-bit and 64-bit 57

Figure 17. ANSI C language syntax definition for integer constants

Porting code that uses integer constants must:

 • Consider that integer constants may be more than 32 bits.

octal-constant

0

octal-constant octal digit

decimal-constant

nonzero-digit

decimal-constant digit

nonzero-digit 21 3 4 5 6 7 8 9

octal-digit 10 2 3 4 5 6 7

digit 0 1 2 3 4 5 6 7 8 9

long-suffix l L

unsigned-suffix u U

hex-digit

0 1 2 3 4 5 6 7 8 9

A B C D E F a b c d e f

hexadecimal-constant

0x

0X

hexadecimal-constant

hex-digit

hex-digit

hex-digit

integer-suffix
long-suffix

unsigned-suffix long-suffix

unsigned-suffix

optional

optional

integer-constant

decimal-constant

octal-constant

hexadecimal-constant integer-suffix

integer-suffix

integer-suffixoptional

optional

optional
58 AIX 5L Porting Guide

 • Do not assume that long or unsigned long data is 32 bits.

 • Do not depend on the specific behavior at an assumed data type length.

Integer constants can have different values on 32-bit and 64-bit systems.
Also, when a program with hexadecimal constants is ported from ILP32 mode
to LP64 mode, the data types assigned to the constants may change.

3.9.2 Untyped integral constants are int by default
The ANSI C standard states that the type of an integer constant, depending
on its format and suffix, is the first (read: smallest) type in the corresponding
list that will hold the value. The quantity of leading zeros does not influence
the type selection. See Table 10 for types of integer constants and their
assigned ANSI C data type.

Table 10. Types of integer constants and their assigned ANSI C data type

Code may behave differently when compiled for LP64 mode than when
compiled for ILP32 if it:

 • Does not take into consideration that integral constants may be
represented as 32-bit types, even when used in expressions with 64-bit
types.

 • Assumes that long or unsigned long data is 32 bits in length.

 • Depends on specific behavior at an assumed data type length.

Table 11 lists some common integer constants and their assigned data types
for ILP32 mode and LP64 mode.

Table 11. Common integer constants and their types in ILP32 and LP64

Suffix Data type

Unsuffixed decimal number int, long, unsigned long

Unsuffixed octal or hexadecimal number int, unsigned int,
long, unsigned long

Suffixed by u or U unsigned int, unsigned long

Suffixed by l or L long, unsigned long

Suffixed by both u or U and l or L unsigned long

Constant Value ANSI C ILP32 ANSI C LP64

0x7FFFFFFF 231-1 int int

0x7FFFFFFFL 231-1 long long
Chapter 3. Issues regarding 32-bit and 64-bit 59

Table 12 lists some common integer constants and their different values for
ILP32 mode and LP64 mode.

Table 12. Common integer constants and their values in ILP32 and LP64

3.9.3 General guidelines
The usage of all constants, including symbolic constants established with
preprocessor #define statements, should be reviewed. Special attention
should be given to:

 • long or unsigned long expressions containing constants used in integer
subexpressions which may overflow the maximum or underflow the
minimum values expressible in 32 bits

 • Expressions containing octal or hexadecimal constants whose high order
bit is 231

 • Expressions depending on truncation at bit 32 on an overflow

 • Left shift expressions that assume truncation at bit 32

The following sections illustrate the cases above.

0x80000000 231 unsigned int unsigned int

0x80000000L 231 unsigned long long

0xFFFFFFFF 232-1 unsigned int unsigned int

0xFFFFFFFFL 232-1 unsigned long long

Constant Value ANSI C ILP32 ANSI C LP64

0x7FFFFFFF 231-1 2,147,483,647 2,147,483,647

0x7FFFFFFFL 231-1 2,147,483,647 2,147,483,647

0x80000000 231 2,147,483,648 2,147,483,648

0x80000000L 231 2,147,483,648 2,147,483,648

0xFFFFFFFF 232-1 4,294,967,295 4,294,967,295

0xFFFFFFFFL 232-1 -1 4,294,967,295

4294967296 232 0 4,294,967,296

0x100000000 232 0 4,294,967,296

0xFFFFFFFFFFFFFFFF 264-1 -1 -1

Constant Value ANSI C ILP32 ANSI C LP64
60 AIX 5L Porting Guide

3.9.4 Integer expression with overflow in 64-bit expression
Consider the following code example:

01 long l1, l2;
02
03 l2 = l1 + 20000000 * 30000000; /* 32-bit multiplication */
04
05 l2 = l1 + 20000000L * 30000000; /* 32-bit multiplication */
06 l2 = l1 + (long) 20000000 * 30000000; /* 64-bit multiplication */
07 l2 = l1 + 20000000 * (long) 30000000; /* 64-bit multiplication */

This is a special form of an integer expression with overflow being used in a
64-bit expression. The two constants in line 3 are 32-bit integer constants,
and the integer multiplication results in a 32-bit overflow with the truncated
folded constant value of 1,658,683,392 added to the variable l2.

3.9.4.1 Recommendation
By using the type suffix L to specify a long type on at least one of the
constants, as shown in line 5, the multiplication will be done with 64-bit
constants. Similarly, either constant could have been explicitly cast to a type
of long (as shown in lines 6 and 7).

3.9.4.2 Compiler and lint assistance
Unfortunately, neither the VisualAge C compiler or lint will give you any
warning about the integer expression overflow when compiling for LP64
mode. The C compiler, however, when compiling for ILP32 mode, will give
you an error message saying that the expression 20000000 * 30000000 does
not evaluate to a constant that fits in its signed type.

3.9.5 Hexadecimal constants
Consider the following code example:

01 long l;
02
03 l &= ~(0x80000000); /* turns off left most 33 bits */
04 l &= ~(0x0000000080000000); /* turns off left most 33 bits */
05
06 l &= ~((long) 0x80000000); /* turns off bit 2**31 */
07 l &= ~(0x80000000L); /* turns off bit 2**31 */

This piece of code illustrates a hexadecimal constant with the 231-bit set.
Because the significant bits of the constant in line 3 will fit into 32 bits, it has a
type of unsigned int. The bitwise complement will yield an unsigned int
constant of value 0x7fffffff. In ILP32 mode, the assignment and operator
would effectively turn off the 231-bit. In LP64 mode, the unsigned int would be
Chapter 3. Issues regarding 32-bit and 64-bit 61

converted to a long with the value 0x000000007fffffff, effectively turning off
33 bits of the value of the variable l. Line 4 would have the same result, since
leading zeros are insignificant in determining the data type of the constant.

3.9.5.1 Recommendation
Lines 6 and 7 of the previous example show the use of either an explicit cast
or a type suffix, respectively, to be certain that the constant is treated as a
64-bit value. These two lines will turn off the 231-bit in both LP64 and ILP32
mode.

3.9.5.2 Compiler and lint assistance
Both the Visual Age C compiler and lint can help you detect these kind of
errors. Here are the relevant compiler warnings (when compiled with -q64
and -qwarn64):

line 3.7: 64-bit portability: possible change of result through conversion
of unsigned int type into long int type.
line 4.8: 64-bit portability: constant which selected unsigned long int in
32-bit mode may select long int in 64-bit mode

Here is the relevant output of lint (when used with the -t switch), which just
informs you about the bitwise AND manipulation of a long variable:

line 3: warning: bitwise " AND " involving a "long"
line 4: warning: bitwise " AND " involving a "long"
line 6: warning: bitwise " AND " involving a "long"
line 7: warning: bitwise " AND " involving a "long"

3.9.6 Code depending on truncation at 32 bits on overflow
Consider the following code example:

01 long l;
02
03 l += 0xffffffff;

The constant is a 32-bit unsigned int with a value of 4,294,967,295 in both
ILP32 and LP64 mode. The addition is done as an unsigned long, which is
cast to a type long. In ILP32 mode, the result has a value of l – 1 because of
the truncation to 32 bits (always assuming a twos-complement system for
negative integers). In LP64 mode, the addition result is a 64-bit long with a
value of l + 4,294,967,295, which is certainly not the expected result.
62 AIX 5L Porting Guide

3.9.6.1 Recommendation
You should rewrite your code and use explicit casts to make sure you obtain
the desired result. To obtain the twos-complement independently from the
data model, the previous code example should be rewritten as:

01 long l;
02
03 l += ((1L << (8 * sizeof(long))) - 1);

Here the number 8 equals the number of bits per char and should be
represented as an architecture dependent #define (CHAR_BIT in <limits.h>).

3.9.6.2 Compiler assistance
The VisualAge C compiler can help you detect these kind of errors when
compiling with -q64 and -qwarn64. Here is the relevant compiler warning:

line 3.6: 64-bit portability: possible change of result through conversion
of unsigned int type into long int type.

3.9.7 Wrong assumption about size of long integers
Consider the following code example:

01 long l1, l2;
02
03 l2 = (l1 << 5) >> 16; /* depends on truncation at bit 32 */
04
05 l2 = (l1 << (8 * sizeof(l1) - 27)) >> (8 * sizeof(l1) - 16);

This is an example of code that presumes to know the number of bits in a
long data type. The code is attempting to extract bits 11-26 from the long
variable l1 as a signed quantity. The left shift in line 3 is dependent on
truncation occurring at bit 32, and while the code will work in ILP32 mode, it
will not port to LP64 mode. Code which assumes to know the size of any data
type other than char is not portable. Code that assumes the size of a long or
unsigned long data type will certainly be a problem when ported to LP64
mode.

3.9.7.1 Recommendation
The code in line 5 will yield identical results in both LP64 and ILP32 modes,
where:

 • 8 = number of bits per char and should be represented as an architecture
dependent #define (CHAR_BIT in <limits.h>)

 • 27 = one more than the highest bit desired in the result

 • 16 = size of the field being extracted
Chapter 3. Issues regarding 32-bit and 64-bit 63

3.9.7.2 lint assistance
Unfortunately, the VisualAge C compiler will not give you any warnings
regarding the previous code as it cannot know your wrong assumption. Also,
lint with the -t option will just give you a general warning about left/right shift
operation involving a long variable:

line 3: warning: Left Shift involving a "long"
line 3: warning: Right Shift involving a "long"
line 5: warning: Left Shift involving a "long"
line 5: warning: Right Shift involving a "long"

3.9.8 Bit shifts and bit masks
Bit shifts and bit masks are sometimes coded with the assumption that the
operations are performed in variables that have the same data type as the
result. In cases such as”

z = x operation y

the data type used for the intermediate result of the operation depends on the
data types of y and x. The data type of the intermediate result is then
converted according to the ANSI C integer conversion rules (see Section 3.5,
“ANSI C integer conversion rules” on page 31) to the data type of z. If the
result of the operation requires 64 bits, but the data types of x and y are only
32-bit, then the intermediate result will either overflow or be truncated before
being assigned to z. Consider the following code example:

01 int i = 32;
02 long j;
03
04 j = 1 << i; /* j will be 0 because RHS is integer expression */
05
06 j = 1L << i;
07 j = (long) 1 << i;

The left operand 1 is an integer constant that the compiler treats as a 32-bit
value in both ILP32 and LP64 mode. The bit shift in line 4 uses a 32-bit data
type (int) for the intermediate result (as both operands are 32-bit data types).
Therefore, in both data models, the operation overflows. With the truncation
at bit 32, the final result of the left shift operation is 0. Note that only the left
operand of a shift operator determines the data type of the result. The data
type of the shift count operand is irrelevant.

3.9.8.1 Recommendation
By using the type suffix L (or UL) to specify a long (or unsigned long) type on
the constant 1, as shown in line 6, the left shift will be done with 64-bit
64 AIX 5L Porting Guide

constants. Similarly, the constant could have been explicitly cast to a type of
long (as shown in line 7). In both cases, the expected result of 0x100000000
is obtained.

3.9.8.2 Compiler and lint assistance
Unfortunately, neither the VisualAge C compiler or lint will give you any
warning about the integer expression overflow when compiling for LP64
mode.

3.10 C and C++ data type alignment issues

This section describes the C language data types of AIX 5L on both Power
and Itanium-based systems. It also describes the differences in alignment
between the data types in 32-bit and 64-bit programming models, along with
the porting issues that may be encountered, and methods that can be used to
write programs so that they are not impacted by those differences.

3.10.1 C and C++ data type alignment in AIX 5L
Support for a 64-bit address space and larger scalar arithmetic ranges in
LP64 mode naturally requires changes in at least some of the basic C and
C++ data types. Details of the alignment characteristics of C and C++
language base data types in each programming model and hardware platform
are shown in Table 13.

Table 13. Data type alignment in bytes for AIX 5L

AIX 5L for Power AIX 5L for Itanium-based
systems

Data type ILP32 model LP64 model ILP32 model LP64 model

char 1 1 1 1

short 2 2 2 2

int 4 4 4 4

long 4 8 4 8

long long 8 8 4 8

float 4 4 4 4

double 4 4 4 8

long double 8 8 4 16

pointer 4 8 4 8
Chapter 3. Issues regarding 32-bit and 64-bit 65

The differences between the LP64 programming model and the others is the
alignment of long, long long, pointer, and long double data types. As shown in
Table 13 on page 65, pointers, long and long long integers in LP64 mode are
aligned at 8 bytes (64 bits) boundaries. The alignment restrictions for these
data types, as well as the size of long double floating point types, have
changed for performance considerations.

Although the Power model supports 128-bit long double variables with 128-bit
alignment, when the -qlongdouble option is used with the compiler, the
default alignment for long double is 8 bytes (64 bits).

3.10.2 Data alignment
Most processors require every data item in memory to be aligned on 2-, 4-, or
8-byte boundaries; otherwise, they may suffer performance degradation by
having to perform multiple read operations, or they may have to raise a
hardware exception so that the operating system will handle it, with additional
performance degradation. To solve this misalignment problem, the compiler
adds filler bytes called padding immediately before every misaligned item to
ensure it is aligned properly on the correct boundary. Although the padding
bytes added by the compiler are invisible to the application code, they do
exist and can cause the layout of a data structure in memory to differ from
what is expected.

For example, consider the structure definition shown below:

struct {
char cmdcode; /* 1 byte command code */
double param; /* 8 bytes parameter */
short retcode; /* 2 bytes return code */

} cmdstruct_t;

Figure 18 on page 67 shows the layout in memory for the ILP32 and LP64
data model.
66 AIX 5L Porting Guide

Figure 18. Different structure padding in ILP32 and LP64 mode

Each field in the structure has the same size in both 32-bit and 64-bit
environments, indicating that there should not be a problem. However, if we
examine the overall size and layout of the structure in 32-bit and 64-bit
environments, we can see that they do in fact differ. This is due to different
padding being used in each environment to achieve the correct alignments
for the data types in the structure. If the structure is shared or exchanged
among 32-bit and 64-bit processes, the data fields and padding of one
environment will not match the expectations of the other.

The following sections deal with a number of techniques that can be used to
solve this problem.

3.10.3 Data reordering
You can reorder the fields in the data structure to get the alignments in both
32-bit and 64-bit environments to match. Using the example shown in
Section 3.10.2, “Data alignment” on page 66, if the structure members are
reordered, the resulting structure is the same size in both 32-bit and 64-bit
environments. The structure would have to be reordered, as in the following
code example:

struct {
double param; /* 8 bytes parameter */
short retcode; /* 2 bytes return code */
char cmdcode; /* 1 byte command code */

} cmdstruct_t;

Figure 19 on page 68 shows the rearranged structure layout in memory.

cmdcode param retcode

padding

0 1 2 3 4 5 6 7 8 9 10 11 12 13address

32-bit

cmdcode param retcode

padding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17address

64-bit
Chapter 3. Issues regarding 32-bit and 64-bit 67

Figure 19. Rearranged structure to match the alignment in ILP32 and LP64 mode

The success of this method will depend on the data types used in the
structure and the way in which the structure as a whole is used. For example,
if the structure is defined in a header file by another device driver or kernel
component for which you do not have the source code, you will not be able to
reorder the structure members.

Internal data structures in applications should always be checked for holes.
A simple rule for reordering the structure is to move the long and pointer
fields to the beginning of the structure, as they will grow to 64 bits in the LP64
model.

However, a structure in which every member is a data type that has a
different alignment or size in 32-bit and 64-bit environments will not benefit
from data reordering alone.

3.10.4 User-defined padding
If you are unable to reorder the members of a structure, or if reordering alone
cannot provide correct alignment, another method that can be used is to
introduce user-defined padding. The user-defined padding technique can be
used in conjunction with data reordering (if required). Depending on the data
types involved, a conditional compile section may be necessary.
A conditional compile section will be required when the structure uses data
types that have different sizes in the 32-bit and 64-bit environments. Using
the structure shown in Section 3.10.2, “Data alignment” on page 66 as an
example, rather than reordering the members, an additional member could be
added, which would cause both 32-bit and 64-bit environment versions of the
structure to have identical alignment. In this case, an additional structure
member of type int placed between the first and second structure members
would achieve the objective shown in the code example below:

struct {
char cmdcode; /* 1 byte command code */
int usrpad; /* 4 bytes user defined padding */

cmdcode

param retcode

0 1 2 3 4 5 6 7 8 9 10address

32-bit and 64-bit
68 AIX 5L Porting Guide

double param; /* 8 bytes parameter */
short retcode; /* 2 bytes return code */

} cmdstruct_t;

Figure 20 shows the memory layout of the structure with user-defined
padding.

Figure 20. User-defined structure padding

Unlike padding added by the compiler, the user-defined padding is visible in
the program address space and thus requires a unique symbol name within
the structure. Depending on the sizes and alignments of the adjacent
structure members, user-defined padding of char, short, and int can be used.

If the data structure contains variables of type long or pointer, which have
different sizes in the 32-bit and 64-bit environments, a conditional compile
section will be required. For example:

01 struct {
02 #ifdef __64BIT__
03 long *ptr; /* 8 bytes in LP64 */
04 #else
05 long *ptr; /* 4 bytes in ILP32 */
06 long padding; /* 4 bytes in ILP32 */
07 #endif
08 int count;
09 } pointer_t;

In this example, the overall size of the structure will be the same in both
environments, as will the alignments of the ptr and count variables.

Any code that uses a structure defined in this way must be aware of the
process environment in which it is running (32-bit or 64-bit) and the
environment of the source of the structure, so that it can correctly interpret
the data fields that have a different size in each environment.

3.10.5 Determining structure alignment
You can verify the layout of a data structure with a handy macro,
offsetof(type,member), which is defined in the standard header file

cmdcode param retcode

padding

32-bit and 64-bit

usrpad

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17address 0
Chapter 3. Issues regarding 32-bit and 64-bit 69

<stddef.h>. The macro expands to an integral constant expression (of type
size_t) that is the offset (in bytes) of the specified member within the data
structure. You can use the macro in a small stub program, that you compile
and run in both 32-bit and 64-bit environments, to determine that the structure
offsets are the same. For example:

01 #include <stddef.h>
02
03 struct mystruct_t {
04 char filler;
05 int suspect;
06 };
07
08 int main(int argc, char *argv[])
09 {
10 printf("offset is %ld\n", offsetof(struct mystruct_t, suspect));
11 }

If offsetof() is not defined in a non-ANSI implementation (for example, your
origin platform), it is possible to define it as follows:

#define offsetof(type,member) ((size_t)&((type *)0)->member)

If the implementation does not permit the use of the null pointer constant in
this fashion, it is possible to compute the offset by using a predefined,
non-null pointer and subtracting the member’s address from the structure’s
base address. For example:

01 struct mystruct_t {
02 char filler;
03 int suspect;
04 };
05
06 int main(int argc, char *argv[])
07 {
08 struct mystruct_t x;
09
10 printf("offset = %ld\n",
11 (unsigned long) &x.suspect - (unsigned long) &x);
12 }

3.10.6 Objects change size
Data objects that contain pointer, long, long long, or long double data types
will have different sizes in ILP32 and LP64 modes. This change in data
structure sizes may not be a problem. If the data is to be solely used by the
binary that produced the data or another program compiled for the same
compilation model, the size difference is not an issue, with the exception of a
70 AIX 5L Porting Guide

potential size problem. A problem does exist where an LP64 model binary
must consume data produced by a ILP32 model binary or where the data flow
is in the opposite direction.

For structures that must be passed between 32-bit and 64-bit environments,
there are two approaches that can be taken:

 • Alter the structure using the methods described previously, so that the
structure has identical size and alignment in both environments.

 • Leave the structure definition as is, which results in differences between
the 32-bit and 64-bit version. Each segment of code that handles the
structure must determine the type of environment that created the
structure and take appropriate action.

If the structure is private to your application, either approach may be taken. If
the structure is defined elsewhere, for example, as part of a POSIX or XPG
standard, you may be unable to alter the structure definition to ensure that
the sizes and alignments match in both 32- and 64-bit environments.

With careful design, compatible data structures can be defined to allow
sharing of data between binaries from different models. The preprocessor
directive __64BIT__ will allow the declaration of a structure that is binary data
compatible between compilation models:

struct mysharedstruct_t {
#ifdef __64BIT__

long 64bit_value;
int 32bit_value;
int other_32bit_value;
long double big_fp_value;

#else /* !__64BIT__ */
long long 64bit_value;
long 32bit_value;
int other_32bit_value;
long double big_fp_value;
int padding;

#endif /* __64BIT__ */
};

The above structure illustrates a C data structure that is binary data
compatible in either ILP32 or LP64 mode. The declaration preserves the
alignment and size of each structure member.

Sharing of pointer values between ILP32 and LP64 applications is
meaningless. In serious database-oriented applications, pointers rarely
appear in declarations of data written to mass storage devices. These
Chapter 3. Issues regarding 32-bit and 64-bit 71

applications are normally concerned about the efficient use of storage, and
already avoid pointers. File offsets can be expressed in terms of the 64-bit
data type available in each model.

In cases where an LP64 program must deal with an ILP32 data structure that
contains pointers, more effort is required. Assuming that data written out in
pointer fields is irrelevant or expressed in terms of some offset, and will be
filled in when the structure is memory resident, a new data structure that
encapsulates the old data can be defined. Care must be taken to preserve the
alignments in the old structure.

3.10.7 __align specifier
On the Power version on AIX 5L, you have the option of using the __align
specifier, which can be used to explicitly specify alignment and padding when
declaring or defining data items. The syntax for the __align specifier can be
seen below:

declarator __align (integer_constant) identifier;
struct_or_union_specifier __align (integer_constant) [identifier
{struct_declaration_list}];

where:

integer_constant specifies a byte-alignment boundary, which is an integer
constant, greater than 0 and which is a power of 2.

The __align specifier can only be used with declarations of first-level
variables and aggregate definitions. It ignores parameters and automatics.

The __align specifier cannot be used on individual elements within an
aggregate definition, but it can be used on an aggregate definition nested
within another aggregate definition.

The __align specifier cannot be used in the following situations:

 • Individual elements within an aggregate definition

 • Variables declared with incomplete type

 • Aggregates declared without definition

 • Individual elements of an array

 • Other types of declarations or definitions, such as typedef, function, and
enum

 • Where the size of variable alignment is smaller than the size of type
alignment
72 AIX 5L Porting Guide

For example:

Applying __align to first-level variables:

int __align(1024) varA; /* varA is aligned on a 1024-byte boundary */
/* and padded with 1020 bytes */

static int __align(512) varB; /* varB is aligned on a 512-byte boundary */
/* and padded with 508 bytes */

int __align(128) functionB();/* An error */
typedef int __align(128) T; /* An error */
__align enum C {a, b, c}; /* An error */

Applying __align to align and pad aggregate tags without affecting aggregate
members:

__align(1024) struct structA {int i; int j;}; /* structA is aligned on a
1024-byte boundary with size including padding of 1024 bytes */
__align(1024) union unionA {int i; int j;}; /* unionA is aligned on a
1024-byte boundary with size including padding of 1024 bytes */

Applying __align to a structure or union where the size and alignment of the
aggregate using the structure or union is affected:

__align(128) struct S {int i;}; /* sizeof(struct S) == 128 */
struct S sarray[10]; /* sarray is aligned on 128-byte boundary */

/* with sizeof(sarray) == 1280 */
struct S __align(64) svar; /* error - alignment of variable is less */

/* than alignment of type */
struct X {struct S s1; int a;} x;/* x is aligned on 128-byte boundary */

/* with sizeof(x) == 256 bytes */

Applying __align to an array:

AnyType __align(64) arrayA[10];
/* Only arrayA is aligned on a 64-byte boundary, and elements within that
array are aligned according to the alignment of AnyType.
Padding is applied after the back of the array and does not affect the size
of the array member itself. */

Applying __align when the size of variable alignment differs from size of type
alignment:

__align(64) struct S {int i;};
struct S __align(32) s1; /* error, alignment of variable is */

/* smaller than alignment of type */
struct S __align(128) s2; /* s2 is aligned on 128-byte boundary */
struct S __align(16) s3[10]; /* error */
int __align(1) s4; /* error */
__align(1) struct S {int i;}; /* error */
Chapter 3. Issues regarding 32-bit and 64-bit 73

3.10.8 Data inflation
Migrating from a 32-bit model to a 64-bit model running on a 64-bit platform
also means a larger memory footprint and larger storage requirements. The
change in the size of machine instructions is inevitable. The size of data
items, on the contrary, is somewhat controllable in well-designed code.

3.10.8.1 Structure padding
Reordering the fields in data structures may help reduce the data inflation on
64-bit platforms. See Section 3.10.3, “Data reordering” on page 67 for an
example of field rearrangement.

3.10.8.2 Cardinality - Range of possible values
Cardinality is the set of all possible values of a specific data item. For
example, the cardinality of a day-of-week field would be [1,2,3,4,5,6,7]
or [1..7]. Another example is car mileage. Four digits are used for trip
mileage, counting from 0 to 9999 miles, so its cardinality is [0..9999]. For total
mileage, however, six digits are used, counting from 0 to 999,999 miles. Its
cardinality is [0..999999].

Now, suppose some code contains a variable of type long. What should be
the type of this variable after porting from a 32-bit to a 64-bit model? Should it
be changed to int in order to maintain its size? Obviously, you have to find out
what kind of data this variable contains. If the variable is used to count the
light years a starship can go in one mission, which is, say, 1 to 200,000 light
years, it would be acceptable to change the variable type to int. On the other
hand, if the variable counts in miles, which can be anything between 1 and
261 miles, it might be proper to leave the variable as type long.

3.10.8.3 Use offset instead of pointer
You do not always have to use pointers to deal with addressing. Often, using
an offset or displacement to a base pointer is good enough. The advantage of
using an offset value over using a pointer is that pointers are always 64 bits
while the offsets can be either 2, 4, or 8 bytes, depending on their cardinality
or addressing range.

3.10.8.4 Always use sizeof()
Always use the sizeof() operator to determine the actual size of a structure.
Do not assume the size of the structure is just the accumulated sum of all
member sizes, as additional space might be used for padding.
74 AIX 5L Porting Guide

3.11 Lack of function prototypes

Passing arguments to a function is essentially the assignment of values to the
formal parameters of the called function. For calls to functions with a
prototyped declaration in scope, these assignments have implicit
conversions, where argument types differ from the corresponding formal
parameter type. For calls to functions lacking a prototyped declaration in
scope, default argument promotions are performed on each argument. For
integer data types that are 32 bits or less in size, the integral promotions will
yield 32-bit int or unsigned int types. If these 32-bit values are used as 64-bit
values by the called function, the behavior, according to the ANSI/ISO C
standard, is undefined. This applies to both ILP32 and LP64 programming
models.

The 64-bit environment calling conventions state that integral scalar
parameters smaller than 64 bits are placed in the least significant bits of a
64-bit argument slot, padded on the left; the contents of the padding are
undefined. Passing a non-64-bit value to a function that will use the
information as a 64-bit data type will result in using undefined bits. While
some versions of the C/C++ compiler, particularly with optimization disabled,
may sign or zero extend arguments to 64 bits, this behavior is not
guaranteed.

A similar problem will occur with a function returning a 64-bit value and no
prototyped function declaration visible at the point of call. The implicit return
type is int, and the callee will only expect a 32-bit value from the function
called. The high order 32 bits of the return value are truncated. Note that use
of implicit types is non-standard for C++, but they are being considered for
the C language by the ANSI/ISO standardization committees.

3.11.1 Lack of prototyped function declaration
The examples in Figure 21 on page 76 and Figure 22 on page 77 illustrates
various forms of external function declarations that appear in existing code,
from non-existent to prototyped. The calls to functions func1() and func2()
exhibit both problems in the code example with two separate C files
(funcproto1.c and funcproto2.c in Figure 21 on page 76 and Figure 22 on
page 77):

 • Only 32-bit values are passed as arguments; the high order 32 bits of the
argument are undefined. This occurs in lines 13 and 15 in Figure 21 on
page 76.

 • The call to function func2_ANSI() in Figure 21 on page 76 in line 16 also
assumes an implicit int return types as the two previous calls (lines 13
Chapter 3. Issues regarding 32-bit and 64-bit 75

and 15). Therefore, only 32 bits of the return value are used following the
function call. This occurs in lines 13, 15, and 16 in Figure 21.

 • The call to function func3() in Figure 21 in line 18 in the presence of a fully
prototyped function declaration correctly passes a sign extended 64-bit
argument and handles a 64-bit return value.

Figure 21. Code example funcproto1.c

01 extern func2_KandR(); /* K&R function prototype */
02 extern func2_ANSI(long); /* ANSI func prototype, implicit return */
03
04 extern long func3(long);
05
06 long l1, l2, l3;
07
08 int main(int argc, char *argv[])
09 {
10 short s;
11 int i;
12
13 l1 = func1(s); /* no function declaration visible */
14
15 l2 = func2_KandR(i); /* implicit return type, K&R type call */
16 l2 = func2_ANSI(i); /* implicit return type */
17
18 l3 = func3(i);
19 }
76 AIX 5L Porting Guide

Figure 22. Code example funcproto2.c

3.11.1.1 Recommendation
Prototyped function declarations should be visible at all call sites, particularly
for functions with 64-bit parameters or 64-bit return types. This applies to the
ILP32 mode as well as the LP64 mode. Both the compiler and lint should be
used to locate all places where:

 • Functions appear to be declared implicitly

 • Functions are declared with an "old-style" parameter list

 • Functions appear to have an implicit return type

 • lint reports that function types or arguments appear to be declared or
used inconsistently across source files

This combination will clearly locate problems in K&R or ANSI C source code,
and, once corrected for LP64 mode, will also work in ILP32.

3.11.1.2 lint assistance
If lint is run on all source files that make up a binary, it will flag:

01 extern long l1, l2, l3;
02
03 long func1(arg)
04 long arg;
05 {
06 return(arg * l1);
07 }
08
09 long func2_KandR(arg)
10 long arg;
11 {
12 return(arg * l2);
13 }
14
15 long func2_ANSI(long arg)
16 {
17 return(arg * l2);
18 }
19
20 long func3(long arg)
21 {
22 return(arg * l3);
23 }
Chapter 3. Issues regarding 32-bit and 64-bit 77

 • Implicitly declared functions (at the point of call):

“funcproto1.c” line 13: warning: function prototype not in scope
“funcproto1.c” line 15: warning: function prototype not in scope

 • Functions declarations with "old-style" parameter lists:

"funcproto2.c", line 3: warning: old style argument declaration
"funcproto2.c", line 9: warning: old style argument declaration

 • Functions with an implicit return type of int:

“funcproto1.c” line 13: warning: function func1 return value used, but
none returned
“funcproto1.c” line 15: warning: function func2_KandR return value used,
but none returned
“funcproto1.c” line 16: warning: function func2_ANSI return value used,
but none returned

 • Function arguments used inconsistently:

"funcproto1.c", line 16: warning: function func2_ANSI argument type
inconsistent

3.11.2 Pointer return or argument types without function prototype
This is a specific form of the porting issues that deal with 64-bit values used
as function parameters and function return types in the absence of a
prototyped function declaration in scope. In LP64 mode, a NULL pointer
value (integer constant zero) used as an argument to a function without a
prototyped function declaration may be passed only as a 32-bit zero, with the
high order 32 bits being undefined. Likewise, in LP64 mode, a 64-bit pointer
returned by a function to a callee that does not have a prototyped function
declaration in scope will be treated as an int and truncated to 32 bits.

3.12 Data type promotion

Data type promotion is the conversion of operands with different data types to
compatible types for comparison and arithmetic operations. For example,
when a short is compared to an int, the short is first converted to an int.

Certain data type promotions, however, can result in signed numbers being
treated as unsigned numbers. This, of course, may sometimes yield
unexpected results.

3.12.1 Sign extension
Sign extension is a phenomenon that occurs quite often when converting to
64-bit environments. It is sometimes hard to detect, as it might have gone
78 AIX 5L Porting Guide

unnoticed before when the program suddenly seems to produce strange
results. Furthermore, the integer type conversion and promotion rules are
somewhat obscure. Sign extension problems can be fixed by using explicit
casts to obtain the intended result.

To better understand the occurrence of sign extension, it helps to understand
the integer conversion rules for ANSI C (see Section 3.5, “ANSI C integer
conversion rules” on page 31).

As an example for sign extension, consider the code example in Figure 23.

Figure 23. Code example signext.c to demonstrate sign extension in LP64 mode

When compiled as a 32-bit program (in ILP32 mode), no sign extension
occurs:

% cc -q32 -o signext32 signext.c
% ./signext32
memaddr: 0x80000000 2147483648
memaddr: 0x80000000 2147483648
%

However, when compiled as a 64-bit program (in LP64 mode), the variable
memaddr becomes sign-extended (in line 10):

% cc -q64 -o signext64 signext.c
% ./signext64
memaddr: 0xffffffff80000000 18446744071562067968
memaddr: 0x80000000 2147483648

01 #include <stdio.h>
02
03 int main(int argc, char *argv[])
04 {
05 int baseaddr;
06 unsigned long memaddr;
07
08 baseaddr = 0x10000;
09
10 memaddr = baseaddr << 15; /* sign extension here */
11 printf("memaddr: 0x%lx %lu\n", memaddr, memaddr);
12
13 memaddr = (unsigned int)(baseaddr << 15); /* no sign extension */
14 printf("memaddr: 0x%lx %lu\n", memaddr, memaddr);
15 }
Chapter 3. Issues regarding 32-bit and 64-bit 79

The sign extension occurs because the above conversion rules are applied
as follows:

1. The expression baseaddr << 15 is of type int, but no sign extension has
yet occurred.

2. The expression baseaddr << 15 is of type int, but it is converted to a long
(See Rule 2.b in Section 3.5, “ANSI C integer conversion rules” on
page 31) and then to an unsigned long before being assigned to baseaddr,
because of the signed and unsigned integer promotion rule. The sign
extension occurs when it is converted from an int to a long.

3.12.1.1 Recommendation
Expressions can sometimes be very tricky because of the conversion rules.
Therefore, you should be very explicit about how you want the expression to
be evaluated by adding casts wherever necessary.

3.12.1.2 Compiler and lint assistance
lint will help you find possible occurrences of sign extension. Here is the
relevant output:

line 10: warning: conversion to long may sign-extend incorrectly

The VisualAge C compiler will help you find possible occurrences of sign
extension when invoked with the -qwarn64 option. Here is the relevant
output:

line 10.22: 64-bit portability: possible change of result through
conversion of int type into unsigned long int type.

3.12.2 Arithmetic between signed and unsigned numbers
Due to the different byte sizes of some data types, certain data promotions
behave differently in LP64 mode than in ILP32 mode. This is the case, for
example, when an int is compared with an unsigned long, and when an
unsigned int is compared with a long.

In order to circumvent any unintended data promotion problems, programs
which adhere to the ANSI C standard should perform comparisons and
arithmetic operations only when all operands are either of signed type or
unsigned type, as they might otherwise yield unexpected results. Consider
the code example in Figure 24 on page 81.
80 AIX 5L Porting Guide

Figure 24. Code example showing comparisons

The output of the code example above when compiled in 32-bit ILP32 mode
and 64-bit LP64 mode, is shown in Table 14.

Table 14. Output of code example in Figure 24 for ILP32 and LP64 modes

Clearly, the comparisons in lines 10 through 13 produce incorrect results for
ILP32 mode, while in the LP64 mode the lines 10 through 12 produce
incorrect results. The reason for this is that comparisons between signed and
unsigned data types often do not produce the expected results, due to data
type promotion. The reasons are:

1. In line 10, i is promoted to unsigned int with a value of 4,294,967,295 (for
both ILP32 mode and LP64 mode) before being compared to ui.

Output in ILP32 mode Output in LP64 mode

-1 < 1 is FALSE
-1 < 1 is FALSE
-1 < 1 is FALSE
-1 < 1 is FALSE

-1 < 1 is TRUE
-1 < 1 is TRUE
-1 < 1 is TRUE
-1 < 1 is TRUE

-1 < 1 is FALSE
-1 < 1 is FALSE
-1 < 1 is FALSE
-1 < 1 is TRUE

-1 < 1 is TRUE
-1 < 1 is TRUE
-1 < 1 is TRUE
-1 < 1 is TRUE

01 #include <stdio.h>
02
03 int main(int argc, char *argv[])
04 {
05 int i = -1;
06 unsigned int ui = 1;
07 long l = -1;
08 unsigned long ul = 1;
09
10 printf("%d < %u is %s\n", i, ui, i < ui ? "TRUE" : "FALSE");
11 printf("%ld < %lu is %s\n", l, ul, l < ul ? "TRUE" : "FALSE");
12 printf("%d < %lu is %s\n", i, ul, i < ul ? "TRUE" : "FALSE");
13 printf("%ld < %u is %s\n", l, ui, l < ui ? "TRUE" : "FALSE");
14 printf("---------------\n");
15 printf("%d < %d is %s\n", i, ui, i < (int) ui ? "TRUE" : "FALSE")
16 printf("%ld < %ld is %s\n", l, ul, l < (long) ul ? "TRUE" : "FALSE")
17 printf("%d < %d is %s\n", i, ul, i < (int) ul ? "TRUE" : "FALSE")
18 printf("%ld < %ld is %s\n", l, ui, l < (long) ui ? "TRUE" : "FALSE")
19 }
Chapter 3. Issues regarding 32-bit and 64-bit 81

2. In line 11, l is promoted to unsigned long with a value of 4,294,967,295 (in
ILP32 mode) or a value of 18,446,744,073,709,551,615 (in LP64 mode)
before being compared to ul.

3. In line 12, i is promoted to long with a value of -1 and then the same as
in 2.) happens.

4. In line 13 in ILP32 mode, the long value of l=-1 is promoted to an unsigned
32-bit number with a value of 4,294,967,295. In LP64 mode, however, ui is
promoted from unsigned int to long; thus, both operands are signed 64-bit
numbers. This is the reason why the output of line 13 in LP64 mode is
correct.

3.12.2.1 Recommendation
The code example shows the importance of ensuring that comparisons and
arithmetic operations are performed only with operands of the same signed or
unsigned data type (to avoid any unintended data type promotion). This is
especially true when comparing an int with a long in LP64 mode.

The solution to obtain correct results is to introduce explicit casts, so that all
comparisons are done with signed data types. This is shown in lines 15
through 18.

3.12.2.2 lint assistance
lint will only partially help you in detecting these kind of errors. The relevant
lint output is:

line 12: warning: conversion to long may sign-extend incorrectly
line 17: warning: conversion from long may lose accuracy

The warning in line 17 is due to the fact that because of the cast from
unsigned long to int, precision might be lost. In that case, casts to long could
be applied to both operands.
82 AIX 5L Porting Guide

Chapter 4. Setting up the development environment

This chapter describes how you can set up a development environment.

4.1 Your development environment

One thing that normally is very important to the majority of developers who
use a UNIX platform, is to have access to the same or similar set of tools that
they are used to working with. These tools will normally include compilers,
debuggers, shells, pagers (such as more), and editors.

4.2 Online documentation

In the past, you might have left your UNIX manuals at home, or the new
trainee at work might have borrowed your prized C compiler documentation.
Or perhaps you are located at a customer site, where they do not use
hardcopy manuals. With AIX 5L, however, all documentation is available
online and is readily available for reference or selective printing. The places
on the Internet where you get the appropriate documentation are described in
this section.

4.2.1 AIX 5L online documentation
The AIX 5L documentation can be found online at:

http://www.ibm-1.com/servers/aix/library/index.html

under the section Technical Publications.

4.2.2 Compiler product information
The latest compiler products both have support Web sites that contain useful
hints, tips, frequently asked questions, and links to other useful Web sites.
The support page for the VisualAge C++ Professional for AIX 5L Version 5
compiler is:

http://www.ibm.com/software/ad/vacpp/support.html

The support page for the C for AIX Version 5 compiler is:

http://www.ibm.com/software/ad/caix/support.html

4.2.3 PartnerWorld for Developers
PartnerWorld for Developers is a worldwide program supporting developers
who build solutions using IBM technologies. The program covers all IBM
© Copyright IBM Corp. 2001 83

platforms, not just AIX. Its Web site contains a lot of useful information for the
AIX developer, including white papers, sample code, and technology articles.
It can be located on the Web at the following URL:

http://www.developer.ibm.com

4.3 Installing software on AIX

There are several different ways to install software on AIX 5L, all depending
on if you want to use a graphical interface, a menu based interface, or a
Command Line Interface (CLI).

4.3.1 Installing software using Web-based System Manager
If your system has a graphical user interface, the filesets can be installed
using the wsm command. The procedure is as follows:

1. Log in as the root user.

2. Insert the product CD in the CD-ROM drive if the software was supplied
on a CD.

3. Start the software installation task guide with the following command:

wsm install

4. From the Software drop-down menu, select New Software
(Install/Update) > Install Additional Software (Custom) > Advanced
Method.

5. In the Install Additional Software dialog, select the CD-ROM device as the
software source; however, if you have downloaded your software from the
Internet, or otherwise have it in a directory, then enter the path to the
directory here. Then select To install specific software available from the
software source.

6. Click the Browse button to generate a list of software on the media.

7. Select the desired filesets from the dialog. Click and hold down the
Control button while pressing the mouse button to select one or more
additional objects.

8. Click the OK button once you have selected the desired filesets to return
to the Software Install dialog.

9. Click the OK button to start the install.

10. Click the Yes button to continue with the install. A pop-up panel will
appear and show the output of the installation process.

11. Click the Close button once the installation has completed.
84 AIX 5L Porting Guide

4.3.2 Installing software using SMIT
If your system does not have a graphical user interface, or you do not wish to
use a Web-based System Manger, you can install the required filesets using
the smit command as follows:

1. Log in as the root user.

2. Insert the product CD in the CD-ROM drive if the software was supplied
on a CD.

3. Start the SMIT dialog with the following command:

#smit install_latest

4. Press the F4 key to generate a list of possible input devices.

5. Select the CD-ROM device. If you have downloaded your software from
the Internet, or otherwise have it in a directory, then put in the path to the
directory here.

6. Press the F4 key to generate a list of available filesets.

7. Select the required filesets by highlighting them and then pressing the F7
key.

8. Press the Enter key once the required filesets have been selected.

9. Press the Enter key to start the install.

10. Press the Enter key to continue the install.

11. Press the F10 key to exit once the installation has completed.

4.3.3 Installation with the command line interface (installp)
If your system does not have a graphical user interface, or you do not wish to
use a Web-based System Manger or the SMIT interface, you can install the
required filesets using the installp command:

1. Log in as the root user.

2. Insert the product CD in the CD-ROM drive if the software was supplied on
a CD.

3. Mount the CD using the command:

mount /<cdrom mount dir>

If you get an error that states that /<cdrom mount dir> is not a known file
system, create a CD-ROM file system using the command:

crfs -v cdrfs -p ro -d'cd0' -m'/mycdrom' -A'no'

Then mount the CD using the command:
Chapter 4. Setting up the development environment 85

mount /mycdrom

4. Change directory to the directory where the software you want to install is
located. If you are using a CD, the install directory will normally be:

</cdrom mount dir/usr/sys/inst.images/>

5. Now use the command installp -ld . to list the installable filesets on
media

6. To install a fileset <fileset> in the applied state, use the command:

installp -ad . <fileset>

To install a fileset and commit it at the same time, use the command

installp -acd . <fileset>

7. Use the command:

installp -c <fileset>

if you, at a later point in time, wish to commit an applied fileset.

For a more detailed description on how to install software on AIX, see
Chapter 3, “Additional software installation” in the IBM Certification Study
Guide AIX Installation and System Recovery, SG24-6183. This chapter also
covers how to install fixes. You should also read the manual page for the
installp command.

4.4 The License Use Manager

IBM License Use Management Runtime, hereafter referred to as License Use
Management (LUM), contains the tools needed in an end user environment to
manage product licenses and get up-to-date information about license usage.

LUM is the replacement for the iFOR/LS and Net/LS systems that were used
in previous versions of AIX and with previous versions of the IBM compilers.

The LUM runtime is included with AIX Version 4.3 and higher and is
automatically installed. A comprehensive description of the functionality of
LUM can be found in the LUM online documentation supplied on the AIX 5L

Some products can not be used immediately after installation. These are
products that require a license. Prior to invoking such products, a product
license must be enrolled with the License Use Management (LUM) system.

Note
86 AIX 5L Porting Guide

product media in the ifor_ls.html.en_US.base.cli fileset. The documentation
fileset is not automatically installed when installing AIX 5L; you will have to
obtain your AIX installation media in order to install it.

4.4.1 Configuring LUM
After installing the LUM runtime images, one or more LUM license servers
normally need to be configured. No license server needs to be configured if
the licensed product supplies a simple nodelock license certificate. Both the
C for AIX Version 5 and VisualAge C++ Professional for AIX Version 5
compiler products supply a simple nodelock license certificate.

The simplest method of licensing the latest compiler products is to use the
simple nodelock license certificate. When this is done, there is no need to
configure a LUM server; however, the installation of the certificate in large
numbers of machines can be cumbersome.

If you wish to use the simple nodelock certificate, you can skip directly to
Section 4.4.3, “Enrolling a product license” on page 91. If you wish to use the
additional functionality available when using a license server, then the first
step is to decide which server type is best suited for your environment.

There are two types of license servers:

 • Concurrent nodelock license server

 • Concurrent network license server

A concurrent nodelock license server supports concurrent nodelock product
licenses. A concurrent nodelock license is local to the node where the LUM
enabled product has been installed. It allows a limited number of
simultaneous users to invoke the enabled licensed product on the local
system.

A concurrent network license server supports concurrent network product
licenses. A concurrent network license is a network license that can
temporarily grant a user on a client system the authority to run a LUM
enabled product.

Either or both of the above license servers may be configured on a single
system. The number of concurrent users for the product is specified during
the enrollment of the product license certificate, described in Section 4.4.3,
“Enrolling a product license” on page 91.

The advantage of using a concurrent nodelock license server is that the
server is installed on the same machine as the compiler and, therefore, users
Chapter 4. Setting up the development environment 87

can obtain compiler licenses even if the machine is temporarily disconnected
from the network. The disadvantage, however, is that installation of licenses
is cumbersome in environments with a large number of client machines.

The main advantage of using a central network license server is that the
administration of product licenses is very simple. The disadvantage is that
client machines must be able to contact the license server in order to use the
licensed products.

Configuring LUM requires answering several questions on how you would like
to set up the LUM environment. It is recommended that users read the LUM
documentation supplied with the AIX product media prior to configuring LUM.

A LUM server can be configured in several different ways. You can issue
commands on the command line with appropriate arguments to configure the
LUM server. You can issue a command that starts a dialog and asks a
number of questions to determine the appropriate configuration, or you can
configure the server using a graphical user interface.

4.4.1.1 Configuring a nodelock server
For small numbers of client machines (typically 10 or less), using a nodelock
license server on each machine is the simplest method of configuring LUM.
Log in as the root user and perform the following commands to configure a
machine as a nodelock license server:

/var/ifor/i4cfg -a n -S a

/var/ifor/i4cfg -start

The first command configures the local machine as a nodelock license server
and sets the option that the LUM daemons should be automatically started
when the system boots. The second command starts the LUM daemons.

4.4.1.2 Using the interactive configuration tool
As an alternative to using the above commands, you can use the interactive
configuration script to perform the same actions.

1. Log in as user ID root on the system where the license server will be
installed.

2. Enter

cd /var/ifor

If this directory does not exist, then LUM has not been installed.

3. Invoke the LUM configuration tool by entering the command:
88 AIX 5L Porting Guide

./i4config

This is the command line version of the LUM configuration tool.

4. Answer the LUM configuration questions as appropriate. The answers to
the configuration questions are dependent on the LUM environment you
wish to create.

The following are typical answers to the configuration questions of LUM in
order to configure both concurrent nodelock and concurrent network
license servers on a single system. You may change the various answers
accordingly to suit your preferred system environment. For details on
configuring LUM, please read the documentation that comes with LUM.

 - Select 4 “Central Registry (and/or Network and/or Nodelock) License
Server” on the first panel.

 - Answer y to “Do you want this system be a Network License Server
too?”

 - Select 2 “Direct Binding only” as the mechanism to locate a license
server.

 - Answer n to “Do you want to change the Network License Server ip
port number?”

 - Answer n to “Do you want to change the Central Registry License
Server ip port number?”

 - Answer n to “Do you want to disable remote administration of this
Network License Server?”

 - Answer y to “Do you want this system be a Nodelock License Server
too?”

 - Select 1 “Default” as the desired server(s) logging level.

 - Enter blank to accept the default path for the default log file(s).

 - Answer y to “Do you want to modify the list of remote License Servers
this system can connect to in direct binding mode (both for
administration purposes and for working as Network License Client)?”

 - Select 3 “Create a new list” to the direct binding list menu.

 - Enter the host name, without the domain, of the system you are
configuring LUM for when prompted for the “Server network name(s).”

 - Answer n to “Do you want to change the default ip port number?”

 - Answer y to “Do you want the License Server(s) automatically start on
this system at boot time?”
Chapter 4. Setting up the development environment 89

 - Answer y to continue the configuration setup and write the updates to
the i4ls.ini file.

 - Answer y to “Do you want the License Server(s) start now?”

Both concurrent nodelock and concurrent network license servers should now
be configured on your system.

For more information on configuring and using LUM, refer to the LUM
documentation supplied with AIX. As an alternative, the LUM manual, Using
License Use Management Guide Runtime for AIX, SH19-4346, can be viewed
online in PDF format at the following URL:

ftp://ftp.software.ibm.com/software/lum/aix/doc/V4.5.5/lumusgaix.pdf

4.4.2 Activating the LUM server
After configuring and starting the LUM server, you can enroll product
licenses. Before attempting to enroll a license, you must first ensure that the
LUM daemons are active. This can be done with the following command:

/var/ifor/i4cfg -list

Depending on the type of LUM server configured, the output will be similar to
the following:

i4cfg Version 4.5 AIX -- LUM Configuration Tool
(c) Copyright 1995-1998, IBM Corporation, All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.
Subsystem Group PID Status
i4llmd iforls 22974 active

If no subsystem is listed as active, then start them with the following
command:

/var/ifor/i4cfg -start

The only daemon that must be active is the Nodelock License Server
Subsystem (i4llmd) daemon. The other daemons that may be active
depending on your configuration are as follows:

 • License Sever Subsystem (i4lmd)

 • Central Registry Subsystem (i4gdb)

 • Global Location Broker Data Cleaner Subsystem (i4glbcd)
90 AIX 5L Porting Guide

4.4.3 Enrolling a product license
After LUM has been installed and configured on your system, the product
license certificates can be enrolled with the LUM license server. Three LUM
product license certificates are provided with each of the latest compiler
products:

1. Concurrent nodelock license certificate

2. Concurrent network license certificate

3. Simple nodelock license certificate

You should enroll the appropriate license certificate for the type of LUM
environment you have configured. For example, the locations of the license
certificates for the compiler products are detailed in Table 15.

Table 15. License certificate locations

4.4.4 Enrolling a concurrent license
To enroll a concurrent network or concurrent nodelock license certificate,
perform the following steps:

1. Log in as root on the system where the license server is installed.

2. Invoke the LUM configuration tool by entering the LUM Basic License Tool
command as follows:

/var/ifor/i4blt

The i4blt tool contains both a graphical user interface and a command line
interface. Note that the LUM daemons must be running before starting the
i4blt tool. Refer to Section 4.4.2, “Activating the LUM server” on page 90 for
information on how to check the status of the LUM daemons.

If the X11 runtime (X11.base.rte fileset) has been installed on your system,
the GUI version of the tool will be invoked. Otherwise, the command line

Compiler License Certificate Type Location

C for AIX Version 5 Concurrent Network /usr/vac/cforaix_c.lic

Concurrent Nodelock /usr/vac/cforaix_cn.lic

Simple Nodelock /usr/vac/cforaix_n.lic

VisualAge C++ Professional for
AIX Version 5

Concurrent Network /usr/vacpp/vacpp_c.lic

Concurrent Nodelock /usr/vacpp/vacpp_cn.lic

Simple Nodelock /usr/vacpp/vacpp_n.lic
Chapter 4. Setting up the development environment 91

version will be invoked, and an error will occur, because the appropriate
command line parameters were not specified.

The following are the instructions for both interfaces using the i4blt tool:

 • Enrolling using the graphical user interface:

 - Select the Products pull-down and click on the Enroll Product item.

 - Click on the Import button. The Import panel should be displayed.

 - For example, if you want to enroll a license for the Visualage C++
compiler, then enter /usr/vacpp/*.lic or /usr/vac/*.lic (if you are
enrolling a license for C for AIX) in the Filter entry prompt, and press
Enter. This will show the various product license files in the Files panel.
The three license files for the product, as detailed in Table 15 on
page 91, should be displayed.

 - Select either the prod_c.lic or prod_cn.lic (where prod is either vacpp
or cforaix) license by clicking on the entry.

 - Click OK. The Enroll Product panel should be redisplayed with
information regarding the product indicated.

 - Click on the OK button of the Enroll Product panel. The Enroll Licenses
panel should be displayed.

 - Fill in the information on the Administrator Information portion of the
panel (optional).

 - Fill in the number of valid purchased licenses of the product under
Enrolled Licenses in the Product information portion of the panel
(mandatory).

 - Click on the OK button of the Enroll Licenses panel. The product
should be successfully enrolled. You may terminate the i4blt tool.

 • Enrolling using the command line:

 - From the required product license file, as detailed in Table 15 on
page 91, extract the i4blt command from the top of the file.

 - Replace number_of_lics from the command with the number of valid
purchased licenses of the product (mandatory).

 - Replace admin_name with the name of the administrator (optional).

 - Invoke this command as root from /var/ifor. The product should be
successfully enrolled.
92 AIX 5L Porting Guide

4.4.5 Enrolling a simple nodelock license
Read the instructions at the top of the simple nodelock license certificate file.
In general, this type of license will be installed when no LUM system has
been configured. This means enrolling the license is simply a case of placing
the indicated license information line into the /var/ifor/nodelock LUM nodelock
file.

4.5 Shells available on AIX 5L

In a UNIX-based environment, developers would likely prefer to have a
prompt, or even refuse to work without one. There are some platforms where
it is possible to work entirely within a graphical interface, never actually
issuing commands from a prompt. In UNIX-based environments, the prompt
is provided by one of the many widely used shells.

AIX 5L comes with several shells already installed. These are:

 • sh
 • ksh
 • csh
 • bsh
 • tsh
 • ksh93

sh and tsh are hardlinks to ksh, which is an enhanced version of the1988
KornShell. The ksh93 is an unmodified version of the 1993 version of ksh.
This version is also POSIX compliant. With the exception of POSIX specific
items, the 1993 version should be backward compatible with the 1988
version. Therefore, no changes to shell scripts should be necessary. For
detailed information on the ksh93, consult the official KornShell Web site at:

http://www.kornshell.com

The ksh93 is located in /usr/bin/ksh93.

Furthermore, you might read about the different shells in AIX 5L in the AIX 5L
Version 5.1 System User's Guide: Operating System and Devices (found in
the AIX 5L online documentation), which has a chapter describing the shells
available in AIX 5L.

There are several other popular shells, such as bash and tcsh. These can be
obtained from one of the places discussed in Section 4.8, “Where to get GNU
and other useful software for AIX 5L” on page 96. If you wish to change your
default login shell to, for example, tcsh, and also allow people to use the bash
Chapter 4. Setting up the development environment 93

shell as a login shell, which you already have installed on your AIX 5L
machine, you have to:

1. Log in as the root user.

2. Add the shell to the shells stanzas in the /etc/security/login.cfg file.

3. Change a user’s default shell by using the chsh command.

4. Exit the root shell.

5. Login as the user.

Changing the login shell for the user jasper from ksh to tcsh, might be done
the way it is done in Figure 25.

Figure 25. Changing your default login shell from ksh to /usr/local/bin/tcsh

Now when you login, you will have the tcsh as the login shell. To make the
bash shell your login shell, simply substitute tcsh for bash in the example.

$ su - root
root's Password:
ed /etc/security/login.cfg
4084
/shells =

shells =
/bin/sh,/bin/bsh,/bin/csh,/bin/ksh,/bin/tsh,/bin/ksh93,/usr/bin/sh,/
usr/bin/bsh,/usr/bin/csh,/usr/bin/ksh,/usr/bin/tsh,/usr/bin/ksh93,/u
sr/sbin/sliplogin,/usr/sbin/snappd,/usr/sbin/uucp/uucico
s#uucico#uucico,/usr/local/bin/tcsh,/usr/local/bin/bash#p

shells =
/bin/sh,/bin/bsh,/bin/csh,/bin/ksh,/bin/tsh,/bin/ksh93,/usr/bin/sh,/
usr/bin/bsh,/usr/bin/csh,/usr/bin/ksh,/usr/bin/tsh,/usr/bin/ksh93,/u
sr/sbin/sliplogin,/usr/sbin/snappd,/usr/sbin/uucp/uucico,/usr/local/
bin/tcsh,/usr/local/bin/bash
w
4124
q
chsh jasper /usr/local/bin/tcsh
lsuser -a shell jasper
jasper shell=/usr/local/bin/tcsh
exit
$ exit
94 AIX 5L Porting Guide

4.6 Editors available on AIX 5L

AIX 5L comes with several different editors; some are graphical editors and
some are not. These editors are:

 • dtpad
 • ed
 • ex
 • vi

These editors should be known to most developers. There are also several
freeware editors which are widely used. Two commonly used editors are:

 • emacs
 • nedit

emacs is perhaps the most well known editor. emacs, and the documentation
for it, can be obtained from the places mentioned in Section 4.8.2, “Other
locations for GNU software for AIX 5L” on page 97. If you download emacs
from the Bull site, you might want to check the execute permissions on the
/usr/local/bin/emacs<version> file. emacs will work whether you work in a
XWindow or 80x24 ASCII environment.

nedit is an XWindow editor. nedit is short for Nirvana Editor.

4.7 Source Code Control products under AIX 5L

AIX 5L comes with the SCCS source code control utility available on the
product media. In Figure 26, you can see that SCCS is installed as the
bos.adt.sccs fileset, and that all the files are located in the /usr/bin. directory.

It is NOT recommended to change the shell of the root user, as this might
have unforeseen consequences for your system.

Note
Chapter 4. Setting up the development environment 95

Figure 26. The Source Code Control System

To invoke help on SCCS, use the sccshelp command.

Besides several commercial Source Code Control products, another widely
used product is RCS, which is short for Revision Control System. If you are
using RCS and want to continue to use RCS, the GNU version can be
obtained from the places mentioned in Section 4.8.2, “Other locations for
GNU software for AIX 5L” on page 97. The make command on AIX 5L does
not, by default, support RCS. If you are currently using the GNU make and
RCS combination, then it might be a good idea to continue to do that.

4.8 Where to get GNU and other useful software for AIX 5L

There are several places where you can obtain or order GNU and other
freeware software. In this section, we will try to list some of the best places to
get hold of freeware software.

4.8.1 AIX Toolbox for Linux Applications
The AIX Toolbox for Linux Applications CD is shipped with AIX 5L. The CD
contains a collection of popular open source and GNU software built for AIX
5L. The CD is shipped with AIX 5L media. If you can not locate your Toolbox
CD, the images can be downloaded from the AIX Toolbox web site at:

http://www.ibm.com/servers/aix/products/aixos/linux/

New software and new versions of existing software will become available on
a regular basis.

$ lslpp -f bos.adt.sccs
Fileset File
--

Path: /usr/lib/objrepos
bos.adt.sccs 5.1.0.0 /usr/bin/comb

/usr/bin/rmdel
/usr/bin/val
/usr/bin/get
/usr/bin/delta
/usr/bin/sccs
/usr/bin/cdc -> /usr/bin/rmdel
/usr/bin/sccsdiff
/usr/bin/sact -> /usr/bin/unget
/usr/bin/vc
/usr/bin/admin
/usr/bin/unget
/usr/bin/sccshelp
/usr/bin/prs

$

96 AIX 5L Porting Guide

4.8.2 Other locations for GNU software for AIX 5L
If the piece of software you want to use is not available on the AIX Toolbox
CD or Web site, there are several other places where you can download them
from. Some of the GNU software used in this book was downloaded from
Bull’s large Freeware and Shareware Archive for AIX 4, which can be found
at the following URL:

http://www-frec.bull.com/pub

With mirror sites in Europe

http://ftp.univie.ac.at/aix/

And mirror sites in the United States

http://www.rge.com/pub/systems/aix/bull/
ftp://ftp.rge.com/pub/systems/aix/bull/

The practical thing about downloading from this site is that all the software is
already packed in installp format packages for easy installation and
maintenance.

If you want to get GNU software source code or just want to compile it
yourself, you can use the GNU Web site:

http://www.gnu.org/

The site also contains documentation on the various GNU software products.

4.8.3 Downloading Nedit for AIX 5L
Nedit for AIX 5L and the source code can be downloaded from the Bull Web
page described above, or from the Nedit home page:

http://www.au.nedit.org/

The documentation is also available, together with the source code, from this
Web site.

4.9 Compilers available on AIX 5L for Power

The IBM C and C++ compiler products for AIX 5L share some similar
characteristics, such as the way the products are installed on the system and
the configuration options available when using the products.

4.9.1 IBM C for AIX Version 5.0.2
The C for AIX Version 5.0.2 compiler is the latest IBM C compiler product
available for AIX. It extends the existing symmetric multi-processing (SMP)
Chapter 4. Setting up the development environment 97

support available with C for AIX Version 4.4 by supporting the OpenMP
industry specification. OpenMP provides a model for parallel programming
that allows a program to be portable across shared memory architectures
from different vendors by using a common set of application program
interfaces. The compiler generates highly-optimized code for all RS/6000
processors and can provide run-time address checking to detect memory
errors.

This compiler is only supported by IBM AIX Version 4.2.1 or later. Also, note
that 64-bit applications will run only on AIX Version 4.3 and later when
running on 64-bit hardware.

C programs written using Version 3 or Version 4 of IBM C for AIX are source
compatible with IBM C for AIX Version 5.0. C programs written using either
Version 2 or 3 of IBM Set ++ for AIX or the XL C compiler component of AIX
Version 3.2 are source compatible with IBM C for AIX Version 5.0, with
exceptions to detect invalid programs or areas where results are undefined.

This version of the compiler is installed under /usr/vac and uses the
/etc/vac.cfg configuration file. If C for AIX Version 4.x is installed on a system,
installing C for AIX Version 5.0.2 will overwrite and upgrade the previous
version.

The C for AIX Version 5.0.2 compiler uses the LUM licensing system to
control usage of the product. Refer to Section 4.9.6, “Activating the IBM
compilers” on page 103 for information on configuring the license system.

4.9.2 IBM VisualAge C++ Professional for AIX Version 5.0.2
VisualAge C++ Version 5.0.2 features a fully incremental compiler and a new
batch compiler. The Integrated Development Environment (IDE) operates
with the incremental compiler when used in the AIX Common Desktop
Environment (CDE). The batch compiler is run from the command line and is
suitable for use in a development environment that uses makefiles. Both
compilers support the latest ANSI/ISO C++ language standard and the latest
version (Version 5) of the IBM Open Class library.

The main differences between Version 4 and Version 5 of this product are:

• Version 5 supports multiple codestores in a single project.

• Version 5 is a single product featuring both batch and incremental
compilers.
98 AIX 5L Porting Guide

The graphical interface of Version 5 has been redesigned with a host of
helpful features. Version 5 has improved optimization techniques and
provides the programmer with effective and efficient ways of handling C++
object code. Also, this product allows the developer to carry out performance
analysis to determine the applications usage of system resources.

This product is supported on IBM AIX Version 4.2.1 and later versions for
RS/6000 hardware.

As described above, this version of VisualAge features an incremental
compiler. The implications of this for productivity and the code are
impressive, but if the application is moving from a batch environment, do
spend time with the application to adapt to the VisualAge products. For
example, makefiles cannot be processed directly by the incremental compiler.

But, once the migration is done, then the advantages of VisualAge products
are very impressive. This then would reduce the amount of time and memory
required to do each build, as well as the time spent on rebuilding when some
changes are made to the source files.

C++ programs written using Version 4 of IBM VisualAge Professional for AIX,
and IBM C and C++ compilers, Version 3.6 and earlier, are source compatible
with the VisualAge C++ Professional for AIX Version 5. Since the product
features a batch compiler in addition to the incremental compiler, there are
situations where one is more suitable than the other.

4.9.3 Multiple command line drivers
Each compiler product, with the exception of VisualAge C++ Version 4.0, has
multiple command line driver interfaces available, each causing a different
set of default arguments to be used. For example, the C compiler products
provide commands, such as cc, xlc, c89, cc_r, and so on. These commands
are all links to a single compiler core, which uses a specific set of options,
depending on the name of the command used to invoke it.

In addition to the default invocation commands provided when the compiler is
installed, the system administrator can create new commands, which result in
the compiler being invoked with a customized set of default options. This
feature is controlled by the compiler configuration file, which lists the options
to be used for each invocation command. The exact name of the
configuration file differs between the compiler products, but generally has a
name of the form /etc/comp.cfg, where comp indicates the compiler product
that uses the configuration file.
Chapter 4. Setting up the development environment 99

4.9.3.1 Finding the compiler drivers
The earlier versions of the compiler products automatically created symbolic
links in /usr/bin for each invocation command supplied by the compiler. For
example, this means that if a user has the directory /usr/bin as part of their
PATH environment variable (which it is by default), they need only type cc on
the command line to invoke the /usr/bin/cc command.

The later versions of the compiler products are designed to co-exist with
earlier versions, and, as a consequence, they do not create the symbolic links
in /usr/bin when they are installed. This means that a user may have trouble
invoking the compiler on a system that only has a new version compiler
product installed. There are two solutions available in this instance:

 • When logged in as the root user, invoke the replaceCSET command
supplied with the compiler. This will create appropriate symbolic links in
/usr/bin to the compiler driver programs.

 • Alter the PATH environment variable to add the directory that contains the
compiler driver programs. For example:

PATH=/usr/vac/bin:$PATH; export PATH

The second solution should be used if two compilers are installed on a
system, because it allows each user to choose which version of the compiler
they wish to use. If the system only has one compiler installed, it makes
sense to use the first solution. If required, the root user can reverse the action
of the replaceCSET command by using the restoreCSET command, which is
also supplied with the compiler. The exact location of the replaceCSET and
restoreCSET commands will depend on the version of the compiler you are
using.

4.9.4 Installation directory
The main components of the compiler product are installed on the system in
the /usr file system. The exact directory used depends on the compiler
product. For the C compiler, the directory is /usr/vac and for the C++
compiler, the directory is /usr/vacpp.

4.9.5 Installation of compiler products
The installation of the latest compiler products (C for AIX Version 5 and
VisualAge C++ Professional for AIX Version 5) is a very simple task. There
are a number of steps that need to be performed to end up with correctly
installed and working compilers.
100 AIX 5L Porting Guide

The first step in the installation process is to install the compiler product
filesets onto the system. The filesets to be installed will vary, depending on
the compiler product and the desired configuration.

4.9.5.1 Selecting required filesets
The compiler products are delivered on CD-ROM media and are
accompanied with a license certificate for the number of licenses purchased.
The CD-ROM media includes the compiler filesets along with a number of
other filesets, some of which are optionally installable, and some of which are
co-requisites of the compiler filesets and are automatically installed. Table 16
on page 101 lists the main packages on the C for AIX Version 5 CD-ROM,
and Table 17 lists the main packages on the VisualAge C++ Professional for
AIX Version 5 CD-ROM media.

Table 16. C for AIX Version 5 packages

Table 17. VisualAge C++ Professional for AIX Version 5 packages

Package Name Description

IMNSearch Search engine for HTML documentation

idebug Debugger with graphical user interface

memdbg Memory debugging tools

vac C compiler

xlC C++ library (required by compiler executables)

xlsmp Parallelization run-time component

Package Name Description

IMNSearch Search engine for HTML documentation

idebug Debugger with graphical user interface

ipfx Information presentation tool (used for viewing manuals)

memdbg Memory debugging tools

vac C compiler

vacpp.Dt Desktop integration

vacpp.cmp.batch Batch (command line) C++ compiler

vacpp.cmp.
incremental

Incremental C++ compiler

vacpp.cmp.C C compiler integration
Chapter 4. Setting up the development environment 101

In all cases, the target AIX system should already have the bos.adt.include
fileset installed, which contains the system provided header files. The other
filesets in the bos.adt package contain useful tools and utilities often used
during application development, so it is a good idea to install the entire
package. Neither the bos.adt package or bos.adt.include fileset is installed by
default when installing AIX on a machine. If your system does not have the
filesets installed, you will need to locate your AIX installation media and
install them prior to installing the compilers, because these filesets are AIX
version specific and are not supplied on the compiler CD-ROM product
media.

When installing the C for AIX Version 5 product, installing the vac.C fileset
will automatically install the minimum of additional required filesets. The
additional filesets you may wish to install are the documentation filesets.

When installing the VisualAge C++ Professional for AIX Version 5 product,
your choice of filesets will depend on whether you wish to install the batch
(command line) C++ compiler, incremental C++ compiler, C compiler, or a
combination of the three.

For simple C++ command line compiles, installing the vacpp.cmp.batch
fileset will automatically include the minimum required filesets. Additional
filesets can be selected, depending on the type of development work being
done, such as vacpp.vb for installing the components used for building
applications using the Visual Builder component.

vacpp.dax Data access builder

vacpp.ioc IBM Open Class Library

vacpp.lic License files

vacpp.memdbg C++ memory debugging tools

vacpp.rescmp Resource compiler

vacpp.vb Visual Builder

vatools Additional C++ development tools

xlC.adt Additional C++ header files

Package Name Description
102 AIX 5L Porting Guide

Regardless of the product or required configuration, the filesets can be
installed using one of the methods discussed in Section 4.3, “Installing
software on AIX” on page 84.

4.9.6 Activating the IBM compilers
Once you have installed the desired compiler filesets onto the system, the
next step in the process is to enroll a license for the product into the LUM
system. Section 4.4, “The License Use Manager” on page 86 describes the
process of configuring a LUM server and enrolling a product license. If you
already have a LUM environment enabled, you may go directly to
Section 4.4.3, “Enrolling a product license” on page 91.

4.10 Invoking the IBM compilers

Once a compiler product license has been enrolled, you are now ready to use
the compilers. As mentioned in Section 4.9.4, “Installation directory” on
page 100, the compiler drivers are not installed in a directory that is searched
with the default PATH environment variable. There are a number of methods
of resolving this issue:

 • If you do not have a previous version of the compiler installed, then, as the
root user, invoke the replaceCSET script installed with the compiler. It will
be in the /usr/vac/bin directory.

 • Add the directory containing the compiler drivers to the default PATH
environment variable set in the /etc/environment configuration file.

 • Add the directory containing the compiler drivers to the PATH environment
variable in each users’ .profile shell configuration file.

 • Change the makefiles used in your development environment to configure
the compiler macro to use the absolute path. For example:

CC=/usr/vac/bin/cc

Using the replaceCSET script is the preferred option, because it resolves the
problem for all users after a simple single action by the root user.

Regardless of whether you are using the incremental of batch compiler,
ensure that the vacpp.lic fileset is installed, as this contains the license
files required when activating the compiler.

Note
Chapter 4. Setting up the development environment 103

4.10.1 Default compiler drivers
The Version 5 compiler products include a number of default compiler
configurations in the /etc/vac.cfg compiler configuration file. The default C++
command line driver is /usr/vacpp/bin/xlC. The three main C compiler
command line drivers are as follows:

/usr/vac/bin/cc Extended mode C compiler

/usr/vac/bin/xlc ANSI C compiler, using UNIX header files

/usr/vac/bin/c89 ANSI C compiler, using ANSI C header files

There are a number of additional command line drivers available, each one
based on the basic cc, xlc and xlC drivers described above. They are
described in Table 18.

Table 18. Compiler driver extensions

For example, to compile an ANSI C program using Draft 7 of the POSIX
threads standard, use the xlc_r7 compiler driver. To compile a C++ program
that uses 128 bit floating point values, use the xlC128 compiler driver.

4.11 Online compiler documentation

The Version 5 compilers come with online documentation that is written in
HTML format. The default configuration makes it very easy to view the online
documentation on the machine on which it is installed.

Package Name Description

_r Uses the UNIX 98 threads libraries.

_r7 Uses the POSIX Draft 7 threads libraries.

_r4 Uses the POSIX Draft 4 (DCE) threads libraries.

128 Enables 128 bit double precision floating point values and uses
appropriate libraries.

128_r Enables 128 bit double precision floating point values and uses
the UNIX 98 threads libraries.

128_r7 Enables 128 bit double precision floating point values and uses
the POSIX Draft 7 threads libraries.

128_r4 Enables 128 bit double precision floating point values and uses
the POSIX Draft 4 (DCE) threads libraries.
104 AIX 5L Porting Guide

4.11.1 Viewing locally
The procedure for viewing the documentation installed on the local machine
depends on a number of factors, including which compiler product is installed
and whether you are using the AIX Common Desktop Environment.

4.11.1.1 C compiler documentation
The C for AIX Version 5 compiler documentation is written in HTML format.
The HTML files are located in the /usr/vac/html directory. To view the
documentation, start the Netscape browser supplied with the AIX Bonus Pack
and point it at the following file:

/usr/vac/html/en_US/doc/index.htm

Before starting Netscape, ensure that the environment variable SOCKS_NS
is not set. For the search facility to work correctly, the browser must not have
proxy handling enabled for the localhost port. To disable proxy handling for
the local host when using Netscape, do the following:

1. Start the browser, then select Edit->Preferences from the menu.

2. Double-click Advanced in the Category tree.

3. Click Proxies in the Advanced subtree.

4. Click View at the Manual Proxy Configuration selection.

5. Type the following in the “Do not use proxy servers for domains beginning
with:” box:

localhost:49213

If there are other entries in the box, separate the new entry with a comma.

6. Click OK, then click OK to exit the Preferences panel.

4.11.1.2 C++ compiler documentation
The VisualAge C++ Professional for AIX Version 5 compiler documentation is
written in HTML format. The HTML files are stored in a single file in ZIP
format. The files are viewed using an HTML browser, which uses a cgi-bin
script to extract and view the required files. There is no need to manually
unpack the ZIP file.

If you are using the AIX CDE interface, the C++ compiler documentation can
be started by double-clicking on the Help Homepage icon in the VisualAge
C++ Professional folder of the Application Manager.

If you are not using the AIX CDE interface, or are logged in remotely from
another X11 capable display, then use the following command:
Chapter 4. Setting up the development environment 105

/usr/vacpp/bin/vacpphelp

The command starts the default Netscape browser (which is supplied on the
AIX Bonus Pack media) with the correct URL.

4.11.2 Viewing remotely
By default, it is not possible to view the online documentation from a remote
machine. It can be done in a simple way by logging in to the machine that has
the documentation installed, setting the DISPLAY environment variable to use
a remote X11 display, then viewing the documentation by invoking the same
command used to view locally.

A better solution, particularly in larger environments or where remote clients
do not have X11 capabilities, is to configure the machine to allow remote
viewing of the documentation. This can be performed as shown in the
following sections.

4.11.2.1 Configuring the HTTP server
Suppose the machine that has the documentation filesets installed has a fully
qualified domain name of docs.ibm.com. The following example demonstrates
the steps performed on that machine to allow remote clients to view the
compiler documentation using their HTML browser:

1. Log in as the root user.

2. Perform the following command:

cp /etc/IMNSearch/httpdlite/httpdlite.conf
/etc/IMNSearch/httpdlite/vacpp.conf

3. Edit /etc/IMNSearch/httpdlite/vacpp.conf, and make the following
changes:

a. Change the HostName line from:

HostName localhost

to:

HostName docs.ibm.com

If the HostName line is not present, or has a comment symbol (#) at the
start of the line, then simply add the following line to the file:

HostName docs.ibm.com

b. Change the Port line from:

Port 49213

to:
106 AIX 5L Porting Guide

Port 49214

c. If the version of IMNSearch.rte.httpdlite installed on your machine is
greater than 2.0.0.0, you will need to add one or more Allow lines to
specify which hosts are permitted to access the Web server. The Allow
statement has the following syntax:

Allow network-ip network-mask

A client is only granted access if the following rule is met: (& is a
bitwise AND operation)

client-ip & network-mask == network-ip & network-mask

For example, if you wanted machines with an address, such as 9.x.x.x,
to be able to access the help server, you would add the following
statement to vacpp.conf:

Allow 9.0.0.0 255.0.0.0

d. Save the file and exit the editor.

4. Edit the file /etc/inittab. There is a line that executes the httpdlite
command with a file name argument. The line is as follows:

httpdlite:2:once:/usr/IMNSearch/httpdlite/httpdlite -r
/etc/IMNSearch/httpdlite/httpdlite.conf >/dev/console 2>&1

Make a copy of this line immediately below the original line. In the new
line:

a. Change the first field from httpdlite to httpdlite2.

b. Change the part of the line that reads httpdlite.conf to vacpp.conf.

The result should be as follows:

httpdlite2:2:once:/usr/IMNSearch/httpdlite/httpdlite -r
/etc/IMNSearch/httpdlite/vacpp.conf >/dev/console 2>&1

Save the file and exit from the editor.

5. Reboot the system or run the following command to start the second copy
of the ICS lite server:

/usr/IMNSearch/httpdlite/httpdlite -r
/etc/IMNSearch/httpdlite/vacpp.conf >/dev/console 2>&1

The steps described above configure an instance of an HTTP server to
respond on a specific port number to requests to access compiler
documentation.

The following sections detail the additional steps required to configure the
documentation for each compiler product to be served by the HTTP server.
Chapter 4. Setting up the development environment 107

4.11.2.2 Configuring the C++ documentation
The following steps are required to enable the online documentation for the
VisualAge C++ Professional for AIX Version 5 compiler to be served by the
HTTP server:

1. Log in as the root user.

2. Change the directory to /var/vacpp/en_US.

3. Edit the file hgssrch.htm and change the line:

<form ACTION="http://localhost:49213/cgi-bin/vacsrch.exe"
METHOD="POST">

to:

<form ACTION="http://docs.ibm.com:49214/cgi-bin/vacsrch.exe"
METHOD="POST">

Save the file and exit the editor.

4. Issue the following command:

/usr/IMNSearch/cli/imndomap -u "VACENUS"
"http://docs.ibm.com:49214/cgi-bin/vahwebx.exe/en_US/vacpp/Extract/0/"
"VisualAge C++"

5. Users can point their browser at the following URL to browse and search
the documentation:

http://docs.ibm.com:49214/cgi-bin/vahwebx.exe/en_US/vacpp/Extract/0/ind
ex.htm

4.11.2.3 Configuring the C compiler documentation
The following steps are required to enable the online documentation for the C
for AIX Version 5 compiler to be served by the HTTP server:

1. Log in as the root user.

2. Change the directory to /usr/docsearch/html.

3. Perform the following command:

ln -s /usr/vac/html/en_US/doc vac_doc

4. Edit the file /usr/vac/html/en_US/doc/hgssrch.htm and change the line:

<form ACTION="http://localhost:49213/cgi-bin/caixsrch.exe"
METHOD="POST">

to:

<form ACTION="http://docs.ibm.com:49214/cgi-bin/caixsrch.exe"
METHOD="POST">

Save the file and exit the editor.
108 AIX 5L Porting Guide

5. Issue the following command:

/usr/IMNSearch/cli/imndomap -u "CENUS"

"http://docs.ibm.com:49214/vac_doc/" "C for AIX"

6. Users can point their browser at the following URL to browse and search
the documentation:

http://docs.ibm.com:49214/vac_doc/index.htm

4.12 The GNU compilers

The GNU C (gcc) and C++ (g++) compilers are freeware compilers. At the
time of writing this book, these compilers are available for AIX 5L for Power
systems. It is anticipated that versions for AIX 5L for Itanium-based systems
will be available in the near future. See Section 8.2, “GNU GCC for AIX 5L” on
page 249 for more information.

4.13 The lint code checker

The lint command checks C and C++ language source code for coding and
syntax errors and for inefficient or non-portable code. You can use this
program to:

 • Identify source code and library incompatibility

 • Enforce type-checking rules more strictly than the compiler

 • Identify potential problems with variables

 • Identify potential problems with functions

 • Identify problems with flow control

 • Identify legal constructions that may produce errors or be inefficient

 • Identify unused variable and function declarations

 • Identify possibly non-portable code

The inter-file usage of functions is checked to find functions that return values
in some instances and not in others, functions called with varying numbers or
types of arguments, and functions whose values are not used or whose

Checking of C++ language files with the lint command requires the
presence of the VisualAge C++ Professional for AIX Compiler package.

Notes
Chapter 4. Setting up the development environment 109

values are used but not returned. The lint command interprets file name
extensions as follows:

 • File names ending in .c (small ‘c’) are C language source files.

 • File names ending in .C (capital ‘C’) are C++ language source files.

 • File names ending in .ln are non-ASCII files that the lint command
produces when either the -c or the -o flag is used.

The lint command warns you about files with other suffixes and ignores
them. The lint command takes all the .c, .C, and .ln files and the libraries
specified by -l flags and processes them in the order that they appear on the
command line. By default, it adds the standard llib-lc.ln lint library to the end
of the list of files. However, when you select the -p flag, the lint command
uses the llib-port.ln portable library.

By default, the second pass of lint checks this list of files for mutual
compatibility; however, if you specify the -c flag, the .ln and llib-lx.ln files are
ignored. The -c and -o flags allow for incremental use of the lint command
on a set of C and C++ language source files. Generally, use the lint
command once for each source file with the -c flag. Each of these runs
produces a .ln file that corresponds to the .c file and writes all messages
concerning that source file.

After you have run all source files separately through the lint command, run
it once more, without the -c flag, listing all the .ln files with the needed -l flags.
This determines all inter-file inconsistencies. This procedure works well with
the make command, allowing it to run the lint command on only those source
files modified since the last time that set of source files was checked. The lint
and LINT preprocessor symbols are defined to allow certain questionable
code to be altered or ignored by the lint command. Therefore, the lint and
LINT symbols should be thought of as a reserved word for all code that is
planned to be checked by lint.

4.14 Debuggers available on AIX 5L

Debuggers are an essential part of any development environment. For
AIX 5L, debuggers are readily available.

4.14.1 Included debuggers
AIX 5L comes with two debuggers:

 • adb
 • dbx
110 AIX 5L Porting Guide

where dbx is the more advanced debugger. The dbx debugger is not
supported on AIX 5L for Itanium-based systems.

A detailed description of how to use these debuggers and how they work can
be found in the manual pages for AIX 5L and in General Programming
Concepts: Writing and Debugging Programs, which can be found in the AIX
5L online documentation.

4.14.2 idebug and irmtdbgc
The idebug command starts both the IBM Distributed Debugger interface and
the debug engine when debugging a program locally. When debugging
remotely, it is used to connect to a debug engine daemon on a remote system
or to start the debugger user interface as a daemon on your local system. The
idebug debugging system is supplied on the IBM C for AIX Version 5 and IBM
VisualAge C++ Professional for AIX Version 5 CD-ROM media.

The irmtdbgc command starts the debug engine on the remote system. If the
debug engine detects a debugger user interface daemon, then you can start
debugging your program immediately. If no debugger user interface daemon
is detected, the debug engine will run as a daemon until you start the
debugger user interface on the local system with the idebug command.

4.15 AIX 5L directories

The root file system is the top of the hierarchical file tree. It contains the files
and directories critical for system operation, including the device directory
and programs for booting the system. The root file system also contains
mount points where file systems can be mounted to connect to the root file
system hierarchy. The following list provides information about the contents
of some of the subdirectories of the / (root) file system.

/etc Contains configuration files that vary for each machine. Examples
include /etc/hosts and /etc/passwd. The /etc directory contains the
files generally used in system administration.

/bin Symbolic link to the /usr/bin directory. In prior UNIX-based file
systems, the /bin directory contained user commands that now
reside in the /usr/bin directory.

/sbin Contains files needed to boot the machine and mount the /usr file
system. Most of the commands used during booting come from
the boot image's RAM disk file system; therefore, very few
commands reside in the /sbin directory.
Chapter 4. Setting up the development environment 111

/dev Contains device nodes for special files for local devices. The /dev
directory contains special files for tape drives, printers, disk
partitions, and terminals.

/tmp Serves as a mount point for a file system that contains
system-generated as well as application-generated and
user-created temporary files.

/var Serves as a mount point for files that vary on each machine. The
/var file system is configured as a file system since the files it
contains tend to grow.

/u Symbolic link to the /home directory.

/usr Contains files that do not change and can be shared by machines,
such as executables and ASCII documentation. Standalone
machines mount the root of a separate local file system over the
/usr directory. Diskless machines mount a directory from a remote
server over the /usr directory.

/home Serves as a mount point for a file system containing user home
directories. The /home file system contains per-user files and
directories. In a standalone machine, the /home directory is
contained in a separate file system whose root is mounted over
the root file system's /home directory. In a network, a server might
contain user files that should be accessible from several
machines. In this case, the server's copy of the /home directory is
remotely mounted onto a local /home file system.

/export Contains the directories and files on a server that are for remote
clients.

/lib Symbolic link to the /usr/lib directory.

/tftpboot Contains boot images and boot information for diskless clients.

/proc Contains various process statistics and information on the system.

4.16 Header files

A single set of header files under /usr/include supports both 32-bit and 64-bit
build environments. The directory /usr/include contains common header files.
There are a set of subdirectories under /usr/include, which contain standard
header files for different components of the system. Depending on the
choices made during the installation, some header files may or may not be
present. The main subdirectories are:

IN Interactive library (File System, Attribute) header files used by
libIN
112 AIX 5L Porting Guide

Motif2.1 Motif 2.1 header files
Mrm Motif Resource Manager header files
X11 X11 header files
Xm Motif header files
aixif AIX device driver interface header file
arpa ARPA header files
diag Diagnostics header files
gai Graphic adapter interface header files
graphics Graphics system header files
isc ISO OSI header files
isode ISO development environment header files
j2 JFS2 (Journal File System 2) header files
jfs JFS (Journal File System) header files
net Miscellaneous network header files
netinet Internet Standard Protocol header files
netiso OSI over TCP/IP header files
netns XNS protocol header files
nfs Network File System header files for backward compatibility
nsl Network Service Library (libnsl.so) header files. Users of this

library should use oncplus and tirpc header files
oncplus Open Network Computing Plus (Network File System) header

files
protocols Berkeley service protocol header files
rpc Client side remote procedure call header files
rpcsvc Server side remote procedure call header files
sys AIX system (Kernel data) header files
tirpc Transport Independent remote procedure call header files
udi Uniform Driver Interface header files
uil User interface language compiler header files

4.16.1 Maximums and minimums
The POSIX and ANSI standards require that certain values are defined in
/usr/include/limits.h and /usr/include/float.h. These are shown in
Section 3.6.1, “C and C++ data type sizes in AIX 5L” on page 32.

Other relevant values are listed in Table 19.

Table 19. Limits imposed by AIX 5L

Description Limit Comment

Number of processes per
user

Range: 1 to 131072
Default: 40

This is a safeguard to
prevent users from
creating too many
processes.
Chapter 4. Setting up the development environment 113

Size of the ARG/ENV list
(in 4 KB blocks) when
running exec()
subroutines.

Range: 6 to 128
Default: 6

This is a mechanism to
prevent the exec()
subroutines from failing if
the argument list is too
long.

Architectural maximum file
size

4 PetaBytes (JFS2)1

64 GB (JFS)1

For JFS, it is required that
the file system has been
enabled for large files, else
the maximum file size is 2
GB.

Architectural maximum file
system size

4 PetaBytes (JFS2)1

1 TeraByte (JFS)1

Maximum file size tested 1 TeraByte (JFS2)1

64 GB (JFS)1

Maximum file system size 1 TeraByte (JFS2)1

1 TeraByte (JFS)1

Soft2 file size in 512 bytes
blocks

Default: 2097151

Soft2 core file size in 512
bytes blocks

Default: 2097151

Soft2 per process CPU
time limit in seconds

Default: -1 Unlimited

Soft2 data segment size in
512 bytes blocks

Default: 262144

Soft2 stack segment size
in 512 bytes blocks

Default: 65536

Soft2real memory usage in
512 bytes blocks

Default: 65536

Soft2 file descriptor limit Default: 2000

Description Limit Comment
114 AIX 5L Porting Guide

4.16.2 Limiting resource usage with WLM
The minimum and maximum use of certain system resources can be
controlled using AIX Workload Manager (WLM).

WLM is included in AIX 5L and can be used to define different classes of
service for jobs, as well as specify attributes for those classes. These
attributes specify minimum and maximum amounts of CPU, physical memory,
and disk I/O throughput to be allocated to a class.

WLM then automatically assigns jobs to classes using class assignment rules
provided by a system administrator. The classification criteria are based on
the value of a set of attributes of the process, such as user ID, group ID,
name of the application file, type of process, and application tag.

For more details on WLM, refer to the IBM Redbook AIX 5L Workload
Manager (WLM), SG24-5977.

1PetaBytes equals 1,048,576 GigaBytes, TeraBytes equals 1,024 GigaBytes,
JFS2 stands for Journaled File System 2, and JFS stands for Journaled File
System. On Itanium-based systems, only JSF2 is supported.

2Soft limits can be changed using the ulimit command by any user, up to the
maximum specified by hard limits, which can only be changed with root user
authority.

Description Limit Comment
Chapter 4. Setting up the development environment 115

116 AIX 5L Porting Guide

Chapter 5. Porting

This chapter describes steps you have to perform when porting code to
AIX 5L. System-specific caveats are addressed and summarized tips and
guidelines are presented.

5.1 Code clean - preparing your source code

For AIX 5L, the application programming interfaces (APIs) have been
upgraded to allow a single set of source code to build either 32-bit or 64-bit
versions of applications. This allows you to offer normal and extended
capacity versions of your applications from the same source code.

Code clean is the process of updating your source code so that it:

 • Uses the new multi-platform APIs

 • Uses the new and revised data types

 • Uses the updated function calls

 • Eliminates the use of features that have been made obsolete

The code clean process has several elements:

 • Selects an appropriate porting model (naming, directories, data type use,
and conditional compilation macros).

 • Revises your source code so that it builds on both 32-bit and 64-bit
environments, including corrections for data type agreement and algorithm
updates.

 • Compiles updated source with both 32-bit and 64-bit compilers.

 • Uses appropriate tools, such as lint, to warn you about possible
incompatibilities.

 • Performs regular regression tests that cover the complete code base in
both 32-bit and 64-bit data models.

The most important feature of a code clean is its ability to add reliability,
robustness, and maintainability to applications on all your supported
platforms, as maintenance and support is usually rather expensive.

5.1.1 Appropriate porting model
In order to facilitate the porting process, you should:

 • Choose the right programming model for you.
© Copyright IBM Corp. 2001 117

 • Use a naming scheme for directories and file names that helps you identify
easily the type of code module.

 • Use the appropriate data types for the cardinality of variables.

 • Use conditional compilation macros, such as __64BIT__, to separate
32-bit and 64-bit portions within your source code.

The goal is to write a single piece of source code that supports both 32-bit
and 64-bit computing environments.

5.1.2 API revisions
The updated operating system APIs have preserved the names and
semantics of many of the familiar data types and have revised the definition
of others to scale with the capacity of the target architecture (for example
long). In addition, sized data types are available (usually as typedefs),
allowing exact specification of the precision of any data value in your source,
for example int16_t and int32_t.

This combination of types and typedefs allows revision of data types used in
source code to offer the desired features and capacity on either platform.

Certain features have also been deprecated, or scheduled for obsolescence.
These features are being made obsolete because they could not represent
the larger capacities of LP64, or could not accept or supply 64-bit sized
quantities on 64-bit platforms.

The following API revisions comprise the majority of code clean:

 • Update code that mixes pointers and integers: Change any (int)pointer
casts to (uintptr_t)pointer

 • Fine-tune variable and structure field sizes: Do not waste space using a
long if an int will do

 • Optimize field ordering in structures: Minimize padding by placing scalable
types early in the struct definition

5.1.3 Data type agreement
If source code must be built for both 32-bit and 64-bit environments, you must
avoid use of the long data type. You can avoid this in either of two ways:

 • By using ANSI C data types that scale properly (like intptr_t and uintptr_t)

 • By using a data type like int32long64_t and uint32long64_t, which is a
conditionally compiled typedef
118 AIX 5L Porting Guide

A number of derived data types have changed to now represent 64-bit
quantities in the 64-bit application environment (see Section 5.2, “System
derived data types” on page 120). This change does not affect 32-bit
applications. However, any 64-bit application that consumes or exports data
described by these types needs to be re-evaluated for correctness.

5.1.4 Algorithm updates
Many algorithms need to be modified for 64-bit environments, as they may
assume certain data type sizes and may optimize for those sizes. Also, some
algorithms make use of and presume particular bits or bit patterns in data or
pointers. If the size of data or pointers changes, you may have to change
these algorithms. These modifications can include:

 • Hashing algorithms often use pointers or seek keys as the hash keys that
will yield a good distribution only when there is a lot of significant data to
scramble. In 32-bit addressing, there may be 30 out of 32 bits varying,
thus, a fair distribution. With the same set of data in 64-bit addressing,
however, there may be only 35 significant bits varying out of 64 bits,
worsening the fair distribution of the hashing algorithm. Therefore, you
have to update algorithms that hash 64-bit pointers or integers to
adequately "randomize" those bits actually used.

 • Smarter heap allocation routines that place records of pointer chains close
together and “data structure walking” to take advantage of the above.

 • Correction of any mixing of double and long data types, as they can lose
bits of precision.

 • Paying attention to possible differences in shifting and bit masking using
hexadecimal constants.

After your code has been made 64-bit safe, you should review it again to
verify that all algorithms and data structures still make sense. Some of the
data types are larger in 64-bit environments, so data structures might take up
more space, which might influence the performance of your code as well.
Given these concerns, you may need to modify your code accordingly.

5.1.5 Software correctness
Correcting the type scalability (size polymorphism) is only part of the code
clean process. Unfortunately, it is not possible to automate the whole
process. Only a human can decide when algorithms must be updated and
therefore avoid undesirable side effects like:

 • Increase in data structure sizes and alignment

 • Changed function return values of system derived types
Chapter 5. Porting 119

5.2 System derived data types

The different data types available on a system can be divided into two
different classes:

Base data types Base data types, also known as primitive types or
built-in types, are all data types already defined by the
C language specification. They can be used without
having to be defined with typedef. However, the
characteristics of some base types are not necessarily
defined and are specific to each implementation and
hardware platform. For example, the size and alignment
of the int and long data types are hardware-dependent
characteristics.

Derived data types A derived data type is one that is defined with typedef as
a derivative or structure of existing base types or other
derived types. For example, size_t and FILE are derived
types defined in the header file <stdio.h>.

Using the system derived data types helps make code 32-bit and 64-bit safe,
since the derived data types themselves must be safe for both the ILP32 and
LP64 data models. In general, using derived data types to allow for change is
a good programming practice. Should the data model change in the future, or
when porting to a different platform, only the system derived data types need
to change rather than the application.

Most kernel interfaces have defined their own derived data types. For
example, the data type of a UNIX process ID is defined as pid_t instead of int
or long. These interface-specific data types can be found in their
corresponding header files. Other general derived data types can be found in
the header files <sys/types.h> and <inttypes.h>.

5.2.1 Data types defined by <sys/types.h>
Table 20 lists some commonly used system-derived types defined on AIX 5L
along with their sizes in the two supported programming models (ILP32 and
LP64).

Table 20. System derived type description

Derived
type

Size
Description

ILP32 LP64

cptr32,
__cptr32

32 32 Fixed size 32-bit char* pointer
120 AIX 5L Porting Guide

Table 21 lists those derived types along with their actual base types in ILP32
and LP64 mode.

Table 21. Relation between system derived and base data types

cptr64,
__cptr64

64 64 Fixed size 64-bit char* pointer

ptr32,
__ptr32

32 32 Fixed size 32-bit generic pointer

ptr64,
__ptr64

64 64 Fixed size 64-bit generic pointer

caddr_t 32 64 Memory address

clock_t 32 32 Represents the system time in clock ticks

dev_t 32 64 Used for device numbers

fpos_t 32/641 64 Used for file offsets

gid_t 32 32 Group ID

mode_t 32 32 File mode

off_t 32/641 64 Used for file sizes and offsets

pid_t 32 64 Process ID within 32-bit or 64-bit kernel

ptrdiff_t 32 64 Signed integral type for result of pointer subtraction

size_t 32 64 Size of objects in memory in bytes

ssize_t 32 64 Used to return a count of bytes or an error indication

time_t 32 64 Used for time in seconds since 01.01.1970

wint_t 32 32 Wide characters

1 Size is 64 bits when _LARGE_FILES defined

Derived type
Definition

ILP32 LP64

cptr32, __cptr32 char * unsigned int

cptr64, __cptr64 unsigned long long char *

ptr32, __ptr32 void * unsigned int

Derived
type

Size
Description

ILP32 LP64
Chapter 5. Porting 121

5.2.2 Data types defined by <inttypes.h>
The system header file <inttypes.h> provides system derived data types that
help programmers make their code compatible with explicitly sized data items
(8-bit, 16-bit, 32-bit, and 64-bit objects), independent of the compilation
environment. The file is part of an ANSI C proposal and tracks the
ISO/JTC1/SC22/WG14 C committee's working draft for the revision of the
current ISO C standard, ISO/IEC 9899:1990 Programming language - C.

The basic features regarding data types provided by <inttypes.h> are:

 • Fixed size integer data types

 • Other helpful data types

ptr64, __ptr64 unsigned long long void *

caddr_t char * char *

clock_t int int

dev_t unsigned_int unsigned long

fpos_t long1 long1

gid_t unsigned int unsigned int

mode_t unsigned int unsigned int

off_t long1 long1

pid_t int long

ptrdiff_t long long

size_t unsigned long unsigned long

ssize_t long long

time_t int long

wint_t int int

1 Type is long long when _LARGE_FILES defined

Derived type
Definition

ILP32 LP64
122 AIX 5L Porting Guide

5.2.2.1 Fixed size integer data types
The fixed size integer data types provided by <inttypes.h> include both
signed and unsigned integer data types, as shown in Table 22.

Table 22. Fixed size integer data types defined by <inttypes.h>

Derived data types defined as the smallest signed integer data types that can
hold the specified number of bits are shown in Table 23.

Table 23. Derived data types holding the smallest signed integer data types

Derived data types defined as the smallest unsigned integer data types that
can hold the specified number of bits are shown in Table 24.

Table 24. Derived data types holding the smallest unsigned integer data types

Fixed size data type ILP32 mode LP64 mode

Signed Unsigned Size Alignment Size Alignment

int8_t uint8_t 1 1 1 1

int16_t uint16_t 2 2 2 2

int32_t uint32_t 4 4 4 4

int64_t uint64_t 8 4 8 8

Signed
data type

ILP32 mode LP64 mode

Size Align Data type Size Align Data type

int_least8_t 1 1 signed char 1 1 signed char

int_least16_t 2 2 signed short 2 2 signed short

int_least32_t 4 4 signed int 4 4 signed int

int_least64_t 8 4 signed long long 8 8 signed long

Unsigned
data type

ILP32 mode LP64 mode

Size Align Data type Size Align Data type

uint_least8_t 1 1 unsigned char 1 1 unsigned char

uint_least16_t 2 2 unsigned short 2 2 unsigned short

uint_least32_t 4 4 unsigned int 4 4 unsigned int

uint_least64_t 8 4 unsigned long long 8 8 unsigned long
Chapter 5. Porting 123

Derived data types defined as the most efficient signed integer data types
that can hold the specified number of bits are shown in Table 25.

Table 25. Most efficient signed data types with the specified number of bits

Derived data types defined as the most efficient unsigned integer data types
that can hold the specified number of bits are shown in Table 26.

Table 26. Most efficient unsigned data types with the specified number of bits

Signed
data type

ILP32 mode LP64 mode

Size Align Data type Size Align Data type

int_fast8_t 1 1 signed char 1 1 signed char

int_fast16_t 2 2 int32_t 2 2 int32_t

int_fast32_t 4 4 int32_t 4 4 int32_t

int_fast64_t 8 4 int64_t 8 8 int64_t

Unsigned
data type

ILP32 mode LP64 mode

Size Align Data type Size Align Data type

uint_fast8_t 1 1 unsigned char 1 1 unsigned char

uint_fast16_t 2 2 uint32_t 2 2 uint32_t

uint_fast32_t 4 4 uint32_t 4 4 uint32_t

uint_fast64_t 8 4 uint64_t 8 8 uint64_t

These fixed size data types should not be used indiscriminately. For
example, you can still use int for such things as loop counters, and long
can still be used for array indexes. On the other hand, use fixed size data
types for explicit binary representations of, for example,:

 • Fixed size binary disk data

 • Fixed size network data

 • Hardware registers

 • Binary interface specifications

 • Binary data structures

Note
124 AIX 5L Porting Guide

5.2.2.2 Other helpful data types
Other useful types provided by <inttypes.h> include signed and unsigned
integer data types (intptr_t and uintptr_t) large enough to hold any data
pointer; that is, data pointers can be assigned into or from these integer data
types without losing precision. These derived pointer data types are shown in
Table 27.

Table 27. Derived integer data types to hold any data pointer

Using the uintptr_t type as the integral type for pointers is a better option than
using a fundamental type, such as unsigned long. Even though an
unsigned long is the same size as a pointer in both the ILP32 and LP64 data
models, the use of the uintptr_t requires only the definition of uintptr_t to
change when a different data model is used. This makes the code more
portable to other systems and it is also a clearer way to express your
intentions in C.

The intptr_t and uintptr_t types are extremely useful for casting pointers when
performing address arithmetic. They should be used instead of long or
unsigned long for this purpose.

Other useful types provided by <inttypes.h> include signed and unsigned
integer data types (intmax_t and uintmax_t) which are defined to be the
longest (in bits) signed and unsigned integer data types available. These
derived integer data types are shown in Table 28.

Table 28. Derived integer data types to hold maximum integer values

5.3 System derived constants and macros

Using the system derived constants and macros helps make code 32-bit and
64-bit safe, since the derived constants and macros themselves must be safe

Derived
data type

Integral
data type

ILP32 mode LP64 mode

Size Align Size Align

intptr_t signed long 4 4 8 8

uintptr_t unsigned long 4 4 8 8

Derived
data type

ILP32 mode LP64 mode

Defined as Size Align Defined as Size Align

intmax_t int32_t 4 4 int64_t 8 8

uintmax_t uint32_t 4 4 uint64_t 8 8
Chapter 5. Porting 125

for both the ILP32 and LP64 data models. In general, using derived constants
and macros to allow for change is a good programming practice. Should the
data model change in the future, or when porting to a different platform, only
the system derived constants and macros need to change rather than the
application.

System derived constants and macros can be found in the system header
files <limits.h> and <inttypes.h>.

5.3.1 Constants and macros defined by <limits.h>
The system header file <limits.h> defines constants that should be used
(instead of the literal values) to ensure greater portability.

Table 29 shows integer constants with the same value in ILP32 mode and
LP64 mode.

Table 29. Integer constants defined by <limits.h> for ILP32 and LP64 mode

Constant Description Numeric value

CHAR_BIT Number of bits per char 8

WORD_BIT Number of bits per int 32

CHAR_MAX Biggest char 1271 or UCHAR_MAX2

CHAR_MIN Smallest char -1281 or 02

SCHAR_MAX Biggest signed char 127

SCHAR_MIN Smallest signed char -SCHAR_MAX-1

UCHAR_MAX Biggest unsigned char 255

SHRT_MAX Biggest signed short 32,767

SHRT_MIN Smallest signed short -SHRT_MAX-1

USHRT_MAX Biggest unsigned short 65,535

INT_MAX Biggest signed int 2,147,483,647

INT_MIN Smallest signed int -INT_MAX-1

UINT_MAX Biggest unsigned int 4,294,967,295

1 __ia64 defined and default char type is signed
2 default char type is unsigned
126 AIX 5L Porting Guide

Table 30 shows integer constants for ILP32 mode that have a different value
in LP64 mode due to different data type sizes in both programming models.

Table 30. Integer constants defined by <limits.h> for ILP32 mode

Table 31 shows integer constants for LP64 mode that have a different value in
ILP32 mode due to different data type sizes in both programming models.

Table 31. Integer constants defined by <limits.h> for LP64 mode

5.3.2 Constants and macros defined by <inttypes.h>
The system header file <inttypes.h> provides constants that help
programmers make their code compatible with explicitly sized data items
(8-bit, 16-bit, 32-bit, and 64-bit objects), independent of the compilation
environment. The file is part of an ANSI C proposal and tracks the
ISO/JTC1/SC22/WG14 C committee's working draft for the revision of the
current ISO C standard, ISO/IEC 9899:1990 Programming language - C.

The basic features with respect to constants and macros provided by
<inttypes.h> are:

 • Limit constants

 • Format string macros

5.3.2.1 Limit constants
The implementation limits defined by <inttypes.h> are constants specifying
the minimum and maximum values of various integer data types. This

Constant Description Numeric value

LONG_BIT Number of bits per long 32

LONG_MAX Biggest signed long INT_MAX

LONG_MIN Smallest signed long -INT_MIN

ULONG_MAX Biggest unsigned long UINT_MAX

Constant Description Numeric value

LONG_BIT Number of bits per long 64

LONG_MAX Biggest signed long 9,223,372,036,854,775,807

LONG_MIN Smallest signed long -LONG_MAX-1

ULONG_
MAX

Biggest unsigned long 18,446,744,073,709,551,615
Chapter 5. Porting 127

includes minimum and maximum values of each of the fixed size data types,
as shown in Table 32.

Table 32. Constants for the minimum and maximum of some integer types

The minimum and maximum for each of the least sized integer data types are
also defined by <inttypes.h>. They are shown in Table 33.

Table 33. Constants for the minimum and maximum of least sized integer types

Constant Description Numeric value

INT8_MIN Minimum signed 8-bit value -128

INT8_MAX Maximum signed 8-bit value 127

UINT8_MAX Maximum unsigned 8-bit value 255

INT16_MIN Minimum signed 16-bit value -32,768

INT16_MAX Maximum signed 16-bit value 32,767

UINT16_
MAX

Maximum unsigned 16-bit value 65,536

INT32_MIN Minimum signed 32-bit value -2,147,483,648

INT32_MAX Maximum signed 32-bit value 2,147,483,647

UINT32_
MAX

Maximum unsigned 32-bit value 4,294,967,295

INT64_MIN Minimum signed 64-bit value -9,223,372,036,854,775,808

INT64_MAX Maximum signed 64-bit value 9,223,372,036,854,775,807

UINT64_
MAX

Maximum unsigned 64-bit value 18,446,744,073,709,551,615

Constant Description Numeric value

INT_LEAST8_MIN Minimum signed least 8-bit value INT8_MIN

INT_LEAST16_MIN Minimum signed least 16-bit value INT16_MIN

INT_LEAST32_MIN Minimum signed least 32-bit value INT32_MIN

INT_LEAST64_MIN Minimum signed least 64-bit value INT64_MIN

INT_LEAST8_MAX Maximum signed least 8-bit value INT8_MAX

INT_LEAST16_MAX Maximum signed least 16-bit value INT16_MAX

INT_LEAST32_MAX Maximum signed least 32-bit value INT32_MAX
128 AIX 5L Porting Guide

The minimum and maximum values for each of the most efficient integer data
types are also defined by <inttypes.h>. They are shown in Table 34.

Table 34. Minimum and maximum constants for the most efficient integer types

INT_LEAST64_MAX Maximum signed least 64-bit value INT64_MAX

UINT_LEAST8_MIN Minimum unsigned least 8-bit value UINT8_MIN

UINT_LEAST16_
MIN

Minimum unsigned least 16-bit value UINT16_MIN

UINT_LEAST32_
MIN

Minimum unsigned least 32-bit value UINT32_MIN

UINT_LEAST64_
MIN

Minimum unsigned least 64-bit value UINT64_MIN

UINT_LEAST8_MAX Maximum signed least 8-bit value UINT8_MAX

UINT_LEAST16_
MAX

Maximum signed least 16-bit value UINT16_MAX

UINT_LEAST32_
MAX

Maximum signed least 32-bit value UINT32_MAX

UINT_LEAST64_
MAX

Maximum signed least 64-bit value UINT64_MAX

Constant Description Numeric value

INT_FAST8_MIN Minimum signed 8-bit value INT8_MIN

INT_FAST16_MIN Minimum signed 16-bit value INT32_MIN

INT_FAST32_MIN Minimum signed 32-bit value INT32_MIN

INT_FAST64_MIN Minimum signed 64-bit value INT64_MIN

INT_FAST8_MAX Maximum signed 8-bit value INT8_MAX

INT_FAST16_MAX Maximum signed 16-bit value INT32_MAX

INT_FAST32_MAX Maximum signed 32-bit value INT32_MAX

INT_FAST64_MAX Maximum signed 64-bit value INT64_MAX

UINT_FAST8_MIN Minimum unsigned 8-bit value UINT8_MIN

UINT_FAST16_MIN Minimum unsigned 16-bit value UINT32_MIN

UINT_FAST32_MIN Minimum unsigned 32-bit value UINT32_MIN

Constant Description Numeric value
Chapter 5. Porting 129

The minimum and maximum value of the largest supported integer data types
are also defined in <inttypes.h> and shown in Table 35.

Table 35. Minimum and maximum constants for the largest integer types

The maximum value of the largest integer data type which can fully contain
any pointer data type without precision loss is also defined in <inttypes.h>, as
shown in Table 36.

Table 36. Maximum constants for the largest pointer data types

5.3.2.2 Format string macros
The <inttypes.h> header file defines a number of format string macros for use
with the different versions of the printf and scanf family of routines.

UINT_FAST64_MIN Minimum unsigned 64-bit value UINT64_MIN

UINT_FAST8_MAX Maximum signed 8-bit value UINT8_MAX

UINT_FAST16_MAX Maximum signed 16-bit value UINT32_MAX

UINT_FAST32_MAX Maximum signed 32-bit value UINT32_MAX

UINT_FAST64_MAX Maximum signed 64-bit value UINT64_MAX

INTFAST_MIN Minimum signed integer value INT32_MIN

INTFAST_MAX Maximum signed integer value INT32_MAX

UINTFAST_MAX Maximum unsigned integer value UINT32_MAX

Constant Description ILP32 mode LP64 mode

INTMAX_
MIN

Minimum largest signed integer value INT32_MIN INT64_MIN

INTMAX_
MAX

Maximum largest signed integer value INT32_MAX INT64_MAX

UINTMAX_
MAX

Maximum largest unsigned integer value UINT32_MAX UINT64_
MAX

Constant Description ILP32 mode LP64 mode

INTPTR_
MAX

Maximum signed integer value INT32_MAX INT64_MAX

UINTPTR_
MAX

Maximum unsigned integer value UINT32_
MAX

UINT64_
MAX

Constant Description Numeric value
130 AIX 5L Porting Guide

(s)printf() subroutine
Format string macros for the (s)printf() subroutines for different conversion
specifiers are also defined in <inttypes.h>. See Table 37 for more information.

Table 37. Predefined format string macros for (s)printf

Additional predefined format string macros for the conversion specifiers i, u,
o, x, and X are also available. They can be derived according to Table 38.

Table 38. Rules to derive other format string macros from signed format

For example, to obtain the unsigned 32-bit value format string macro from the
signed one, only the d in PRId32 has to be changed to an u, thus PRIu32.

Format macro Description ILP32 LP64

PRId8 signed 8-bit value %hd %hd

PRId16 signed 16-bit value %hd %hd

PRId32 signed 32-bit value %d %d

PRId64 signed 64-bit value %lld %ld

PRIdLEAST8 signed least 8-bit value %hd %hd

PRIdLEAST16 signed least 16-bit value %hd %hd

PRIdLEAST32 signed least 32-bit value %d %d

PRIdLEAST64 signed least 64-bit value %lld %ld

PRIdFAST8 signed most efficient 8-bit value %hd %hd

PRIdFAST16 signed most efficient 16-bit value %hd %hd

PRIdFAST32 signed most efficient 32-bit value %d %d

PRIdFAST64 signed most efficient 64-bit value %lld %ld

Conversion specifier Interpretation

signed (second variant) Replace d with i

unsigned Replace d with u

octal Replace d with o

hexadecimal (small letters) Replace d with x

hexadecimal (capital letters) Replace d with X
Chapter 5. Porting 131

In addition, there are also format string macros defined for the maximum size
data types, the most efficient data types, and pointers. They are shown in
Table 39.

Table 39. Format string macros

(s)scanf() subroutine
Format string macros for the (s)scanf() subroutine for different conversion
specifiers are also defined in <inttypes.h>, as shown in Table 40.

Table 40. Predefined format string macros for (s)scanf()

Additional predefined format string macros for the conversion specifiers i, u,
o, and x are also available. They can also be derived according to Table 38 on
page 131. For example, to obtain the unsigned 32-bit value format string
macro, only the ‘d’ in SCNd32 has to be changed to an ‘u’, thus SCNud32.

Format macro Description ILP32 LP64

PRIdMAX Maximum integer decimal %lld %ld

PRIoMAX Maximum integer octal %llo %lo

PRIxMAX Maximum integer hexadecimal %llx %lx

PRIuMAX Maximum integer unsigned %llu %lu

PRIdFAST Most efficient integer decimal %d %d

PRIoFAST Most efficient integer octal %o %o

PRIxFAST Most efficient integer hexadecimal %x %x

PRIuFAST Most efficient integer unsigned %u %x

PRIdPTR Pointer in decimal form %ld %ld

PRIoPTR Pointer in octal form %lo %lo

PRIxPTR Pointer in hexadecimal form %lx %lx

PRIXPTR Pointer in hexadecimal form %lX %lX

PRIuPTR Pointer in unsigned decimal form %lu %lu

Constant Description ILP32 LP64

SCNd16 signed 16-bit value %hd %hd

SCNd32 signed 32-bit value %d %d

SCNd64 signed 64-bit value %lld %ld
132 AIX 5L Porting Guide

In addition, there are also format string macros defined for the maximum size
data types, the most efficient data types, and pointers. They are shown in
Table 41.

Table 41. Format string macros

5.4 System specific differences

In this section, we take a closer look at system specific differences between
the different operating systems and AIX 5L in terms of:

 • System derived data types

 • Application Programming Interfaces

 • Miscellaneous

It is very important to know the exact size of employed data types throughout
your program and the differences with regards to system calls.

5.4.1 System derived data types
Depending on the employed data model (32-bit or 64-bit), system derived
data types can have different byte sizes. The following subsections compare
the most common system derived data types and their actual implementation
for the different platforms.

Format macro Description ILP32 LP64

SCNdMAX Maximum integer decimal %lld %ld

SCNoMAX Maximum integer octal %llo %lo

SCNxMAX Maximum integer hexadecimal %llx %lx

SCNuMAX Maximum integer unsigned %llu %lu

SCNdFAST Most efficient integer decimal %d %d

SCNoFAST Most efficient integer octal %o %o

SCNxFAST Most efficient integer hexadecimal %x %x

SCNuFAST Most efficient integer unsigned %u %x

SCNdPTR Pointer in decimal form %ld %ld

SCNoPTR Pointer in octal form %lo %lo

SCNxPTR Pointer in hexadecimal form %lx %lx

SCNuPTR Pointer in unsigned decimal form %lu %lu
Chapter 5. Porting 133

5.4.1.1 Pointer data types cptr32, __cptr32, cptr64, and __cptr64
The purpose of the pointer data types cptr32, __cptr32, cptr64, and __cptr64
is meant to be fixed size pointers to a char. See Table 42 for more
information.

Table 42. Pointer data types cptr32, __cptr32, cptr64, and __cptr64

5.4.1.2 Pointer data types ptr32, __ptr32, ptr64, and __ptr64
The purpose of the pointer data types ptr32, __ptr32, ptr64, and __ptr64 is
meant to be fixed size generic pointers. See Table 43 for more information.

Table 43. Pointer data types ptr32, __ptr32, ptr64, and __ptr64

OS cptr32, __cptr32 cptr64, __cptr64

AIX 4.x 32-bit char * unsigned int

AIX 4.3 64-bit unsigned int char *

AIX 5L ILP32 char * unsigned long long

AIX 5L LP64 unsigned int char *

Solaris 2.6 N/A N/A

Solaris 7 N/A N/A

Solaris 8 N/A N/A

HP-UX 10.xx N/A N/A

HP-UX 11.xx N/A N/A

Compaq Tru64 N/A N/A

SGI IRIX 6.5 N/A N/A

OS ptr32, __ptr32 ptr64, __ptr64

AIX 4.x 32-bit void * unsigned int

AIX 4.3 64-bit unsigned int void *

AIX 5L ILP32 void * unsigned long long

AIX 5L LP64 unsigned int void *

Solaris 2.6 N/A N/A

Solaris 7 N/A N/A

Solaris 8 N/A N/A

HP-UX 10.xx N/A N/A
134 AIX 5L Porting Guide

5.4.1.3 Pointer data types caddr_t, intptr_t, uintptr_t, and ptrdiff_t
The pointer data type caddr_t should be used for “core” memory access,
while the pointer data types intptr_t and uintptr_t are signed and unsigned
integer data types large enough to hold any pointer value without loss of
precision. The pointer data type ptrdiff_t is a signed integer data type that
should be used for the result of a pointer subtraction. See Table 44 for more
information.

Table 44. Pointer data types caddr_t, intptr_t, uintptr_t, and ptrdiff_t

HP-UX 11.xx N/A1 N/A

Compaq Tru64 N/A N/A

SGI IRIX 6.5 N/A N/A

1Type ptr32_t is defined as an unsigned 32-bit integer.

OS caddr_t intptr_t uintptr_t ptrdiff_t

AIX 4.x 32-bit char * long unsigned long long

AIX 4.3 64-bit char * long unsigned long long

AIX 5L ILP32 char * long unsigned long long

AIX 5L LP64 char * long unsigned long long

Solaris 2.6 ILP32 char * int unsigned int int

Solaris 2.6 LP64 char * long unsigned long int

Solaris 7 ILP32 char * int unsigned int int

Solaris 7 LP64 char * long unsigned long long

Solaris 8 ILP32 char * int unsigned int int

Solaris 8 LP64 char * long unsigned long long

HP-UX 10.xx char * long unsigned long int

HP-UX 11.xx char * long unsigned long long

Compaq Tru64 char * long unsigned long long

SGI IRIX 6.5 ILP32 char * long unsigned long long

SGI IRIX 6.5 LP64 char * long unsigned long long

OS ptr32, __ptr32 ptr64, __ptr64
Chapter 5. Porting 135

5.4.1.4 Data types clock_t, dev_t, and time_t
The data type clock_t should be used for representations of the system in the
form of clock ticks, while the data type time_t should be used for
representations of time in the form of the number of seconds that have
passed since January 1st, 1970. The data type dev_t should be used for
device numbers. See Table 45 for more information.

Table 45. Data types clock_t, dev_t, and time_t

5.4.1.5 Data types fpos_t, fpos64_t, off_t, and off64_t
The data types fpos_t and fpos64_t are used to represent file offsets for the
positioning of file pointers, with fpos64_t being used for file offsets with large
file support (file sizes greater than 2 GB).

The data types off_t and off64_t are used to represent file sizes and offsets
for the positioning of file pointers, with off64_t being used in conjunction with
with large file support (file sizes greater than 2 GB). See Table 46 for more
information.

Table 46. Data types fpos_t, fpos64_t, off_t, and off64_t

OS clock_t dev_t time_t

AIX 4.x 32-bit int unsigned int int

AIX 4.3 64-bit int unsigned long int

AIX 5L ILP32 int unsigned int int

AIX 5L LP64 int unsigned long long

Solaris 2.6 long unsigned long long

Solaris 7 long unsigned long long

Solaris 8 long unsigned long long

HP-UX 10.xx unsigned int int long

HP-UX 11.xx unsigned int int long

Compaq Tru64 int int int1

SGI IRIX 6.5 ILP32 long unsigned long long

SGI IRIX 6.5 LP64 int unsigned int int

1The type time64_t is defined as long when _TIME64_T is defined

OS fpos_t fpos64_t off_t off64_t

AIX 4.x 32-bit long1 long long long long long
136 AIX 5L Porting Guide

5.4.1.6 Data types gid_t, mode_t, pid_t, and uid_t
The data type gid_t is used to represent the group ID of a user, while the data
type uid_t is used for the user ID. The data type mode_t is used to indicate
the mode of a file, while the data type pid_t is used to identify the different
processes with unique numbers. See Table 47 for more information.

Table 47. Data types gid_t, mode_t, pid_t, and uid_t

AIX 4.3 64-bit long1 long long long long long

AIX 5L ILP32 long1 long long5 long1 long long

AIX 5L LP64 long1 long long5 long1 long long

Solaris 2.6 long3 long long long3 long long

Solaris 7 ILP32 long3 long long long3 long long

Solaris 7 LP64 long long long long

Solaris 8 ILP32 long3 long long long3 long long

Solaris 8 LP64 long long long long

HP-UX 10.xx int3 long long int4 long long

HP-UX 11.xx ILP32 int long long long3 long long

HP-UX 11.xx LP64 long long long long

Compaq Tru64 long N/A long6 N/A

SGI IRIX 6.5 ILP32 long long long long long long long long

SGI IRIX 6.5 LP64 long long long long

1 Type is long long when _LARGE_FILES defined.
2 Type is 64-bit with large file support.
3 Type is long long with large file support.
4 Type is long long when _FILE64 defined.
5 Type is long long when _LARGE_FILES_API defined.
6 Type is unsigned long when _KERNEL defined.

OS gid_t mode_t pid_t uid_t

AIX 4.x 32-bit unsigned int unsigned int int unsigned int

AIX 4.3 64-bit unsigned int unsigned int long unsigned int

AIX 5L ILP32 unsigned int unsigned int int unsigned int

OS fpos_t fpos64_t off_t off64_t
Chapter 5. Porting 137

5.4.1.7 size_t, ssize_t, and wint_t
The data types size_t and ssize_t should be used in conjunction with the size
of objects in memory and to return a count of bytes or an error indication,
respectively. The data type wint_t is required to represent the wide character
code value as well as the end-of-file (EOF) marker, when programming with
multibyte and wide character subroutines. See Table 48 for more information.

Table 48. Data types size_t, ssize_t, and wint_t

AIX 5L LP64 unsigned int unsigned int long unsigned int

Solaris 2.6 long unsigned long long long

Solaris 7 ILP32 long unsigned long long long

Solaris 7 LP64 int unsigned int int int

Solaris 8 ILP32 long unsigned long long long

Solaris 8 LP64 int unsigned int int int

HP-UX 10.xx int unsigned short int int

HP-UX 11.xx int unsigned short int int

Compaq Tru64 unsigned int unsigned int int unsigned int1

SGI IRIX 6.5 ILP32 long unsigned long long long

SGI IRIX 6.5 LP64 int unsigned int int int

1 The type uid_t is defined as an int when _XOPEN_SOURCE_EXTENDED is defined.

OS size_t ssize_t wint_t

AIX 4.x 32-bit unsigned long long int

AIX 4.3 64 bit unsigned long long int

AIX 5L ILP32 unsigned long long int

AIX 5L LP64 unsigned long long int

Solaris 2.6 unsigned int int long

Solaris 7 ILP32 unsigned int int long

Solaris 7 LP64 unsigned long long int

Solaris 8 ILP32 unsigned int int long

Solaris 8 LP64 unsigned long long int

OS gid_t mode_t pid_t uid_t
138 AIX 5L Porting Guide

5.4.2 Application Programming Interfaces
The 32-bit Application Programming Interfaces (APIs) of AIX 5L supported in
the 64-bit operating environment are the same as the APIs supported in the
32-bit operating environment. Thus, no changes are required for 32-bit
applications between the 32-bit and 64-bit environments. However,
recompiling as a 64-bit application can require cleanup of your code.

5.4.2.1 Memory allocation routines
The malloc() subroutine returns a pointer to a block of memory of at least the
number of bytes specified by the size parameter. The block is aligned so that
it can be used for any type of data.

The realloc() subroutine changes the size of the block of memory pointed to
by the pointer parameter to the number of bytes specified by the size
parameter and returns a new pointer to the block. The pointer specified by the
pointer parameter must have been created with the malloc(), calloc(), or
realloc() subroutines, and not been deallocated with the free() or realloc()
subroutines. Undefined results occur if the pointer parameter is not a valid
pointer.

The calloc() subroutine allocates space for an array with the specified number
of elements, the specified size in bytes for each element, and initializes the
allocated space to zeros. The order and contiguity of storage allocated by
successive calls to the calloc() subroutine is unspecified. The pointer
returned points to the first (lowest) byte address of the allocated space.

The alloca() subroutine allocates the number of bytes of space specified by
the size parameter in the stack frame of the caller. This space is
automatically freed when the subroutine that called the alloca() subroutine
returns to its caller.

HP-UX 10.xx ILP32 unsigned long long unsigned int

HP-UX 10.xx LP64 unsigned long long long long unsigned int

HP-UX 11.xx unsigned long long unsigned int

Compaq Tru64 unsigned int long unsigned int

SGI IRIX 6.5 ILP32 unsigned int int long

SGI IRIX 6.5 LP64 unsigned long long int

OS size_t ssize_t wint_t
Chapter 5. Porting 139

The valloc() subroutine has the same effect as malloc(), except that the
allocated memory is aligned to a multiple of the value returned by
sysconf(_SC_PAGESIZE). See Table 49 for more information.

Table 49. Argument type for memory allocation routines

As the ANSI/ISO C standard dictates, the behavior of a call to malloc() with a
size argument of 0 is implementation dependent; therefore, you should guard
your code against this potential problem, as malloc() can either return a NULL
pointer or a valid pointer that points to a block of memory with a size of
0 bytes.

5.4.2.2 File positioning routines
The lseek() system call is used for setting the current position in a file. To
indicate the displacement a data type, off_t should be passed to lseek() to
indicate the wanted file offset. The llseek() system call (not available on all
platforms) and lseek64() system call take an argument of type offset_t and
off64_t, respectively. Both system calls are used for file pointer positioning in
large files (file sizes greater than 2 GB).

When setting or getting the file positions for a file with the ANSI C functions
fsetpos() or fgetpos(), respectively, the argument to specify the file position is
defined to be of data type fpos_t. The system calls fsetpos64() and
fgetpos64() are used for large files (file sizes greater than 2 GB) and take an
argument of data type off64_t.

Table 50 summarizes the details of the file positioning routines.

Table 50. Argument types for file positioning routines

OS malloc realloc calloc alloca valloc

AIX 4.x size_t size_t size_t int size_t

AIX 5L size_t size_t size_t int size_t

Solaris 8 size_t size_t size_t size_t size_t

HP-UX 10.xx size_t size_t size_t size_t size_t

HP-UX 11.xx size_t size_t size_t size_t size_t

Compaq Tru64 size_t size_t size_t int size_t

OS lseek llseek lseek64 fsetpos
fgetpos

fsetpos64
fgetpos64

AIX 4.x off_t offset_t off64_t fpos_t fpos64_t

AIX 5L off_t offset_t off64_t fpos_t fpos64_t
140 AIX 5L Porting Guide

5.4.3 Threads
Threads are being used in more applications, and most platforms provide
some form of threads support. AIX 5L is no exception and supports the
POSIX threads definition. Even within the standard, there may be
implementation specific operating system differences that could cause
problems. Chapter 10, “POSIX threads” on page 307 describes threads and
provides a good source of information to ensure correct configuration and
operation.

5.4.4 The sizeof() operator
The result of the sizeof() operator is the data type size_t, which depends on
the specific operating environment (32-bit or 64-bit) and employed
programming model; see Table 48 on page 138 for a listing.

5.4.5 Self-modifying code
Self-modifying code is a programming technique that enables a program
module to change functionality by modifying the in-memory machine
instructions of the module itself. This technique is not supported on AIX 5L on
either Power or Itanium-based systems. All self-modifying code must be
rewritten in standard fashion, in other words, using if-clauses to determine
the appropriate functionality.

5.4.6 System specific commands
Shell scripts may also need to be ported, particularly if they attempt to parse
the output of system commands.

5.4.6.1 Shell scripts
Shell scripts that adhere to the POSIX standard and do not rely on system
specific commands should be rather easy to adapt for AIX 5L. For security
reasons, AIX 5L does not allow shell scripts to be setuid as this poses a

Solaris 7 off_t offset_t off64_t fpos_t fpos64_t

HP-UX 10.xx off_t N/A off64_t fpos_t fpos64_t

HP-UX 11.xx off_t N/A off64_t fpos_t fpos64_t

Compaq Tru64 off_t N/A N/A fpos_t N/A

OS lseek llseek lseek64 fsetpos
fgetpos

fsetpos64
fgetpos64
Chapter 5. Porting 141

serious security risk due to the fact that this would allow for an easy access to
root user rights for any user.

5.4.6.2 The Korn shell
In AIX 5L the default shell is /usr/bin/ksh which is hardlinked to /usr/bin/psh,
/usr/bin/sh, and /usr/bin/tsh. This is an implementation of the 1988 version of
the Korn Shell, enhanced to be POSIX compliant.

In addition to this shell, an unmodified version of the 1993 version of ksh is
supplied as /usr/bin/ksh93. This version is also POSIX compliant. With the
exception of POSIX specific items, the 1993 version should be backward
compatible with the 1988 version. Therefore, no changes to shell scripts
should be necessary. With this release, users should check their scripts for
compatibility problems. This new version of ksh has the following functional
enhancements:

 • Key binding

 • Associative arrays

 • Complete ANSI-C printf function

 • Name reference variables

 • New expansion operators

 • Dynamic loading of built-in commands

 • Active variables

 • Compound variables

For a detailed description of the new features, consult the official KornShell
home page at:

http://www.kornshell.com.

5.4.6.3 Shell script or program calls from within C and C++ code
If your program calls shell scripts or other executables within the C or C++
source code (via the exec() system call), you should take the following
considerations into account:

 • Check that the shell script or program you want to call is really located at
the specified directory location.

 • Check that the file permissions are as you would expect them to be.

 • Check that the program environment is setup correctly. For example, are
all necessary environment variables set or are some environment
variables set which should not be set?
142 AIX 5L Porting Guide

 • Check that the output of the called program is as you would expect it to be,
especially if you are going to parse the output in your program. For
example, are tabs used instead of spaces, or are data items in the
expected column order?

5.5 AIX 5L porting programming tips

The following section summarizes common programming tips for writing or
porting applications or device drivers to AIX 5L. They are based on the
porting experience of many developers in the industry. Some are
recommended porting steps, some are programming/porting practice, while
some are simply guidelines for reference.

5.5.1 General tips
 • Check all code with the lint program checker.

 • Use copies of each system’s commonly used header files (such as
limits.h, types.h, param.h, float.h, inttypes.h, and so on) for reference. Use
predefined types (including derived data types) defined in inttypes.h and
types.h whenever possible.

 • Use ANSI-C function prototypes so that the compiler and lint can help
identify potential porting problems. Watch out for those function
arguments that are not explicitly declared and typed. Argument sizes of
such functions might not match those of the calling program.

 • Decide the data cardinality of a variable before selecting the data type.
Cardinality is the set of all possible values of a specific data item. Use
explicit size types for cardinality-sensitive data. For example, use the
uint16_t type for counting a number from 0 to 65535.

 • Check the #else..#endif parts of conditional compiles. Make sure they
yield the expected results.

 • Define appropriate typedefs, where needed, for portability.

 • Use variable argument (va_arg) lists by using va_arg() instead of
declaring extra int arguments.

 • Beware of compiler optimizations. Declare as volatile any variable used in
a loop that is updated by an external function (for example, a signal
handler). Otherwise, no changes will be detected by the loops, because
the compiler will take non-volatile variables out of the loop.

 • Use int for values specific to the running platform, temporary local
variables, and trivial loop counters.
Chapter 5. Porting 143

 • Avoid storing structures that contain pointers in data files, such as
database files. The address stored in the data files becomes invalid.
These files then become nonportable between 32-bit and 64-bit systems,
because the size of pointer has changed from 32 bits to 64 bits. One of the
options is to use object references in C++ instead of pointers.

 • Check for long (64 bits) bit fields. 64-bit bit fields are not supported.
Structure bit fields are limited to 32 bits, and can be of type signed int,
unsigned int or plain int. If you use long bit fields in 64-bit mode, their
exact alignment may change in future versions of the compiler, even if the
bit field is under 32 bits in length.

 • Check for structure member values being passed by value in 64-bit mode.
In 64-bit mode, member values in a structure passed by value to a va_arg
argument may not be accessed properly if the size of the structure is not a
multiple of eight bytes.

 • When data alignment cannot change (for example, network packets), use
#pragma pack(1) to avoid compiler structure padding.

5.5.2 Int, long, and pointer
 • On AIX 5L, LP64 is the 64-bit programming model. Integers are 32 bits;

longs and pointers are 64 bits. While under ILP32, all of them are 32 bits.

 • Note that int is the default size for untyped register and unsigned
variables.

 • When checking or converting long declarations, check calls to printf() and
appropriately change format strings to %ld, %lu, and %lx, or vice versa.
Many people miss these changes during their porting, and wonder why the
program produces strange output during testing.

 • Check (int *) and (long *) types of casts.

 • Use NULL, defined as 0L, for zero or (char *) comparisons.

 • Look out for longs in unions (extra space allocated), or the storing of
pointers or double values in a union whose maximum size is int.

 • Network Internet addresses are 32 bits. Most network code uses longs for
network addresses (16-bit leftover necessary to force 32 bits). Use
unsigned int instead.

 • Explicitly add a suffix (L,U, or UL) to all constants that have the potential of
impacting constant assignment or expression evaluation in other parts of
your program.

 • Where appropriate, declare variables as int or long for alignment and
performance. Do not try to save bytes by using a char or a short.
144 AIX 5L Porting Guide

5.5.3 Sign extension
 • When declaring constants, use L or UL as appropriate; when necessary,

use the unsigned UL to prevent sign extension.

 • Declare character pointers and character bytes as unsigned char to avoid
sign extension problems with 8-bit characters.

5.5.4 Data truncation
 • Avoid assigning longs to ints. Data will be truncated under the 64-bit

mode.

 • Avoid storing pointers in ints. Pointers will be truncated in 64-bit mode if
they are assigned to ints.To avoid this problem, store pointers in variables
declared as pointers or declared with intptr_t (defined in inttypes.h).

 • Avoid truncating function return values. By default, the C compiler will
return a value of type int if the function is undeclared. Therefore, the return
value from a function may be truncated. To avoid this, use ANSI C
function prototypes for user-defined functions and standard header files
for C library functions and system calls.

 • Use the appropriate printf()/scanf() specifiers. Make sure the algorithms
that use the variable parameters are consistent with the 64-bit model. For
instance, %d prints a 32-bit integer while %ld prints a 32-bit integer in
32-bit mode and a 64-bit integer (long) in 64-bit mode.

 • Beware of rounding pointers for alignment (for example, & 0x03). Use
(sizeof(long) - 1) for size and use appropriate casts to avoid truncating the
address. For example:

#define nround(x,y) ((((ulong)(x)+(y))-1)&~(ulong)((y)-1))
reallen = (uchar_t *)nround(textline, LINELEN);

 • In 64-bit mode, the signal() function returns a pointer (64 bits) to the
previous signal handler:

void (*signal(int signal, void (*function)(int))) (int);

Do not store the pointer in an int or the address will be truncated.

 • When shifting bytes into a long value, ensure that each byte is cast to a
long. Otherwise, the result is only a 32-bit value (not 64 bits, as expected).
When shifting bits on an integer constant, specify the constant with L or
UL if you want a result of type long or unsigned long, respectively.
Otherwise, the results will be an integer.

 • Avoid using int and long types interchangeably; it will result in truncation of
significant digits or unexpected results in a 64-bit environment.
Chapter 5. Porting 145

 • Avoid passing long arguments to functions expecting type int. This will
result in truncation.

 • Avoid passing pointers to a function expecting an int type. This will result
in truncation.

 • Avoid assigning a long constant to an int variable. It will cause truncation
without warning.

 • Any function that returns a pointer should be explicitly declared when
compiling in 64-bit mode. Otherwise, the compiler will assume the function
returns an int and truncate the resulting pointer, even if you were to assign
it to a valid pointer.

 • Avoid exchanging pointers and int types; it will cause segmentation faults
in the 64-bit environment when the (truncated) pointers are used.

 • Avoid assignment of long types to float; it may result in loss of accuracy.

 • Avoid truncating function return values. If a data type of a return value
from function is incompatible with the variable to which it is assigned, the
return value can be truncated. To avoid this, use ANSI C function
prototypes for user-defined functions and standard header files for C
library functions.

5.5.5 Data type promotion
 • Avoid arithmetic between signed and unsigned numbers. Data is

promoted differently in 64-bit mode than in 32-bit mode when a C program
performs arithmetic operations and comparisons between signed int and
unsigned long and between unsigned int and long.

5.5.6 Pointer truncation
 • Use compiler option -qwarn64 or #pragma info(warn64) to help search for

pointer to integer truncation.

 • Avoid pointer arithmetic between long and int. In 64-bit mode, if a long
value is dereferenced using an int pointer, only 32 bits will be retrieved.

 • Avoid casting pointers to int or int to pointers. Such operations will give
unexpected results in 64-bit mode because pointers and int variables are
no longer the same size in 64-bit mode.

 • Avoid storing pointers in int variables. They will be truncated in 64-bit
mode.
146 AIX 5L Porting Guide

5.5.7 Structures
 • Avoid using unnamed and unqualified bit fields, as this may cause data

alignment problems and/or unexpected results.

 • Avoid passing invalid structure references.

 • Avoid the use of undocumented or reserved bit fields.

 • All the structures must be checked for alignment and size dependencies.
Structure members are aligned on their natural boundaries. Structures are
aligned according to the strictest aligned member. This remains
unchanged from 32-bit mode. Because of the padding introduced by the
member alignment, structure alignment may not be exactly the same as in
the 32-bit mode. This is especially important when you have arrays of
structures which contain pointer or long types.

5.5.8 Hardcoded constants
 • Avoid using literals and masks that assume 32 bits.

 • Avoid hardcoding the size of data types; use sizeof() instead.

 • Avoid hardcoding bit shift values. Use portable defines such as LONG_BIT
and WORD_BIT, which are defined in limits.h.

 • Avoid hardcoding constants with malloc(). Use sizeof((void *)) to get
appropriate pointer size.

5.6 AIX 5L porting guidelines

The following steps will help in the porting process.

5.6.1 Identify potential problems using grep commands
Use the grep or egrep command to help locate some potential problem areas
in the source code. Use lint to check for programming practice in C code,
which might cause problems during the 32-bit to 64-bit migration.

Text searching commands such as grep or egrep are powerful tools. They can
be used to find constructs, which are likely to cause problems.

The following are some of the common potential problem areas:

 • mem... functions, such as memcpy. The byte count might not be correct
under 64-bit environment. For example:

grep “mem*” /usr/local/src/*
Chapter 5. Porting 147

 • union: Look for long and int in the union. Unions that attempt to share long
and int types, or overlay pointers onto int types will now be aligned
differently, or be corrupted. For example:

grep union /usr/local/src/*

 • Hexadecimal constants 0[xX][0-9a-fA-F]: Look for hexadecimal constants
mixed with longs or pointers. For example:

grep 0x08001234 /usr/local/src/*

 • printf()/scanf(): Look for %[dDxX]. Format codes of parameter long may
need to be modified.

 • sizeof(long): It no longer equals to sizeof(int).

 • extern: Check the declarations of the variable.

 • long: Check all long declarations. Many of them can be converted to int or
unsigned int to save storage space. In the case of network addresses, if it
is declared as unsigned long, replace it with unsigned int.

 • Bitwise operator: (<<,>>, or ~) Add L to operands of these operators when
they are long constants. This can avoid a zero result. For example:

egrep “<<|>>|~” /usr/local/src/*

 • Address operator &: Make sure the result is not stored in an int.

5.6.2 Identify potential problems using lint
Examine the problem code reported by lint and make necessary fixes.
Please refer to the AIX 5L online command reference for the usage of lint.

5.6.3 Compile and link the code and fix the discovered problems
Steps such as saving compile time, link time error messages, and using
debugging tools to debug the code should be commonly known practices for
software developers.

A useful tip for fixing problems is: change only what is broken. This approach
has several advantages:

 • It minimizes the number of changes during the port, and thereby reduces
the porting cycle time. This also makes the change control easier.

 • It can minimize, if not avoid, the number of new problems created during
the port.

 • Every change is a fix of a known problem.
148 AIX 5L Porting Guide

5.6.4 Fix alignment and padding problems
These are the core issues of porting to the LP64 model. Please refer to
Section 3.10, “C and C++ data type alignment issues” on page 65 for various
instances and recommendations.

5.6.5 C programming
The following issues are generally related to the C programming conventions,
style, and practices.

5.6.5.1 Single source
If possible, use single source code and header files for both 32-bit and 64-bit
programs.

5.6.5.2 Getting system information
Do not hard code system values in the programs. Use sysconf(), confstr(),
and pathconf() to obtain the current value of certain system parameters, the
configurable system limits, or whether optional features are supported, such
as file implementation characteristics. Also use macros defined in limits.h to
get static system limits.

5.6.5.3 Using header files
This is the best, simplest solution to make consistent changes/fixes to your
source code. The following section describes the use of inttypes.h.

5.6.5.4 Using inttypes.h
Use appropriate data types in a consistent and strict manner. inttypes.h is
ISO C standard header file. Use integral types defined in the header file when
the applications require that you use fixed width integral types on both 32-bit
and 64-bit platforms. Use int and long when the integral types need to be
scalable. inttypes.h provides the following features:

 • Integral type definitions

 • Macros for creating constants of the types defined

 • Macros for printf()/scanf() format specifiers

The following are some tips regarding usage of inttypes.h:

 • Use fixed width integral types, such as int32_t for integers that must have
a fixed width across platforms. For instance, use int64_t for the fixed width
variable instead of long long, and uint64_t instead of unsigned long long.

 • Use scalable integral types, such as long, when the date types need to
scale up/down when applications moved to different platforms.
Chapter 5. Porting 149

 • Use the smallest integral types, if possible, to save space and control the
size of the application.

 • Use the intfastn_t data types for counters (variables that are used in
frequent expression evaluation). For example, intfast32_t.

 • Use a constant that matches the integer type definition. For example, use
INT64_MAX with int64_t.

 • intmax_t and uintmax_t should be the longest (in number of bits) signed
and unsigned integer types supported by the implementation. Use them
for items that must be the largest integral type.

 • Use #ifdefs when defining fixed width 64-bit integral type variables, such
as int64_t, if a single source code will be used on both platforms.

 • Use the same type definition names supported by the definition of the
system API you want to use.

 • Data declaration of system API parameters or return values should be the
same as those defined by the function prototype.

5.6.5.5 Use portable bit masks
Use scalable masks with scalable typedefs. For example:

#include <inttypes.h>
#ifdef __LP64__
int64_t beef=0xffffffffffffffbf
#else
int32_t beef=0xffffffbf
#endif

Use fixed size masks with fixed size type definitions. For example:

#include <inttypes.h>
int64_t refcntmask=INT64_MAX;

5.6.5.6 Shared memory between 32-bit and 64-bit processes
Modify the application in cases where 32-bit and 64-bit processes share the
same memory segment. Check the data type of variables to be shared by
these processes and modify them accordingly, if it has been determined that
such mixed mode operation is inevitable, for example, in a data structure
containing both data and a link list pointer. Use fixed width predefined data
types in inttypes.h for data, and use int or another fixed width data type to
replace the pointer, since the size of a pointer is no longer the same in 32-bit
mode and 64-bit mode. The application needs to compute and then store the
offset to the next structure in the fixed width variable. The application can
150 AIX 5L Porting Guide

then use both the shared memory segment base address and the offset to
access the data.

5.6.5.7 Identifiers and object names
Writing software usually involves defining names for all identifiers in program
modules. Identifiers may be functions, macros, variables, structures, or any
object that a program module may refer to. If the software is just a simple
stand-alone program, identifier naming is probably not an issue. However, if
the software becomes complex and involves lots of identifiers, the following
issues should be well-understood:

 • Meaningful names (for the sake of debugging and maintenance): Having
comments written in the source code is a good practice, but those
comments will not be very useful if the source code is not available.

 • Name length: With modern compilers and linkers, it is relatively safe to
assume that identifiers up to 32 characters in length will be supported.

5.6.5.8 Being clear
Some programming tricks on 32-bit platforms may give different results on
64-bit platforms. For example, if you define a constant as:

#define ERROR 0xFFFFFFFF

you will find the constant to be 4,294,967,295 instead of the expected -1.

5.6.5.9 Conditional compilation
Use appropriate names for definitions used to select conditional compilation
sections. Certain definitions must be used when compiling code for device
drivers and kernel extensions to ensure that the correct conditional compile
sections of system header files are used. If you are writing a device driver or
kernel extension, it makes sense to use the same variables for conditional
code selection in your driver code. If you are writing a user-level application,
it may be possible to use one of the symbols automatically defined by the
compiler as the value for selecting conditional sections.

5.6.5.10 Use macros
Macros also help improve the readability of your code if their names are
meaningful. For example:

1 #define MAXITEMNUM 2500
2 ...
3 if (i > MAXITEMNUM) report_it(i);
4 ...

is more meaningful than:
Chapter 5. Porting 151

1 if (n > 2500) report_it(i);

You can also use macros to avoid hardcoding constants, especially
commonly-used values. The following are some examples of using macros:

 • Use itemno & ((1<<(8*sizeof(int)))-1) instead of itemno & 0xFFFF.

 • Use malloc(MAXITEMNUM*sizeof(int)) instead of malloc(400).

 • Use char buf[PAGE_SIZE] instead of char buf[4096].

Note that macros are processed by the C preprocessor, which is less
informative than the compiler. If you need a warning about type misuse of a
constant, define the constant as a variable with the keyword const rather than
defining it as a macro with #define.

5.6.5.11 In-line assembler language code
There is no support for coding in-line assembler within C source code on
AIX 5L. Assembly code must be written as callable functions contained in
assembler source files. These are then assembled to create object files.

5.6.5.12 Use stdarg.h for variable argument functions
The layout in memory of parameters (or arguments) to function calls is
completely up to the compiler and will be transparent as long as those
parameters are referred to by name. There may be cases, however, where
there is a need to indirectly refer to a parameter through a reference to
another in the list. One example is printf style functions. Another example is
the variable argument function, an example of which is shown in Figure 27.

Figure 27. Example of variable parameter function

In line 4, a particular parameter layout in the function call stack is assumed.
This assumption may cause problems when porting to a platform with a

1 long lsum(int num, long val, ...)
2 {
3 long l, *p = &val;
4 for (l = val; num > 1; num--) { l += *++p; }
5 return (l);
6 }
7
8 int main(void) {
9 printf(“total %ld\n”, lsum(4, 8L, 4L, 7L, 2L));
10 exit(0);
11 }
152 AIX 5L Porting Guide

different stack layout. The portable way to do this is to use the functionality
provided by the ANSI C defined header file, <stdarg.h>, as shown in
Figure 28. This is particularly important on the Itanium platform, where
variables of type char, short, and int are less than 64 bits in size, they are
zero extended to 64 bits before being passed as arguments to procedures.
This is because the stack is implemented using 64-bit registers rather than
system memory.

Figure 28. Example of <stdarg.h> usage

1 #include <stdarg.h>
2 long lsum(int num, long val, ...)
3 {
4 long l;
5 va_list p;
6 va_start(p, val);
7 for (l = val; num > 1; num--) { l+= va_arg(p, long); }
8 return (l);
9 }
10
11 int main(void) {
12 printf(“total %ld\n”, lsum(4, 8L, 4L, 7L, 2L));
13 exit(0);
14 }
Chapter 5. Porting 153

154 AIX 5L Porting Guide

Chapter 6. Makefiles and the make command

In this chapter, we will examine the make command and the supported
features of makefiles on AIX 5L, and compare them with the supported
features of HP-UX, Solaris, Tru64 and GNU make command. We will
concentrate on the features that are found across all the platforms. The
chapter is targeted at people who use several more advanced features in
their makefiles and in their use of the make command. If you are only making
simple makefiles such as the one shown in Figure 29, and do not plan to do
otherwise, you might want to continue onto the next chapters.

Not all details of makefiles and the make command are covered in this chapter;
that is beyond the scope of this redbook. However, this chapter covers the
most commonly used features.

Figure 29. A very simple makefile

If you are only using the make command with the target as an argument, as
shown in Figure 30 on page 156, you also might want to skip this chapter and
continue with the next one.

foobar: foo.o bar.o
cc -o foobar foo.o bar.o

foo.o: ./src/foo.c ./inc/foo.h
cc -c ./src/foo.c

bar.o: ./src/bar.c ./inc/bar.h
cc -c ./src/bar.c

clean:
rm -f *.o
rm -f foobar
© Copyright IBM Corp. 2001 155

Figure 30. Simple use of the make command

If you are currently using GNU make and would prefer to continue to use GNU
make on AIX 5L, you might also want to read quickly through this chapter. Pay
particular attention to Section 6.2, “The make command” on page 169, to
ensure that you have installed GNU make and that you are actually using it,
rather than the default AIX 5L make command.

6.1 Makefiles

Here we will first discuss what a makefile contains: rules, macro definitions
and comments. There are two types of rules: inference rules and target rules.
The make command reads from a file that contains a set of build-in inference
rules.

Comments start with the pound sign (#) and continue until an un-escaped
<newline> is reached.

6.1.1 Command prefixes
Command lines can have one or more prefixes; these function in the same
way on all the covered platforms. Below is a description of how these prefixes
work.

@ If a command has the @ (at) character in front of it, the command will not
be written to standard output. If the -n command line option has been
specified with make, the command will be echoed, thus -n overrides the @.
If the -s option has been specified on make, or the .SILENT rule has been
specified with no prerequisites, all commands will not be echoed. Another
way of achieving the same effect is to put the current target as a
prerequisite to the .SILENT rule.

$ make clean
rm -f *.o
rm -f *.a
rm -f foobar

$ make foobar
cc -c ./src/foo.c
cc -c ./src/bar.c
cc -o foobar foo.o bar.o

$

156 AIX 5L Porting Guide

- If a command has the - (hyphen) character in front of it, any error from the
command being executed will be ignored. If the -i option has been given to
the make command, or the .IGNORE rule has been specified with no
prerequisites, all errors will be ignored. Another way of achieving the
same effect is to put the current target as a prerequisite to the .IGNORE
rule.

+ If a command has the + (plus sign) in front of it, the command will be
executed, even though the options -n, -q or -t are specified.

6.1.2 Default inference rules
Default inference rules govern what the make command does by default when
encountering a rule like the foo.o rule shown in Figure 31. This is a very
simple makefile, where the building of foo.o and bar.o relies on the default
inference rule for o.c, or, in other words, the default way to build a <name>.o
file from a <name>.c file.

Figure 31. A simple makefile that uses the default .o.c inference rule

Now, when we try to build the foobar program, as in Figure 32, we see the
rule that the make command uses to build the foo.o and bar.o files:

$(CC) $(CFLAGS) -c $<

Where the $(CFLAGS) equals -O.

Figure 32. Make which uses the default inference rule .o.c to build foobar

$ ls
bar.c foo.c makefile
$ cat makefile
foo.o: foo.c ../inc/foo.h

bar.o: bar.c ../inc/bar.h

foobar: foo.o bar.o
cc -o foobar foo.o bar.o

$

make foobar -f makefile.2
cc -O -c foo.c
cc -O -c bar.c
cc -o foobar foo.o bar.o

$

Chapter 6. Makefiles and the make command 157

There are some potential problems in using the default inference rules,
particularly when moving makefiles to another platform. The reason for this is
that the default inference rules are not the same on all platforms. As an
example, Table 51 compares the default rules for .c.a (creating an ar format
archive file from a .c source file) on AIX and Tru64.

Table 51. The .c.a inference rules

Although the differences are minor in this example, this is not always the
case. For example, if we have a makefile like the one shown in Figure 33, we
might run into trouble.

Figure 33. Makefile that uses the default rule on how to make .o from .a files

As you see RM has been set to ./domove which is shown in Figure 34 on
page 159, along with an ls listing of the files used. This script simply moves
the .o files to ./obj/, where they are used to build the foobar program. This
makefile will work on Tru64; look at Table 51 to figure out why.

Platform Rule

AIX $(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

Tru64 $(CC) $(CFLAGS) -c $<
$(AR) $(ARFLAGS) $@ $*.o
$(RM) $(RMFLAGS) $*.o

RM=./domove

foo.o: foo.c ../inc/foo.h
$(CC) -c $*.c

bar.o: bar.c ../inc/bar.h
$(CC) -c $*.c

bar.a: bar.o

foo.a: foo.o

foobar: ./obj/foo.o ./obj/bar.o
$(CC) -o ./obj/foobar $?
strip ./obj/foobar

clean:
rm -f ./obj/*.o
rm -f *.a
rm -f ./obj/foobar
158 AIX 5L Porting Guide

Figure 34. Source files and the domove script

On AIX 5L, on the other hand, you will run into problems, due to the fact that
the default rule for making a .a file from a .c file is different. The output of
what happens in that case can be seen in Figure 35.

Figure 35. Running the makefile from Tru64 on AIX 5L

As you can see, the make command could not find the ./obj/foo.o file. This is
due to that fact that the AIX 5L make command does not use $(RM) in the
default rule on how to make a .a file from a .c file. It uses the rm command
instead (this is the POSIX way of making a .a file from a .c file).

6.1.3 Single suffix default inference rules
There are two kinds of default rules: single suffix and double suffix. The single
suffix rules govern how to generate an executable. An executable has no file
name suffix, and is generated from a <filename>.<suffix> file where <suffix>,
for example, can be a c for a C source file or a C for a C++ source file.

$ ls
bar.c domove foo.c makefile obj
$ cat domove
mv $1 ./obj/$1
$ ls obj
$

$ make clean
rm -f ./obj/*.o
rm -f *.a
rm -f ./obj/foobar

$ make foo.a
cc -c foo.c
cc -c -O foo.c
ar -rv foo.a foo.o

ar: Creating an archive file foo.a.
a - foo.o

rm -f foo.o
$ make bar.a

cc -c bar.c
cc -c -O bar.c
ar -rv bar.a bar.o

ar: Creating an archive file bar.a.
a - bar.o

rm -f bar.o
$ make foobar
make: 1254-002 Cannot find a rule to create target ./obj/foo.o from dependencies.
Stop.
$

Chapter 6. Makefiles and the make command 159

To have a complete overview of the single suffix default inference rules that
are defined on various UNIX platforms, refer to Table 110 on page 477.

You should search your makefiles, looking for instances where you assume
that single suffix rules work in a particular way.

6.1.4 Double suffix default inference rules
The double suffix default rules are the rules that cover how to generate a
<filename>.<suffixa> from a <filename>.<suffixb> file. The rules are listed in
Table 111 on page 491.

As with the single suffix rules, you should search your makefiles looking for
places where you assume that double suffix rules work in a particular way.

6.1.5 Special targets (the .targets)
Special targets are called by different names on the various platforms:

AIX 5L Special targets

HP-UX Built-In targets

Solaris Special-Function targets

Tru64 Pseudotarget names and Special targets

GNU Special built-in targets

POSIX Special targets

Even if the name for the feature is not the same, the functions are. Special
targets are targets that have a special meaning. If you do not use any special
targets in your makefiles, you can skip this section. If you want to make sure
that your makefiles do not use special targets, try running the shell script that
is shown in Appendix A.1.1, “The find_spec_targets_aix.ksh sample program”
on page 451. This script will find the special targets in your makefiles that are
not supported by the AIX 5L make command. There is also a script in
Appendix A.1.2, “The find_spec_targets_gnu.ksh sample program” on
page 452 that will find the special targets that are not supported by the GNU
make command.
160 AIX 5L Porting Guide

If you already have a pretty good idea which special targets you are using,
you should have a look in Table 52 and check to see if you are currently using
any special targets that are not supported by the AIX 5L make command.

Table 52. Comparison of special target support

Special target AIX 5L HP-UX Solaris Tru64 GNU POSIX

.DEFAULT yes yes yes yes yes yes

.DELETE_ON_
ERROR

no no no no yes no

.DONE no no yes no no no

.EXIT no no no yes no no

.EXPORT_ALL_
VARIABLES

no no no no yes no

.FAILED no no yes no no no

.GET_POSIX no no yes no no no

.IGNORE yes yes yes yes yes yes

.INIT no no yes yes no no

.INOBJECTDIR no no no yes4 no no

.INTERMEDIATE no no no no yes no

.INTERRUPT no no no yes3 no no

.KEEP_STATE no no yes no no no

.KEEP_STATE_FILE no no yes no no no

.MAIN no no no yes3 no no

.MAKE_VERSION no no yes no no no

.MUTEX no yes no no no no

.NOTPARALLEL no no no no yes1 no

.NO_PARALLEL no no yes1 no no no

.PARALLEL no no yes2 no no no

.PATH no no no yes3 no no

.PATHsuffix no no no yes3 no no

.PHONY no no no no yes no
Chapter 6. Makefiles and the make command 161

If you should find that you are using some special targets that are not
supported on AIX 5L, then the best approach is to get your makefile to work
on your source platform without the use of the special target that is not
supported by the AIX 5L make command. In most cases, this should not pose
a problem.

6.1.6 Using the .POSIX special target
The .POSIX special target can be used to make your makefile POSIX
compliant. This is not as simple as it sounds. You will still have to make sure
that your makefile does what it is supposed to do. But it does give you the
ability to make most of your porting on your source platform.

If you only want to use POSIX compliant features in your makefiles, the
.POSIX special target must be entered in the top of your makefile, as the first
non comment line to take effect.

If you are using HP-UX or GNU make, even if there is a .POSIX in your
makefile (because neither make command supports the .POSIX special target),
it will not make the makefile behave like a POSIX compliant makefile. The
makefile will still be executed, but you will not receive an error message.

To test if your make command supports the .POSIX special target, you should
examine a predefined macro that has one value when you run with .POSIX
and another when you are running without it. As an example, the $(CC)

.POSIX yes no yes yes3 no yes

.PRECIOUS yes yes yes yes yes yes

.SCCS_GET no no yes yes3 no no

.SCCS_GET_POSIX no no yes no no no

.SECONDARY no no no no yes no

.SILENT yes yes yes yes yes yes

.SUFFIXES yes yes yes yes yes yes

.WAIT no no yes no no no

yes1 These two special targets have the same effect.
yes2 Reserved for future use, has no effect.
yes3 Only available in the POSIX version of make.
yes4 Only available in the standard make.

Special target AIX 5L HP-UX Solaris Tru64 GNU POSIX
162 AIX 5L Porting Guide

macro is a good candidate, because it is defined as c89 when you use the
.POSIX special target, and, on most platforms, the $(CC) macro has the value
cc when you are not using .POSIX. You can also have a look in Table 52 on
page 161 for more inspiration.

An example on how to test to see if the make command supports the .POSIX
special target can be seen in Figure 36.

Figure 36. Test to see if make supports the .POSIX special target

So if you normally have a .POSIX as the first non-comment line in your
makefile, you should be able to use your makefiles on AIX 5L without any
major rewriting. You will still have to check that any shell commands from
within the makefile are executed correctly.

6.1.7 Internal macros
Internal macros are called by different names on the various platforms. The
following names are used for Internal macros:

AIX 5L Internal macros

HP-UX Built-in macros

Solaris Dynamic macros

Tru64 Internal make macros

GNU Automatic variables

POSIX Internal macros

$ cat > makefile
.POSIX:

posixtest:
@echo $(CC)

$ make posixtest
c89
$ cat makefile.non
posixtest:

@echo $(CC)

$ make -f makefile.non posixtest
cc
$

Chapter 6. Makefiles and the make command 163

Throughout this chapter, we will use the term used by AIX 5L, internal
macros. Even tough internal macros go by different names on the different
platforms; the way they function in your makefiles are more or less the same.
Their function is listed in the following paragraphs, so that you can compare if
the way the internal macro works on AIX 5L is the same as on your platform.

There are POSIX defined internal macros; GNU make has defined two more,
which are called $+ and $^.

$@ Will be evaluated to the full target name of the current target or
the archive file name part of a library archive target. This rule is
evaluated both for target and inference rules.

For example, in:

foobar: foo.o bar.o

cc -o $@ foo.o bar.o

$@ will be evaluated to foobar

$% Will be evaluated only when the current target is an archive library
member of the form libraryname(libmember.o). So when the target
is an archive library, $@ will be evaluated to libraryname and $%
will be evaluated to libmember.o. This rule is evaluated both for
target and inference rules. In Figure 37 on page 165, you can see
the how to use $@ and $%.
164 AIX 5L Porting Guide

Figure 37. A makefile that uses $% and $@

The first occurrence of $% in Figure 37 will be evaluated to
lib_foo.o and the second occurrence of $% will be evaluated to
lib_bar.o. The two occurrences of $@ will both be evaluated to
lib_foobar.a.

$< Will be evaluated to the file name whose existence allowed the
inference rule to be chosen for the target. When used in the
.DEFAULT rule, the macro will be evaluated to the current target
name. This rule is evaluated only for inference rules.

For example, in:

foo.o: foo.c

cc -c $<

$< will be evaluated to foo.c

$? Will be evaluated to a list of prerequisites that are newer than the
current target. This rule is evaluated both for target and inference
rules.

For example, in:

foobar: foo.o bar.o

cc -o foobar $?

F_EX = foo_add.exp
B_EX = bar_add.exp
EXPORTFILES = $(F_EX) $(B_EX)

foo.o: ./src/foo.c ./inc/foo.h
cc -c ./src/foo.c

bar.o: ./src/bar.c ./inc/bar.h
cc -c ./src/bar.c

lib_foobar.a(lib_foo.o): foo.o $(EXPORTFILES)
cc -o $% foo.o -bE:$(F_EX) -bI:$(B_EX) -bM:SRE -bnoentry

lib_foobar.a(lib_bar.o): bar.o $(EXPORTFILES)
cc -o $% bar.o -bE:$(B_EX) -bI:$(F_EX) -bM:SRE -bnoentry

lib_foobar.a: lib_foobar.a(lib_foo.o) lib_foobar.a(lib_bar.o)
ar rv $@ lib_foo.o
ar rv $@ lib_bar.o
Chapter 6. Makefiles and the make command 165

$? will be evaluated to foo.o bar.o

$^ Will be evaluated to the names of all the prerequisites, with
spaces between them. For prerequisites that are archive
members, only the member name is used. Duplicate prerequisites
are omitted.

For example, in:

OBJFILES = foo.o bar.o bar.o foo.o

foobar: $(OBJFILES)

cc -o foobar $+

$+ will be evaluated to foo.o bar.o.

$+ Will be evaluated to the names of all the prerequisites, with
spaces between them. For prerequisites that are archive
members, only the member name is used. Duplicate prerequisites
are all retained and in a preserved order.

For example, in:

OBJFILES = foo.o bar.o bar.o foo.o

foobar: $(OBJFILES)

cc -o foobar $^

$+ will be evaluated to foo.o bar.o bar.o foo.o

$$@ Will be evaluated to the label name from the left side of the
dependency line. This rule is evaluated only for target rules.

For example, in:

TARGET_CMDS = foo bar foobar

$(TARGET_CMDS) : $$@.c

cc $? -o $@

$$@ will first be evaluated to foo, then bar, and then foobar

$(F) When F is appended to one of the above macros in the form
$(%F) or $(*F), the macro is evaluated the file name part of the
macro.

$(D) When D is appended to one of the above macros, in the form
$(%D) or $(*D), the macro is evaluated the directory part of the
macro.
166 AIX 5L Porting Guide

Table 53 lists the internal macros supported by different UNIX platforms.

Table 53. Internal macro support

By looking at Table 53, it is clear that the same internal macros are
implemented on the different make commands, except for the $+ and $^, which
are unique to the GNU make command. There should not be any problems in
porting this feature of the makefile to AIX 5L. You simply do not need to
change anything.

Appendix A.1.5, “The find_internal_macro_aix.ksh sample program” on
page 455 lists a small shell script that will search your source tree and try to
find makefiles that contain the $^ and $+ strings.

6.1.8 Predefined macros
Predefined macros are variables that have a predefined value. A list of which
predefined macros there are on the various platforms can be seen in Table 54
on page 168. The reason why a makefile might stop to function correctly

Special
macro

AIX 5L HP-UX Solaris Tru64 GNU POSIX

$* yes yes yes yes yes yes

$% yes yes yes yesa

a. Only available in the POSIX version of make.

yes yes

$? yes yes yes yes yes yes

$< yes yes yes yes yes yes

$@ yes yes yes yes yes yes

$^ no no no no yes no

$+ no no no no yes no

$$@ yes yes yes yes yes yes

$(F) yes yes yes yes yes

$(D) yes yes yes yes yes
Chapter 6. Makefiles and the make command 167

when moved to another machine is that the macros are not necessarily
predefined (or may be defined differently) on the new platform.

Table 54. Predefined macros

Predefined
macro

AIX 5L HP-UX Solaris Tru64 GNU POSIX

AR ar - ar ar ar ar

AS as as as as as -

CC cc cc cc cc cc c89

CCC xlC - $CC - - -

CO co - - co co -

CP - - - cp - -

CPP $(CC) -E - - - $(CC) -E -

CXX - CC - - g++ -

CWEAVE - - - - cweave -

CTANGLE - - - - tangle -

EC - - - efl - -

F77 - - - - $(FC) -

FC xlf f77 f77/f90 f77 xlfa fort77

GET get get - - get -

LD ld ld ld ld ld -

LEX lex lex lex lex lex lex

LINT - - lint lint lint -

MACHINE - - - alpha - -

MAKE make make - make $(MAKE
_COMM
AND)

make

MAKE_
COMMAND

- - - - make -

MAKEFILE - - - makefile - -

MAKEINFO - - - - makeinfo -

MV - - - mv - -
168 AIX 5L Porting Guide

If you want to check your makefiles, there is a script in Appendix A.1.3, “The
find_predef_macro_aix.ksh sample program” on page 453 that will find those
makefiles that contain predefined macros that are not supported by the AIX
5L make command. If you are planning on using GNU make to build your
programs, there is a version of the script in Appendix A.1.4, “The
find_predef_macro_gnu.ksh sample program” on page 454. These scripts will
find makefiles that includes predefined macros that are not supported by the
make command in question.

If you need to use a predefined macro that is not defined on AIX 5L, you can
either define it when using the command line or simply define it inside your
makefile.

6.2 The make command

The make command operates on makefiles, or if no makefiles are present, the
make command will use built-in values to build the specified target. An
example of this can be seen in Figure 38 on page 171.

M2C - - m2c - m2c -

PC - pc pc pc pc -

RANLIB - - - ranlib - -

RC - - - f77 - -

RM - - rm -f rm rm -f -

RMFLAGS - - - -f - -

TANGLE - - - - tangle -

TEX - - - - tex -

TEXI2DVI - - - - texi2dvi -

WEAVE - - - - weave -

YACC yacc yacc yacc yacc yacc yacc

YACCE - - - yacc -e - -

YACCR - - - yacc -r yacc -r -

a. The manual claims that FC is set to f77, but if you examine the output from make
-p on AIX 5L, it is set to xlf.

Predefined
macro

AIX 5L HP-UX Solaris Tru64 GNU POSIX
Chapter 6. Makefiles and the make command 169

The make command will try to find a makefile by trying out different names and
different locations; the places and names of makefiles is a little different from
platform to platform. In Table 55, you can see the search list of the different
make commands. The number specified in the table is the order in the search
list of that particular makefile. Thus, 1 means that this is the makefile
searched for first, 2 means that this is the makefile searched for second, and
so on. You can use the -f option to the make command to control which
makefiles are used.

Table 55. Search list for makefiles for the different make commands

Be sure that you check your source tree for makefiles, especially if you are
using the SCCS (source code control system) or the RCS (revision control
system). Have a look at Table 55 to make sure that you are using the right
makefiles in the right order.

Because of the default suffix rules, you can actually build targets without a
makefile. An example of this can be seen in Figure 38 on page 171.

Makefile AIX 5L HP-UX Solaris Tru64 GNU POSIX

./makefile 1 1 1 1 1 1

./Makefile 2 2 2 2 2 2

./SCCS/.makefile 3 5 4 - 6 -

./SCCS/.Makefile 4 6 6 - 8 -

./s.makefile - 3 3 - 5 -

./s.Makefile - 4 5 - 7 -

./makefile,v - - - 3 3 -

./Makefile,v - - - 4 9 -

./RCS/makefile.v - - - 5 4 -

./RCS/Makefile.v - - - 6 10 -
170 AIX 5L Porting Guide

Figure 38. make used without a makefile

So, for example, if you expect to fetch a makefile from RCS, which the make
command under AIX 5L does not support, your code might still compile due to
the fact that there are default suffix rules. This might have unexpected
results.

Depending on which software you have installed on your machine, and on
which platform, you can have more than one make command installed. On
Tru64, you might have three different make commands installed:

 • /usr/bin/posix/make

 • /usr/opt/ultrix/usr/bin/make

 • /usr/bin/make

Furthermore, you might even have installed GNU make, which normally will be
situated in /usr/local/bin/make. But the location of the GNU make might be in a
totally different directory; it all depends on how it was installed and by who.

You can use the which command to determine the make command you are
using, as shown in Figure 39 on page 172. In this example, the make
command that appears first in the path is the standard AIX 5L make command.

$ ls
bar.c foo.c
$ make bar.o foo.o

cc -O -c bar.c
cc -O -c foo.c

$ ls
bar.c bar.o foo.c foo.o
$

Chapter 6. Makefiles and the make command 171

Figure 39. Verifying which make you are using and changing to GNU make

6.2.1 Environment variables
Both the LANGUAGE and PATH environment variables impact how your
makefile operates. If you have more than one make command installed on your
system, it is nice to know which make command you are actually executing. To
check this, see Section 6.1.1, “Command prefixes” on page 156.

For information on how the language environment affects your program and
the make command, look in Chapter 10, “National Language Support” in
System Management Guide: Operating System and Devices, which can be
found in the AIX online documentation.

The other environment variables that affect or are affected by the make
command are listed in Table 56.

Table 56. Environment variables and the make command

Variable AIX 5L HP-UX Solaris Tru64 GNU POSIX

KEEP_STATE no no yes no no no

MAKECWD no no no yes no no

MAKEFLAGS yes yes yes yes yes yes

MAKEPSD no no no yes no no

MFLAGS yes no no no no no

OBJECTDIR no no no yes no no

SOURCEDIR no no no yes no no

$ which make
/usr/bin/make
$ echo $PATH
/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/local/
bin:.
$ export PATH=/usr/local/bin/:$PATH
$ echo $PATH
/usr/local/bin/:/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/
sbin:/usr/local/bin:.
$ which make
/usr/local/bin/make
$

172 AIX 5L Porting Guide

6.2.2 Command line options to the make command
The make command understands several command line options, which are not
the same from platform to platform. Check in Table 57 that you are not using
any options on your source platform that are not supported on AIX 5L.

Table 57. Switches used by the different make commands

USE_SVR4_
MAKE

no no yes no no no

VPATH yes yes no yes yes no

Option AIX 5L HP-UX Solaris Tru64 GNU POSIX

-b no yes no yesa yes no

-c no no no yes no no

-d yes yes yes no yes no

-dd no no yes no no no

-e yes yes yes yes yes yes

-f yes yes yes yes yes yes

-h no no no no yes no

-i yes yes yes yes yes yes

-j no no no no yes no

-k yes yes yes yes yes yes

-l no no no no yes no

-m no no no yesb yes no

-n yes yes yes yes yes yes

-o no no no no yes no

-p yes yes yes yes yes yes

-q yes yes yes yes yes yes

-r yes yes yes yes yes yes

-s yes yes yes yes yes yes

-t yes yes yes yes yes yes

Variable AIX 5L HP-UX Solaris Tru64 GNU POSIX
Chapter 6. Makefiles and the make command 173

6.2.2.1 make options on HP-UX
Here we will mention the options that are different on the HP-UX make
command, compared to the make command on AIX 5L, and also give a short
explanation on what to do to port these options.

-u no yes no yes no no

-v no no no no yes no

-w no yes no no yes no

-x no no no yes no no

-y no no no yesc no no

-B no yes no no no no

-C no no no yes yes no

-D yes no yes no no no

-DD no no yes no no no

-F no no no yesd no no

-I no no no no yes no

-K no no yes no no no

-N no no no yes no no

-P no yes yes no no no

-R no no no no yes no

-S yes yes yes yese yes yes

-Tp no no no yesf no no

-U no no no yes no no

-V no no yes no no no

-W no no no no yes no

a. Only available in the standard version of make.
b. See Footnote a.
c. See Footnote a.
d. See Footnote a.
e. See Footnote a.
f. See Footnote a.

Option AIX 5L HP-UX Solaris Tru64 GNU POSIX
174 AIX 5L Porting Guide

-b Turns on compatibility mode for old Version 7 makefiles. If you
encounter a -b option in any scripts, just remove it.

-u Will make all targets, and ignore all timestamps. If you need this
functionality, make a clean target that removes the files that need to
be removed to enable a full remake, then use a make clean before you
attempt to rebuild all targets.

-w Will suppress warning messages, not fatal messages. If you are using
make from a script where a warning message is not desired, then use
the grep command to suppress the warning messages.

-B Turns off compatibility mode for old Version 7 makefiles. If you
encounter a -B option in any scripts, just remove it.

-P Will turn on parallel compilation of the program. The AIX 5L make
command does not support a make that runs in parallel. With the very
fast machines that are available today compilation time is not normally
a problem. If it is, then you can build a script that can control a parallel
execution of several make commands. An example of how this could be
implemented is shown in Figure 40. Alternatively, consider using GNU
make.

Figure 40. Using a shell script to obtain a parallel make

6.2.2.2 make options on Solaris
Here we will mention the options that are different on the Solaris make
command compared to the make command on AIX 5L. We also give a short
explanation on what to do to port these options.

-dd This option displays the dependency check and processing to port this
option use the -d flag. If it does not show enough information, you will
need to look in your makefiles.

#!/usr/bin/ksh
cd /home/jesper/test/src/foo/
make foo.o&
WAITING="$WAITING $!"
cd /home/jesper/test/src/bar/
make bar.o&
WAITING="$WAITING $!"
wait $WAITING
cd /home/jesper/test/src/
make foobar
Chapter 6. Makefiles and the make command 175

-DD Displays the text of the makefiles, make rules, the state file, and all
hidden dependency reports. To port this option, you can use the -p
option, which might give you what you are looking for, but the best
way is still to look in your makefiles and in your $MAKERULES file.

-K Uses the MAKERULES macro that is described in Section 6.2.3, “The
MAKERULES macro on make for AIX 5L” on page 178.

-P This option displays dependencies rather than making them. There
really is no equivalent for this option. What you will have to do is look
in your makefiles to see how the dependencies are defined.

-V Puts make into system V mode. If you are using this option on Solaris,
you should first port your makefiles to run without it before
proceeding.

6.2.2.3 Make options on Tru64
Here we will mention the options that are different on the Tru64 make
command compared to the make command on AIX 5L, and also give a short
explanation on what to do to port these options.

-b This option has no effect. On Tru64, it exists so that older versions of
make dependency files continue to work. If you are using this option
on Tru64, you should first port your makefiles to run without needing it
before proceeding.

-c Does not try to make a corresponding RCS file and check it out if the
file does not exist.

-m Searches the machine-specific subdirectories first. To port this option,
you simply have to create your own MACHINE macro, and then use a
$(MACHINE) in the your path to your source files. Look at Figure 41
and Figure 42 on page 177 for examples on how to do a port.

Figure 41. Simple makefile that uses a variable in the PATH to the source files

OBJFILES = foo.o bar.o

foobar: $(OBJFILES)
$(CC) -qarch=$(MACHINE)-o foobar $?

foo.o: ./$(MACHINE)/foo.c ./inc/foo.h
$(CC) -c -qarch=$(MACHINE) $(<D)/$*.c

bar.o: ./$(MACHINE)/bar.c ./inc/bar.h
$(CC) -c -qarch=$(MACHINE) $(<D)/$*.c

clean:
rm -f *.o
rm -f *.a
rm -f foobar
176 AIX 5L Porting Guide

Figure 42. Using $(MACHINE) to build programs for different implementations

-u Does not unlink files that were previously checked out by RCS.

-x Does not execute any commands.

-y Checks target files for dependencies.

-C Tries to find a corresponding RCS file and checks it out if the file does
not exist.

-F Causes a fatal error to occur if the description file is not present. To
port this functionality, you can always put in a piece of code in your
makefile that does the check for you.

-N Disables all Makeconf processing.

-U Unlinks files that were previously checked out by RCS. This is the
opposite of the -u option.

6.2.2.4 Make options on GNU make
If you are using GNU make on your source platform, the easiest way to port
your make options is to keep using GNU make, due to the fact that it runs
perfectly well on AIX 5L.

$ ls
#makefile# inc makefile~ pwr2 pwr4 tmp
SCCS makefile pwr pwr3 src
$ make MACHINE=com foobar

cc -c -qarch=com ./com/foo.c
cc -c -qarch=com./com/bar.c
cc -qarch=com -o foobar foo.o bar.o

$ make clean
rm -f *.o
rm -f *.a
rm -f foobar

$ make MACHINE=pwr3 foobar
cc -c -qarch=com ./pwr3/foo.c
cc -c -qarch=com ./pwr3/bar.c
cc -qarch=com -o foobar foo.o bar.o

$ make clean
rm -f *.o
rm -f *.a
rm -f foobar

$ make MACHINE=pwr4 foobar
cc -c -qarch=com ./pwr4/foo.c
cc -c -qarch=com ./pwr4/bar.c

cc -qarch=com -o foobar foo.o bar.o

$

Chapter 6. Makefiles and the make command 177

6.2.3 The MAKERULES macro on make for AIX 5L
There is yet another way to port your makefiles to AIX 5L. The make command
on AIX 5L supports a macro called MAKERULES. The value of this macro
contains the name of the rule file for the make command to use. The default
value of the MAKERULES macro is:

/usr/ccs/lib/aix.mk

When the .POSIX macro is defined, the value of the MAKERULES macro is:

/usr/ccs/lib/posix.mk

If you look in Table 57 on page 173, you can see the switches supported by
the make command on the different platforms. One switch that is supported on
all the make commands is the -p flag. This flag instructs the make command
write to standard output the complete set of macro definitions and target
descriptions. Thus if you do a make -p > <sourceos>.mk, this will create a file
that contains the complete set of macro definitions and target descriptions for
the particular make command on the operating system you are using.

You can transfer this file to your AIX 5L development environment. Now you
can try to run the AIX 5L make command with the MAKERULES macro set to
the file you just transferred, and thus have a make/makefile environment
similar to your source platform. You will have to do modifications to your new
.mk file to get it to work.

There is an example of a makefile being evaluated using the makerules from
Solaris 8 in Figure 44 on page 180. The makefile used can be seen in
Figure 43 on page 179.
178 AIX 5L Porting Guide

Figure 43. Makefile used with solaris.mk and hpux.mk files

This method is by no means a solution that will instantly port your makefiles
to AIX 5L, but it does enable you to retain some functionality from your source
development platform on your AIX 5L development platform. You can use this
functionality to either do some of your porting on your new platform or simply
use the old .mk files as a part of your development environment.

F_EX = foo_add.exp
B_EX = bar_add.exp
EXPORTFILES = $(B_EX) $(F_EX)
OBJFILES = foo.o bar.o

foobar: $(OBJFILES)
$(CC) -o foobar $?

foo.o: ./src/foo.c ./inc/foo.h
$(CC) -c $(<D)/$*.c

bar.o: ./src/bar.c ./inc/bar.h
$(CC) -c $(<D)/$*.c

lib_foobar.a(lib_foo.o): foo.o $(EXPORTFILES)
$(CC) -o $% foo.o -bE:$(F_EX) -bI:$(B_EX) -bM:SRE -bnoentry

lib_foobar.a(lib_bar.o): bar.o $(EXPORTFILES)
$(CC) -o $% bar.o -bE:$(B_EX) -bI:$(F_EX) -bM:SRE -bnoentry

lib_foobar.a:lib_foobar.a(lib_foo.o) lib_foobar.a(lib_bar.o)
$(AR) rv $@ lib_foo.o
$(AR) rv $@ lib_bar.o

clean:
rm -f *.o
rm -f *.a
rm -f foobar
Chapter 6. Makefiles and the make command 179

Figure 44. Using make rules from Solaris with the AIX 5L make command

To see how wrong things can go, look at the example, in Figure 45 on
page 181, of a makefile being evaluated using the makerules from HP-UX11.
The .mk file from HP-UX has been altered in the following way:

 • Removed the $ = $ rule

 • Removed commands: lines

 • Removed several empty single suffix inference rules

 • Corrected the .SUFFIX line

$ make clean
rm -f *.o
rm -f *.a
rm -f foobar

$ make lib_foobar.a
cc -c ./src/foo.c
cc -o lib_foo.o foo.o -bE:foo_add.exp -bI:bar_add.exp -bM:SRE -bnoentry
cc -c ./src/bar.c
cc -o lib_bar.o bar.o -bE:bar_add.exp -bI:foo_add.exp -bM:SRE -bnoentry
ar rv lib_foobar.a lib_foo.o

ar: Creating an archive file lib_foobar.a.
a - lib_foo.o

ar rv lib_foobar.a lib_bar.o
a - lib_bar.o
$ ls -l *.a
-rw-r--r-- 1 jasper usr 3757 Mar 05 13:28 lib_foobar.a
$ make MAKERULES=/usr/ccs/lib/solaris.mk clean
"./solaris.mk", line 402: make: 1254-052 Variable not specified correctly: $

make: 1254-058 Fatal errors encountered -- cannot continue.
$ ed solaris.mk
8503
402
$= $
d
w
8498
q
$ make MAKERULES=/usr/ccs/lib/solaris.mk clean

rm -f *.o
rm -f *.a
rm -f foobar

$ make MAKERULES=/usr/ccs/lib/solaris.mk lib_foobar.a
cc -c ./src/foo.c
cc -o lib_foo.o foo.o -bE:foo_add.exp -bI:bar_add.exp -bM:SRE -bnoentry
cc -c ./src/bar.c
cc -o lib_bar.o bar.o -bE:bar_add.exp -bI:foo_add.exp -bM:SRE -bnoentry
ar rv lib_foobar.a lib_foo.o

ar: Creating an archive file lib_foobar.a.
a - lib_foo.o

ar rv lib_foobar.a lib_bar.o
a - lib_bar.o
$ ls -l *.a
-rw-r--r-- 1 jasper usr 3757 Mar 05 13:28 lib_foobar.a
$

180 AIX 5L Porting Guide

In Figure 45, you can see what happens when we try to use the makerules
from HP-UX to compile your example.

Figure 45. Trying to use make rules from HP-UX with AIX 5L make

So if you import the makerules from another make command, you have to be
very careful and do extensive testing to be sure that it actually works.

Also bear in mind that you have not really ported your makefiles to use the
make command under AIX 5L, but have taken the features from your target
platforms make command with you to AIX 5L. If you port the makefiles to
another platform, you will have to go through the same procedure again.

6.2.4 Exit values from the make command
If you are using the exit values from the make command, you have to be
careful. The POSIX standard states:

$ make clean
rm -f *.o
rm -f *.a
rm -f foobar

$ make lib_foobar.a
cc -c ./src/foo.c
cc -o lib_foo.o foo.o -bE:foo_add.exp -bI:bar_add.exp -bM:SRE -bnoentry
cc -c ./src/bar.c
cc -o lib_bar.o bar.o -bE:bar_add.exp -bI:foo_add.exp -bM:SRE -bnoentry
ar rv lib_foobar.a lib_foo.o

ar: Creating an archive file lib_foobar.a.
a - lib_foo.o

ar rv lib_foobar.a lib_bar.o
a - lib_bar.o
$ make MAKERULES=/usr/ccs/lib/hpux11e.mk clean

rm -f *.o
rm -f *.a
rm -f foobar

$ make -k MAKERULES=./usr/ccs/lib/hpux11e.txt lib_foobar.a
cc -c /foo.c

cc: 1501-228 input file /foo.c not found
make: 1254-004 The error code from the last command is 252.
(continuing)

cc -c /bar.c
cc: 1501-228 input file /bar.c not found
make: 1254-004 The error code from the last command is 252.
(continuing)
Target "lib_foobar.a" did not make because of errors.
$

Chapter 6. Makefiles and the make command 181

“When the -q option is specified, the make utility shall exit with one of the
following values:

0 Successful completion.

1 The target was not up-to-date.

>1 An error occurred.

When the -q option is not specified, the make utility shall exit with one of the
following values:

0 Successful completion.

>0 An error occurred.”

If you are using scripts that rely on the exit value from the make command, you
should check those scripts, and do some testing to make sure that the script
still works.
182 AIX 5L Porting Guide

Chapter 7. System functions

System functions cover a large number of interfaces. To keep this redbook
within a manageable scope, we have focused on the most commonly used
facilities. Coding examples are provided to give assistance and guidance
where needed.

7.1 Priority manipulation

If the application being ported uses priority levels to configure the run-time
environment, AIX 5L provides several ways of manipulating priorities. The
priority definition within AIX 5L is similar to other UNIX-based operating
systems, and has the following characteristics:

PRIORITY_MIN = 0, PRIORITY_MAX = 255

The lower the number, the more favored the process.

A priority may be defined within the bounds of:

PRIORITY_MIN < priority < PRIORITY_MAX

AIX 5L uses predefined priorities for system processes to ensure correct
operation. Several system defaults are listed in Table 58.

Table 58. Example of AIX 5L default priorities

System activity Priority

Swapper 0

Scheduler 16

IPC Messages 27

User process 60 (base level 40 + default nice 20)

Some implementations use the opposite priority layout where the higher
the number, the more favored the process. When using priority values to
control behavior, check that your code is using the correct model.

Note
© Copyright IBM Corp. 2001 183

Table 59 shows the commonly used mechanisms for priority setup and
manipulation. AIX 5L, Solaris 8, HP-UX 11 and Tru64 5.1 all support the
System V/BSD getpriority()/setpriority() subroutines listed. Information on AIX
5L priority handling can be found in Performance Management Guide -
Performance Overview of the CPU Scheduler, which can be found in the AIX
5L online documentation. Refer to Section 4.2, “Online documentation” on
page 83 for more information.

Table 59. Priority manipulation subroutines

Multithreaded applications may define their own internal scheduling and
priority environment. This is discussed in Chapter 10, “POSIX threads” on
page 307. When looking at application processes, AIX 5L has two distinct
types of priority manipulation routines. Both manipulate process priorities, but
getpri() and setpri() are only concerned with the base scheduling priority. If a
priority is set with setpri(), that priority is fixed and will not be adjusted by the
operating system. Using fixed priorities allows a scheduling hierarchy to be
explicitly defined that will not be subject to automatic process priority
adjustment.

Routine Purpose

getpri Determines the scheduling priority of a running process.

setpri Changes the priority of a running process to a fixed priority.

getpriority Determines the nice value of a running process.

nice Increments the nice value of the current process.

setpriority Sets the nice value of a running process.

Assigning an application a priority more favorable than system processes
may cause system hangs which can only be resolved by a system reset.

Important

Only processes that have root user authority can set a process scheduling
priority to a fixed value. If the process has multiple threads, all threads
have their priority reset and the scheduling policy is changed to
SCHED_RR. For more information, please see Chapter 10, “POSIX
threads” on page 307.

Note
184 AIX 5L Porting Guide

The routines getpriority(), nice(), and setpriority() manipulate the nice value of
the process but do not provide fixed priority behavior. The following example
code segment shows the start of the priority1.c program that gets and sets
priority values:

#include <stdio.h>
#include <sys/sched.h>

/* priority for important task */
#define FAVORED PRIORITY_MIN+1

/* priority for non-important task */
#define BACKGROUND PRIORITY_MAX-1

main()
{

int pval = -1; /* Define and initialize */
int opval = -1; /* Define and initialize */
const pid_t pid = 0; /* Define and initialize */

/* Output priority limits */
printf("PRIORITY_MIN = %d\n",PRIORITY_MIN);
printf("PRIORITY_MAX = %d\n",PRIORITY_MAX);

/* Get initial priority */
if((opval=getpri(pid))==-1) {

perror("getpri #1 > ");
exit(1);

}

printf("Default priority = %d\n",opval);

/* Set priority to favored */
if((pval=setpri(pid,FAVORED))==-1) {

perror("setpri #1 > ");
exit(1);

}
.
.
.

The output of the full program is:

PRIORITY_MIN = 0
PRIORITY_MAX = 255
Default priority = 60
After change, current priority = FAVORED = 1
After change, current priority = BACKGROUND = 254
Reset back to original priority = 60
Chapter 7. System functions 185

Workload Manager is supplied as part of AIX 5L and provides the facilities to
dedicate processing resources to particular applications. See Section 4.16.2,
“Limiting resource usage with WLM” on page 115. As WLM may be used with
little or no source code modification, it can provide an easily tuned and
flexible run time environment.

7.2 CPU manipulation

For some processing environments, it may be necessary to override the
natural load balancing behavior of AIX 5L and explicitly bind processes to
physical processors. AIX 5L provides a command line and API to both bind
and unbind all kernel threads in a process.

The bindprocessor command can report the number of CPUs configured and
perform bind or unbind operations.

The bindprocessor subroutine can only perform bind or unbind operations
with no resource reporting mechanism. The calling process must have the root
user authority to use this subroutine. The POSIX style sysconf subroutine may
be used to gather information about system resources including the number
of CPUs and so forth. Both subroutines are discussed in General
Programming Concepts: Writing and Debugging Programs, which can be
found in the AIX 5L online documentation.

The program cpu_bind.c checks for the number of CPUs, binds to each CPU
in turn, and then unbinds itself. A ps command is used to show if threads are
bound to any CPU resource. The information appears in the BND column.

#include <unistd.h> /* needed by 'sysconf' */
#include <sys/processor.h> /* needed by 'bindprocessor' */
#include <sys/types.h> /* needed by 'getpid' */
#include <sys/errno.h> /* needed by 'getpid' */
#include <stdlib.h> /* needed by 'system' */

long int liret = -1; /* Define and initialize */
int iret = -1; /* Define and initialize */
cpu_t cpu = -1; /* Define and initialize */

/* Setup string for 'ps' command */
const char ps_command[] = "ps -o THREAD";

main()
{

/* How many CPUs do we have? */
if ((liret = sysconf(_SC_NPROCESSORS_CONF)) == -1) {

perror("sysconf #1");
exit(1);

}
printf("%d Processors configured\n", liret);

/* How many processors are online? */
186 AIX 5L Porting Guide

if ((liret = sysconf(_SC_NPROCESSORS_ONLN)) == -1) {
perror("sysconf #2");
exit(1);

}

printf("%d Processors online\n", liret);

/* Run 'ps' command */
if(system(ps_command) != 0) {

perror("system > ");
exit(1);

}

/* loop through all CPUs */
for(cpu=0; cpu<liret; cpu++) {

/* bind process kerner threads to a CPU */
if(bindprocessor(BINDPROCESS,getpid(),cpu)!=0) {

perror("bindprocessor on CPU %d",cpu);
exit(1);

}

printf("Bound to logical CPU %d\n",cpu);

/* Run 'ps' command */
system(ps_command);

}

/* Perform unbind operations */
if(bindprocessor(BINDPROCESS,getpid(),PROCESSOR_CLASS_ANY)!=0) {

perror("bindprocessor -unbind");
exit(1);

}

printf("Process has escaped! (unbound)\n");

/* Run 'ps' command */
system(ps_command);

}

Edited highlights of the output are:

2 Processors configured
2 Processors online

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
pnutt 16318 15552 - A 1 60 1 - 200001 pts/2 - cpu_bind

Bound to logical CPU 0
USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
pnutt 16318 15552 - A 1 60 1 - 200001 pts/2 0 cpu_bind

Bound to logical CPU 1

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
pnutt 16318 15552 - A 1 60 1 - 200001 pts/2 1 cpu_bind
Chapter 7. System functions 187

Process has escaped! (unbound)

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND
pnutt 16318 15552 - A 1 60 1 - 200001 pts/2 - cpu_bind

7.3 Memory locking/pinning

To deliver improved determinism, developers may use memory locking to
guard against unwanted paging of an applications text and data regions.
AIX 5L provides the System V style plock subroutine for locking and
unlocking of application address space in physical memory. The calling
process must have the root user authority to use this subroutine. The following
example code increases stack space (required before a plock) and then locks
and unlocks the text and data regions:

#include <stdio.h> /* for printf */
#include <ulimit.h> /* for ulimit */
#include <sys/lock.h> /* for plock */

main ()
{

long int liret = -1;
off_t newlim = -1;

/* Get the lowest valid stack address */
if((liret=ulimit(GET_STACKLIM,0)) == -1) {

perror("ulimit#1 > ");
exit(1);

}

printf("Lowest valid stack address is %x\n",liret);

/* Get 8 pages more stack space */
newlim = liret- (PAGESIZE*8);

/* Set the lowest valid stack address */
if((liret=ulimit(SET_STACKLIM,newlim)) == -1) {

perror("ulimit#2 > ");
exit(1);

}

printf("Lowest valid stack address is now %x\n",liret);

/* lock memory */
if(plock(PROCLOCK)!=0) {

perror("plock #1 > ");
exit(1);

}

printf("Process text and data regions now locked\n");

/* unlock memory */
if(plock(UNLOCK)!=0) {

perror("plock #2 > ");
exit(1);

}

188 AIX 5L Porting Guide

printf("Process text and data regions now unlocked\n");
}

The following output is produced after the mem_lock.c application is run:

Lowest valid stack address is 2df23000
Lowest valid stack address is now 2df1b000
Process text and data regions now locked
Process text and data regions now unlocked

For further information, please refer to Performance Management Guide -
Code-Optimization Techniques and General Programming Concepts: Writing
and Debugging Programs, which can be found in the AIX 5L online
documentation.

7.4 How to determine system configuration

Applications that can run on different target systems sometimes need to get
information about their run time environment. This data can be used to
ensure the best use of available resources. AIX 5L provides the lsattr
command and POSIX style subroutine sysconf. Both are described in Table 60.

Table 60. AIX 5L system configuration determination

7.5 Shared or mapped memory

AIX 5L supports the System V style of shared and mapped memory functions,
as shown in Table 61 on page 190. Solaris 8, HP-UX 11, and Tru64 5.1

Name Function

sysconf Determines the current value of a specified system limit or option.

lsattr Displays attribute characteristics and possible values of attributes for
devices in the system.

Although sysconf is defined within the POSIX standard, individual systems
may have different name definitions. If the Name parameter is invalid, a
value of -1 is returned, and the errno global variable is set to indicate the error.
If the Name parameter is valid but is a variable not supported by the system, a
value of -1 is returned, and the errno global variable is set to a value of
EINVAL.

Note
Chapter 7. System functions 189

support the subroutines listed apart from mincore which does not appear in
HP-UX 11 and Tru64 5.1.

Table 61. AIX 5L shared or mapped memory subroutines

If more than 11 shared memory segments are used in a 32-bit application,
AIX 5L requires an environment variable to be set to ensure correct
operation:

EXTSHM=ON

If an application creates and attaches 12 regions and fails on the twelfth
because the EXTSHM variable was not set (causing error: too many open
files), it is necessary to remove the existing segments, using the commands
ipcs -m and ipcrm -m. Once the segments have been removed, the
environment variable may be set and the program rerun.

Name Function

shmat Attaches a shared memory segment or a mapped file to the current
process.

shmctl Controls shared memory operations.

shmget Gets shared memory segments.

shmdt Detaches a shared memory segment.

ftok Generates a standard interprocess communication key.

mmap Maps a file system object into virtual memory.

madvise Advises the system of expected paging behavior.

mprotect Modifies access protections for memory mapping.

msync Synchronizes a mapped file.

munmap Unmaps a mapped region.

mincore Determines residency of memory pages.

If a single shared memory region larger than 256 MB is used, the system
automatically works as if the EXTSHM environment variable is set, even if
it was not defined explicitly.

Note
190 AIX 5L Porting Guide

When this functionality is enabled, the attached shared memory regions are
tracked using an extra level of indirection rather than consuming a segment
register for each attached region.

For more information, please see General Programming Concepts, which can
be found in the AIX 5L online documentation, or the IBM Redbook, C and C++
Application Development on AIX, SG24-5674.

The following example, shared_mem.c, creates a shared memory region,
uses fork to create a number of children, and then communicates through a
structure held in the shared memory. The parent communicates with all
children and requests them to exit, removes the shared memory region and
then exits.

#include <stdio.h> /* Needed for printf */
#include <sys/shm.h> /* Needed for shmget */
#include <sys/types.h> /* Needed for fork */
#include <unistd.h> /* Needed for fork */

/* protections for shmget */
#define RUSER 0444
#define WUSER 0222

/* control->status definitions */
#define PRESENT 0xbeef
#define DEAD 0xdead
#define STATUS 0xdeaf
#define OK 0xfeed
#define QUIT 0xfade

#define NKIDS 4 /* How many children? */

/* Setup the control structure */
struct control_t {

int kid_number;
int status;
int resp;

} *control;

int identity = -1; /* Define and initialize */
int ix = -1; /* Define and initialize */

main()
{

pid_t pid = -1; /* Define and initialize */
int nkids = -1; /* Define and initialize */
int child = 0; /* Set child to false */
int parent = 0; /* Set parent to false */
const key_t mkey = 0xf00; /* Define and initialize */
const int shmsize = PAGESIZE; /* Define and initialize */
int shmid = -1; /* Define and initialize */

/* Get some shared memory for the control structure */
/* First create and get a shared memory structure */
if((shmid=shmget(mkey, shmsize, RUSER | WUSER | IPC_CREAT)) == -1) {

perror("shmget > ");
exit(1);
Chapter 7. System functions 191

}

/*
* OK, now attach the shared memory region
* Attach it to the commumications control structure
*/
if((int)(control=(struct control_t *)shmat(shmid, 0, 0)) == -1) {

perror("shmat > ");
exit(1);

}

printf("Parent > Making children\n");

/* Make NKIDS children */
for (ix = 0; ix < NKIDS; ix++) {

control->kid_number = -1;
control->status = DEAD; /* Setup initial value */

/* begat a child */
if ((pid = fork()) == -1) {

printf("fork #1");
exit(1);

}

/* Check to see if child or parent */
if (pid == 0) {

/* CHILD */
child = 1; /* Set child true */
parent = 0; /* and parent false -just to make sure */
identity = ix; /* Set 'local' identity */
control->status = PRESENT; /* Tell parent I am alive */
goto CHILD;

} else {
/* PARENT */
parent = 1; /* I am the parent */
child = 0; /* not the child */

/*
* Check if child is alive, wait for the PRESENT flag
* wait in a loop but use usleep (microsecond delay) to
* check every so often without 'spinning' on the CPU
* not suprisingly, 100 000 uSecs gives a 10Hz update

*/
while (control->status != PRESENT) usleep(100000);

}

}

/* PARENT SECTION */
/* NKIDS children have been created */

/* OK, communicate with children, one at a time */
for (ix = 0; ix < NKIDS; ix++) {

printf("Parent > Checking child #%d\n",ix);
control->status = STATUS; /* Ask for STATUS */
control->kid_number = ix; /* Say which child */
while (control->status == STATUS) usleep(100000); /* Wait for response */
printf("Parent > Received response from child #%d\n",control->resp);

}

/* Have spoken to everyone, tell all children to quit */
printf("Parent > Children quit!\n");
192 AIX 5L Porting Guide

control->status = QUIT;

sleep(1); /* Wait a bit before removing shared mem */

/* Detach from the shared mem */
if(shmdt(control) != 0) {

perror("shmdt > ");
exit(1);

}

/* Remove the segment from the system */
if(shmctl(shmid,IPC_RMID,NULL) != 0) {

perror("shmctl > ");
exit(1);

}

printf("Parent > Completed\n");
exit(0);

CHILD:
/* CHILD */

/* Tell everyone I am waiting */
printf("Child > #%d waiting\n",identity);

/* Wait for something to do */
while(control->status != QUIT) {

/* Is it me? */
while (control->kid_number != identity && control->status != QUIT) usleep(100000);

/* It is me, what do I have to do? */
if(control->status == STATUS) {

/* OK, just a status check */
control->kid_number = -1; /* Clear */
control->status = OK; /* Set OK */
control->resp = identity; /* Say who it is */

}
}

/* Have found QUIT, bye bye */
printf("Child > #%d quitting\n",identity);

exit(0);
}

An output of the program is:

Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child > #3 waiting
Parent > Checking child #0
Parent > Received response from child #0
Parent > Checking child #1
Parent > Received response from child #1
Parent > Checking child #2
Parent > Received response from child #2
Parent > Checking child #3
Parent > Received response from child #3
Parent > Children quit!
Child > #0 quitting
Child > #1 quitting
Child > #2 quitting
Chapter 7. System functions 193

Child > #3 quitting
Parent > Completed

7.6 Signals

If signals are used in exotic ways, there may be portability issues with regard
to individual implementation characteristics. AIX 5L provides the POSIX,
BSD, and System V style subroutine functions. Given this degree of flexibility,
AIX 5L should be able to handle most signal code encountered during a port.
If work is required, we would recommend moving to the POSIX
implementation for improved onward portability. If the application exhibits
incorrect behavior, there may be differences in subroutine parameter values
or default behavior on signal delivery. In this case, consult the man pages
and check for hard coded values. For further information, please consult
General Programming Concepts: Writing and Debugging Programs, which
can be found in the AIX 5L online documentation. Table 62 lists the commonly
used signals for AIX 5L and other major UNIX platforms.

Table 62. Signals

AIX 5L Tru64 v5.1 or
higher

Sun Solaris 8 HP-UX 11i

SIGABRT

SIGALRM
SIGALRM1
SIGBUS

SIGABRT
SIGAIO
SIGALRM

SIGBUS

SIGABRT

SIGALRM

SIGBUS

SIGABRT

SIGALRM

SIGBUS

SIGCHLD
SIGCONT
SIGCPUFAIL
SIGDANGER

SIGCHLD
SIGCONT

SIGCANCEL
SIGCHLD
SIGCONT

SIGCHLD
SIGCONT

SIGEMT
SIGFPE

SIGGRANT
SIGHUP

SIGEMT
SIGFPE

SIGHUP

SIGEMT
SIGFPE
SIGFREEZE

SIGHUP

SIGFPE

SIGHUP

SIGILL

SIGINT
SIGIO

SIGINFO
SIGINT
SIGIO
SIGIOINT

SIGILL

SIGINT
SIGIO

SIGILL

SIGINT
194 AIX 5L Porting Guide

SIGKAP
SIGKILL

SIGIOT

SIGKILL
SIGLOST

SIGKILL

SIGLWP

SIGKILL

SIGMIGRATE
SIGMSG
SIGPIPE

SIGPRE

SIGPIPE
SIGPOLL

SIGPIPE
SIGPOLL

SIGPIPE
SIGPOLL

SIGPROF

SIGPWR
SIGQUIT

SIGPROF
SIGPTY
SIGPWR
SIGQUIT
SIGRESV

SIGPROF

SIGPWR
SIGQUIT

SIGPROF

SIGQUIT

SIGRETRACT

SIGSAK
SIGSEGV SIGSEGV

SIGRTMAX
SIGRTMIN

SIGSEGV

SIGRTMAX
SIGRTMIN

SIGSEGV

SIGSOUND
SIGSTOP
SIGSYS
SIGTERM

SIGSTOP
SIGSYS
SIGTERM

SIGSTOP
SIGSYS
SIGTERM
SIGTHAW

SIGSTOP
SIGSYS
SIGTERM

SIGTRAP
SIGTSTP
SIGTTIN
SIGTTOU
SIGURG

SIGTRAP
SIGTSTP
SIGTTIN
SIGTTOU
SIGURG

SIGTRAP
SIGTSTP
SIGTTIN
SIGTTOU
SIGURG

SIGTRAP
SIGTSTP
SIGTTIN
SIGTTOU
SIGURG

SIGUSR1
SIGUSR2
SIGVIRT
SIGVTALRM
SIGWAITING

SIGUSR1
SIGUSR2

SIGVTALRM

SIGUSR1
SIGUSR2

SIGVTALRM
SIGWAITING

SIGUSR1
SIGUSR2

SIGVTALRM

SIGWINCH
SIGXCPU
SIGXFSZ

SIGWINCH
SIGXCPU
SIGXFSZ

SIGWINCH
SIGXCPU
SIGXFSZ

SIGXCPU
SIGXFSZ

AIX 5L Tru64 v5.1 or
higher

Sun Solaris 8 HP-UX 11i
Chapter 7. System functions 195

There are many different ways of generating and manipulating signals under
UNIX. The main standard interfaces for signal setup and manipulation are
listed in Table 63.

Table 63. Standard signal functions

AIX 5L, Solaris 8, HP-UX 11, and Tru64 5.1 all support the functions listed but
with one difference: HP-UX uses sigvector in place of sigvec, but with the
same syntax. In theory, this should only affect legacy code using BSD style
calls.

If the source system has a signals implementation that does not match the
standards available using AIX 5L, look at the code examples that follow. The
code is an extension of the shared memory program and takes advantage of
signals to communicate with the child processes. The first example,
signals1.c, uses the System V style implementation, and the second
example, signals2.c, uses the POSIX style. Both programs generate child
processes and initiate specific behavior by sending signals. The response of
the signal handler my_handler is seen from the program output and shared
memory structure counting.

Process signal and mask functions Description

kill, killpg, raise, alarm Sends a signal to an executing program.

sigaction, sigvec, signal, siginterrupt Specifies the action to take upon delivery
of a signal.

sigemptyset, sigfillset, sigaddset,
sigdelset, sigismember

Creates and manipulates signal masks.

sigpending Determines the set of signals that are
blocked from delivery.

sigprocmask, sigsetmask, sigblock Sets signal masks.

sigset, sighold, sigrelse, sigignore,
sigpause

Enhances the signal facility and provides
signal management.

sigsetjmp, siglongjmp Saves and restores stack context and
signal masks.

sigstack Sets signal stack context.

sigsuspend Changes the set of blocked signals.

ssignal, gsignal Implements a software signal facility.

pthread_kill Sends a signal to a thread.
196 AIX 5L Porting Guide

/* signals1.c */
#include <stdio.h> /* Needed for printf */
#include <sys/shm.h> /* Needed for shmget */
#include <sys/types.h> /* Needed for fork */
#include <unistd.h> /* Needed for fork, getppid and getpgrp */
#include <signal.h> /* Needed for sighold */

/* protections for shmget */
#define RUSER 0444
#define WUSER 0222

/* control->status definitions */
#define PRESENT 0xbeef
#define DEAD 0xdead
#define STATUS 0xdeaf
#define OK 0xfeed
#define QUIT 0xfade

#define NKIDS 4 /* How many children? */

/* Setup the control structure */
struct control_t {

int kid_number;
int status;
int resp;

} *control;

int identity = -1; /* Define and initialize */
int ix = -1; /* Define and initialize */
pid_t pgid = -1; /* Define and initialize */
long *old_handler = (long *)-1; /* Define and initialize */

main()
{

pid_t pid = -1; /* Define and initialize */
int nkids = -1; /* Define and initialize */
int child = 0; /* Set child to false */
int parent = 0; /* Set parent to false */
key_t mkey = 0xf00; /* Define and initialize */
const int shmsize = PAGESIZE; /* Define and initialize */
int shmid = -1; /* Define and initialize */
extern void my_handler(); /* Define handler */

/* Get some shared memory for the control structure */
/* First create and get a shared memory structure */
if((shmid=shmget(mkey, shmsize, RUSER | WUSER | IPC_CREAT)) == -1) {

perror("shmget > ");
exit(1);

}

/*
* OK, now attach the shared memory region
* Attach it to the commumications control structure
*/
if((int)(control=(struct control_t *)shmat(shmid, 0, 0)) == -1) {

perror("shmat > ");
exit(1);

}

/* Get process group id */
pgid=getpgrp();
Chapter 7. System functions 197

/* Setup signal handler */
if((old_handler=(long *)signal(SIGUSR1,&my_handler)) == (long *)-1) {

perror("signal#1 > ");
exit(1);

}
/* Setup signal handler */
if((old_handler=(long *)signal(SIGUSR2,&my_handler)) == (long *)-1) {

perror("signal#2 > ");
exit(1);

}
/* Setup signal handler */
if((old_handler=(long *)signal(SIGINT,&my_handler)) == (long *)-1) {

perror("signal#3 > ");
exit(1);

}

printf("Parent > Making children\n");

/* Make NKIDS children */
for (ix = 0; ix < NKIDS; ix++) {

control->kid_number = -1;
control->status = DEAD; /* Setup initial value */

/* begat a child */
if ((pid = fork()) == -1) {

printf("fork #1");
exit(1);

}

/* Check to see if child or parent */
if (pid == 0) {

/* CHILD */
child = 1; /* Set child true */
parent = 0; /* and parent false -just to make sure */
identity = ix; /* Set 'local' identity */
control->status = PRESENT; /* Tell parent I am alive */
goto CHILD;

} else {
/* PARENT */
parent = 1; /* I am the parent */
child = 0; /* not the child */

/*
* Check if child is alive, wait for the PRESENT flag
* wait in a loop but use usleep (microsecond delay) to
* check every so often without 'spinning' on the CPU
* not suprisingly, 100 000 uSecs gives a 10Hz update

*/
while (control->status != PRESENT) usleep(100000);

}

}

/* PARENT SECTION */
/* NKIDS children have been created */

/*
* OK, communicate with children by sending a signal
* first, make sure I do not get it
*/
sighold(SIGUSR1);
sighold(SIGUSR2);
198 AIX 5L Porting Guide

sighold(SIGINT);

/* Clear the comms */
control->resp = 0;

/* Send the signal */
if(killpg(pgid,SIGUSR1) != 0) {

perror("killpg#1 > "); exit(1);
}

/* Send the signal */
if(killpg(pgid,SIGUSR2) != 0) {

perror("killpg#2 > "); exit(1);
}

/* Send the signal */
if(killpg(pgid,SIGINT) != 0) {

perror("killpg#3 > "); exit(1);
}

/* Check all children have reported in */
if(control->resp != NKIDS) {

printf("\nparent > We have a problem Houston!\n");
printf("parent > only %d children responded!\n\n",control->resp);

} else {
printf("parent > all children responded!\n");

}

/* Have spoken to everyone, tell all children to quit */
printf("Parent > Children quit!\n");
control->status = QUIT;

sleep(1); /* Wait a bit before removing shared mem */

/* Detach from the shared mem */
if(shmdt(control) != 0) {

perror("shmdt > ");
exit(1);

}

/* Remove the segment from the system */
if(shmctl(shmid,IPC_RMID,NULL) != 0) {

perror("shmctl > ");
exit(1);

}

printf("Parent > Completed\n");
exit(0);

CHILD:
/* CHILD */

/* Tell everyone I am waiting */
printf("Child > #%d waiting\n",identity);

/* Wait for something to do */
while(control->status != QUIT) {

/* Is it me? */
while (control->kid_number != identity && control->status != QUIT) usleep(100000);

/* It is me, what do I have to do? */
if(control->status == STATUS) {

/* OK, just a status check */
control->kid_number = -1; /* Clear */
Chapter 7. System functions 199

control->status = OK; /* Set OK */
control->resp = identity; /* Say who it is */

}
}

/* Have found QUIT, bye bye */
printf("Child > #%d quitting\n",identity);

exit(0);
}
void my_handler(signal, code, scp)
int signal;
int code;
struct sigcontext *scp;
{

/* Have caught a signal -work on it */
switch(signal) {
case SIGUSR1:

/* Increment the shared memory counter */
control->resp++;
break;

case SIGUSR2:
/* Say hello */
printf("Child#%d says 'hello world'\n",identity);
break;

default:
/* Where did that come from? */
printf("Child#%d > Unexpected signal -foo!\n",identity);

}
return;

}

An example output from signals1.c is:

Parent > Making children
Child > #2 waiting
Child#2 says 'hello world'
Child#2 > Unexpected signal -foo!
Child > #2 quitting
Parent > Making children
Child > #0 waiting
Child#0 says 'hello world'
Child#0 > Unexpected signal -foo!
Child > #0 quitting
Parent > Making children

parent > We have a problem Houston!
parent > only 1 children responded!

Parent > Children quit!
Parent > Completed

Although the program is functioning correctly, the output is displayed out of
order due to the asynchronous processing of the signal handler and printf.
The “only one child responded” message is misleading, as the parent
program checks the shared memory value before all the children have
reported. So the code is running OK, but reporting an error because of the
timing.
200 AIX 5L Porting Guide

The program signals2.c uses POSIX style signals and is listed below:

/* signals2.c */
#include <stdio.h> /* Needed for printf */
#include <sys/shm.h> /* Needed for shmget */
#include <sys/types.h> /* Needed for fork */
#include <unistd.h> /* Needed for fork, getppid and getpgrp */
#include <signal.h> /* Needed for sighold etc */

/* protections for shmget */
#define RUSER 0444
#define WUSER 0222

/* control->status definitions */
#define PRESENT 0xbeef
#define DEAD 0xdead
#define STATUS 0xdeaf
#define OK 0xfeed
#define QUIT 0xfade

#define NKIDS 4 /* How many children? */

/* Setup the control structure */
struct control_t {

int kid_number;
int status;
int resp;

} *control;

int identity = -1; /* Define and initialize */
int ix = -1; /* Define and initialize */
pid_t pgid = -1; /* Define and initialize */
long *old_handler = (long *)-1; /* Define and initialize */
sigset_t set, old_set; /* Define */
struct sigaction action, oaction;

main()
{

pid_t pid = -1; /* Define and initialize */
int nkids = -1; /* Define and initialize */
int child = 0; /* Set child to false */
int parent = 0; /* Set parent to false */
key_t mkey = 0xf00; /* Define and initialize */
const int shmsize = PAGESIZE; /* Define and initialize */
int shmid = -1; /* Define and initialize */
extern void my_handler(); /* Define handler */

/* Get some shared memory for the control structure */
/* First create and get a shared memory structure */
if((shmid=shmget(mkey, shmsize, RUSER | WUSER | IPC_CREAT)) == -1) {

perror("shmget > "); exit(1); }

/*
* OK, now attach the shared memory region
* Attach it to the commumications control structure

*/
if((int)(control=(struct control_t *)shmat(shmid, 0, 0)) == -1) {

perror("shmat > "); exit(1); }

/* Get process group id */
pgid=getpgrp();
Chapter 7. System functions 201

sigemptyset(&set); /* Get a clean set */
sigaddset(&set,SIGUSR1); /* Add SIGUSR1 */
sigaddset(&set,SIGUSR2); /* Add SIGUSR2 */
sigaddset(&set,SIGINT); /* Add SIGINT */

/* Setup the handler */
action.sa_handler = &my_handler;

/* Block other signals whilst in handler */
action.sa_mask = set;

/* Setup signal handler */
if (sigaction(SIGUSR1, &action, &oaction) != 0) {

perror("sigaction #1 > "); exit(1); }

/* Setup signal handler */
if (sigaction(SIGUSR2, &action, &oaction) != 0) {

perror("sigaction #2 > "); exit(1); }

/* Setup signal handler */
if (sigaction(SIGINT, &action, &oaction) != 0) {

perror("sigaction #3 > "); exit(1); }

printf("Parent > Making children\n");

/* Make NKIDS children */
for (ix = 0; ix < NKIDS; ix++) {

control->kid_number = -1;
control->status = DEAD; /* Setup initial value */

/* begat a child */
if ((pid = fork()) == -1) {

printf("fork #1"); exit(1); }

/* Check to see if child or parent */
if (pid == 0) {

/* CHILD */
child = 1; /* Set child true */
parent = 0; /* and parent false -just to make sure */
identity = ix; /* Set 'local' identity */
control->status = PRESENT; /* Tell parent I am alive */
goto CHILD;

} else {
/* PARENT */
parent = 1; /* I am the parent */
child = 0; /* not the child */

/*
* Check if child is alive, wait for the PRESENT flag
* wait in a loop but use usleep (microsecond delay) to
* check every so often without 'spinning' on the CPU
* not suprisingly, 100 000 uSecs gives a 10Hz update

*/
while (control->status != PRESENT) usleep(100000);

}
}

/* PARENT SECTION */
/* NKIDS children have been created */

/*
* OK, communicate with children by sending a signal
202 AIX 5L Porting Guide

* first, make sure I do not get it
*/

/* Do the 'block' */
if(sigprocmask(SIG_BLOCK,&set,&old_set) == 1) {

perror("sigprocmask#1 > "); exit(1); }

/* Clear the comms */
control->resp = 0;

/* Send the signal */
if(killpg(pgid,SIGUSR1) != 0) {

perror("killpg#1 > "); exit(1); }

/* Send the signal */
if(killpg(pgid,SIGUSR2) != 0) {

perror("killpg#2 > "); exit(1); }

/* Send the signal */
if(killpg(pgid,SIGINT) != 0) {

perror("killpg#3 > "); exit(1); }

/* Check all children have reported in */
if(control->resp != NKIDS) {

printf("\nparent > We have a problem Houston!\n");
printf("parent > only %d children responded!\n\n",control->resp);

} else {
printf("parent > all children responded!\n");

}

/* Have spoken to everyone, tell all children to quit */
printf("Parent > Children quit!\n");
control->status = QUIT;

sleep(1); /* Wait a bit before removing shared mem */

/* Detach from the shared mem */
if(shmdt(control) != 0) {

perror("shmdt > "); exit(1); }

/* Remove the segment from the system */
if(shmctl(shmid,IPC_RMID,NULL) != 0) {

perror("shmctl > "); exit(1); }

printf("Parent > Completed\n");

exit(0);
CHILD:

/* CHILD */

/* Tell everyone I am waiting */
printf("Child > #%d waiting\n",identity);

/* Wait for something to do */
while(control->status != QUIT) {

/* Is it me? */
while (control->kid_number != identity && control->status != QUIT) usleep(100000);

/* It is me, what do I have to do? */
if(control->status == STATUS) {

/* OK, just a status check */
control->kid_number = -1; /* Clear */
control->status = OK; /* Set OK */
Chapter 7. System functions 203

control->resp = identity; /* Say who it is */
}

}

/* Have found QUIT, bye bye */
printf("Child > #%d quitting\n",identity);

exit(0);
}
void my_handler(signal, code, scp)
int signal;
int code;
struct sigcontext *scp;
{

/* Have caught a signal -work on it */
switch(signal) {
case SIGUSR1:

/* Increment the shared memory counter */
control->resp++; break;

case SIGUSR2:
/* Say hello */
printf("Child#%d says 'hello world'\n",identity); break;

default:
/* Where did that come from? */
printf("Child#%d > Unexpected signal -foo!\n",identity);

}
return;

}

An example output of signals2 is:

Parent > Making children
Child > #2 waiting
Child#2 > Unexpected signal -foo!
Child#2 says 'hello world'
Child > #2 quitting
Parent > Making children
Child > #0 waiting
Child#0 > Unexpected signal -foo!
Child#0 says 'hello world'
Child > #0 quitting
Parent > Making children
Child > #3 waiting
Child#3 says 'hello world'
Child#3 > Unexpected signal -foo!
Child > #3 quitting
Parent > Making children

parent > We have a problem Houston!
parent > only 1 children responded!

Parent > Children quit!
Parent > Completed

In common with signals1, the order of the output and reported error
concerning the number of children can be ignored.
204 AIX 5L Porting Guide

7.7 Threads

AIX 5L supports a standards compliant threaded environment and offers a
highly flexible set of interfaces. To ensure AIX 5L threads are covered in
enough detail, there is a separate chapter dedicated to this topic. Please turn
to Chapter 10, “POSIX threads” on page 307 for more information.

7.8 Semaphores

AIX 5L provides two styles of semaphore operation: System V and AES.
Table 64 lists the available subroutines. For more information, please refer to
General Programming Concepts: Writing and Debugging Programs, which
can be found in the AIX 5L online documentation.

Table 64. Semaphore subroutines

Semaphore subroutines Description

semget Gets a set of semaphores.

semop Performs semaphore operations.

semctl Controls semaphore operations.

msem_init Initializes a semaphore.

msem_lock Locks a semaphore.

msem_unlock Unlocks a semaphore.

msem_remove Removes a semaphore.

msleep Puts a process to sleep when a semaphore is busy.

mwakeup Wakes up a process that is waiting on a semaphore.

disclaim Disclaims the content of a memory address range.

Using signals in a threaded process environment can be more complex
than the simple examples shown here. Please refer to Chapter 10, “POSIX
threads” on page 307 and General Programming Concepts: Writing and
Debugging Programs, which can be found in the AIX 5L online
documentation.

Note
Chapter 7. System functions 205

The semaphore1.c program listed below is based upon signals2.c, but uses
System V semaphores to coordinate individual phases of execution. Between
each signal, there is a semaphore wait to pause execution until the signal
handlers or other processing has finished.

/* semaphore1.c */
#include <stdio.h> /* Needed for printf */
#include <sys/shm.h> /* Needed for shmget */
#include <sys/types.h> /* Needed for fork */
#include <unistd.h> /* Needed for fork, getppid and getpgrp */
#include <signal.h> /* Needed for sighold etc */
#include <sys/sem.h> /* Needed for semget... */

/* protections for shmget */
#define RUSER 0444
#define WUSER 0222

/* control->status definitions */
#define PRESENT 0xbeef
#define DEAD 0xdead
#define STATUS 0xdeaf
#define OK 0xfeed
#define QUIT 0xfade

/* maximum number of semaphore operations */
#define MAX_NUM_SEMS 2

#define NKIDS 4 /* How many children? */

/* Setup the control structure */
struct control_t {

int kid_number;
int status;
int resp;

} *control;

int identity = -1; /* Define and initialize */
int ix = -1; /* Define and initialize */
pid_t pgid = -1; /* Define and initialize */
long *old_handler = (long *)-1; /* Define and initialize */
sigset_t set, old_set; /* Define */
struct sigaction action, oaction;

struct sembuf sembuf_lock[MAX_NUM_SEMS];
struct sembuf sembuf_unlock[MAX_NUM_SEMS];

int semid = -1;

main()
{

pid_t pid = -1; /* Define and initialize */
int nkids = -1; /* Define and initialize */
int child = 0; /* Set child to false */
int parent = 0; /* Set parent to false */
key_t mkey = 0xf00; /* Define and initialize */
const int shmsize = PAGESIZE; /* Define and initialize */
int shmid = -1; /* Define and initialize */
extern void my_handler(); /* Define handler */
int itemp = -1;

/* Initialise a lock -create a semaphore */
206 AIX 5L Porting Guide

itemp = IPC_CREAT|S_IRUSR|S_IWUSR;
if((semid=semget(IPC_PRIVATE,MAX_NUM_SEMS,itemp))==-1) {

perror("semget #1"); exit(1); }

/* Setup the 'check and set' semaphore */
sembuf_lock[0].sem_num = 0;
sembuf_lock[0].sem_op = 0;
sembuf_lock[1].sem_num = 0;
sembuf_lock[1].sem_op = NKIDS;

/* Setup the semaphore with a value of NKIDS */
if(semop(semid,sembuf_lock,(size_t)MAX_NUM_SEMS)!=0) {

perror("semop #1"); exit(1); }

/* Setup the 'decrement' semaphore */
sembuf_unlock[0].sem_num = 0;
sembuf_unlock[0].sem_op = -1;

/* Get some shared memory for the control structure */
/* First create and get a shared memory structure */
if((shmid=shmget(mkey, shmsize, RUSER | WUSER | IPC_CREAT)) == -1) {

perror("shmget > "); exit(1); }

/*
* OK, now attach the shared memory region
* Attach it to the commumications control structure

*/
if((int)(control=(struct control_t *)shmat(shmid, 0, 0)) == -1) {

perror("shmat > "); exit(1); }

/* Get process group id */
pgid=getpgrp();

sigemptyset(&set); /* Get a clean set */
sigaddset(&set,SIGUSR1); /* Add SIGUSR1 */
sigaddset(&set,SIGUSR2); /* Add SIGUSR2 */
sigaddset(&set,SIGINT); /* Add SIGINT */

/* Setup the handler */
action.sa_handler = &my_handler;

/* Block other signals whilst in handler */
action.sa_mask = set;

/* Setup signal handler */
if (sigaction(SIGUSR1, &action, &oaction) != 0) {

perror("sigaction #1 > "); exit(1); }

/* Setup signal handler */
if (sigaction(SIGUSR2, &action, &oaction) != 0) {

perror("sigaction #2 > "); exit(1); }

/* Setup signal handler */
if (sigaction(SIGINT, &action, &oaction) != 0) {

perror("sigaction #3 > "); exit(1); }

printf("Parent > Making children\n");

/* Make NKIDS children */
for (ix = 0; ix < NKIDS; ix++) {

control->kid_number = -1;
control->status = DEAD; /* Setup initial value */
Chapter 7. System functions 207

/* begat a child */
if ((pid = fork()) == -1) {

printf("fork #1"); exit(1); }

/* Check to see if child or parent */
if (pid == 0) {

/* CHILD */
child = 1; /* Set child true */
parent = 0; /* and parent false -just to make sure */
identity = ix; /* Set 'local' identity */
control->status = PRESENT; /* Tell parent I am alive */
goto CHILD;

} else {
/* PARENT */
parent = 1; /* I am the parent */
child = 0; /* not the child */

/*
* Check if child is alive, wait for the PRESENT flag
* wait in a loop but use usleep (microsecond delay) to
* check every so often without 'spinning' on the CPU
* not suprisingly, 100 000 uSecs gives a 10Hz update

*/
while (control->status != PRESENT) usleep(100000);

}
}

/* PARENT SECTION */
/* NKIDS children have been created */

/*
* Check the semaphore -only using the first element of the array
* We will wait here until semval is 0
*/
if(semop(semid,sembuf_lock,(size_t)1)!=0) {

perror("semop #2"); exit(1); }

printf("Parent > All children alive\n");

/*
* OK, communicate with children by sending a signal
* first, make sure I do not get it
*/

/* Do the 'block' */
if(sigprocmask(SIG_BLOCK,&set,&old_set) == 1) {

perror("sigprocmask#1 > "); exit(1); }

/* Clear the comms */
control->resp = 0;

/* Setup the semaphore again */
if(semop(semid,sembuf_lock,(size_t)MAX_NUM_SEMS)!=0) {

perror("semop #3"); exit(1); }

/* Send the signal */
if(killpg(pgid,SIGUSR1) != 0) {

perror("killpg#1 > "); exit(1); }

/*
* Check the semaphore -only using the first element of the array
* We will wait here until semval is 0

*/
208 AIX 5L Porting Guide

if(semop(semid,sembuf_lock,(size_t)1)!=0) {
perror("semop #2"); exit(1); }

/* Setup the semaphore again */
if(semop(semid,sembuf_lock,(size_t)MAX_NUM_SEMS)!=0) {

perror("semop #3"); exit(1); }

/* Send the signal */
if(killpg(pgid,SIGUSR2) != 0) {

perror("killpg#2 > "); exit(1); }

/*
* Check the semaphore -only using the first element of the array
* We will wait here until semval is 0

*/
if(semop(semid,sembuf_lock,(size_t)1)!=0) {

perror("semop #2"); exit(1); }

/* Setup the semaphore again */
if(semop(semid,sembuf_lock,(size_t)MAX_NUM_SEMS)!=0) {

perror("semop #3"); exit(1); }

/* Send the signal */
if(killpg(pgid,SIGINT) != 0) {

perror("killpg#3 > "); exit(1); }

/*
* Check the semaphore -only using the first element of the array
* We will wait here until semval is 0

*/
if(semop(semid,sembuf_lock,(size_t)1)!=0) {

perror("semop #2"); exit(1); }

/* Check all children have reported in */
if(control->resp != NKIDS) {

printf("\nparent > We have a problem Houston!\n");
printf("parent > only %d children responded!\n\n",control->resp);

} else {
printf("parent > all children responded!\n");

}

/* Setup the semaphore again */
if(semop(semid,sembuf_lock,(size_t)MAX_NUM_SEMS)!=0) {

perror("semop #3"); exit(1); }

/* Have spoken to everyone, tell all children to quit */
printf("Parent > Children quit!\n");
control->status = QUIT;

/*
* Check the semaphore -only using the first element of the array
* We will wait here until semval is 0
*/
if(semop(semid,sembuf_lock,(size_t)1)!=0) {

perror("semop #2"); exit(1); }

/* Remove the semaphore */
if(semctl(semid,(int)NULL,IPC_RMID,NULL) == -1) perror("Parent > semctl#1 > ");

/* Detach from the shared mem */
if(shmdt(control) != 0) {

perror("shmdt > "); exit(1); }
Chapter 7. System functions 209

/* Remove the segment from the system */
if(shmctl(shmid,IPC_RMID,NULL) != 0) {

perror("shmctl > "); exit(1); }

printf("Parent > Completed\n");

exit(0);
CHILD:

/* CHILD */

/* Tell everyone I am waiting */
printf("Child > #%d waiting\n",identity);

/* Count down the semaphore */
if(semop(semid,sembuf_unlock,(size_t)1)!=0) {

perror("Child > semop #6 > "); exit(1); }

/* Wait for something to do */
while(control->status != QUIT) {

/* Is it me? */
while (control->kid_number != identity && control->status != QUIT) usleep(100000);

/* It is me, what do I have to do? */
if(control->status == STATUS) {

/* OK, just a status check */
control->kid_number = -1; /* Clear */
control->status = OK; /* Set OK */
control->resp = identity; /* Say who it is */

}
}

/* Have found QUIT, bye bye */
printf("Child > #%d quitting\n",identity);

/* Count down the semaphore */
if(semop(semid,sembuf_unlock,(size_t)1)!=0) {

perror("Child > semop #6 > "); exit(1); }

exit(0);
}
void my_handler(signal, code, scp)
int signal;
int code;
struct sigcontext *scp;
{

/* Have caught a signal -work on it */
switch(signal) {
case SIGUSR1:

/* Increment the shared memory counter */
control->resp++; break;

case SIGUSR2:
/* Say hello */
printf("Child#%d says 'hello world'\n",identity); break;

default:
/* Where did that come from? */
printf("Child#%d > Unexpected signal -foo!\n",identity);

}

/* Count down the semaphore */
if(semop(semid,sembuf_unlock,(size_t)1)!=0) {

perror("Child > semop #6 > "); exit(1); }

return;
210 AIX 5L Porting Guide

}

The following example output shows the result in the correct output order:

Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child > #3 waiting
Parent > All children alive
Child#3 says 'hello world'
Child#2 says 'hello world'
Child#1 says 'hello world'
Child#0 says 'hello world'
Child#3 > Unexpected signal -foo!
Child#2 > Unexpected signal -foo!
Child#0 > Unexpected signal -foo!
Child#1 > Unexpected signal -foo!
parent > all children responded!
Parent > Children quit!
Child > #3 quitting
Child > #2 quitting
Child > #1 quitting
Child > #0 quitting
Parent > Completed

7.9 Message queues

AIX 5L supports the System V style of message queue subroutines and these
are listed in Table 65. For more information, please refer to General
Programming Concepts: Writing and Debugging Programs, which can be
found in the AIX 5L online documentation.

Table 65. System V style message queue subroutines

The program message.c demonstrates communication between the parent
and child processes using message queues:

/* message.c */
#include <stdio.h> /* Needed for printf */
#include <sys/shm.h> /* Needed for shmget */
#include <sys/types.h> /* Needed for fork */
#include <unistd.h> /* Needed for fork */
#include <sys/msg.h> /* Needed for msgget... */
#include <string.h> /* Needed for strncmp */

Message subroutines Description

msgget Gets a message queue identifier.

msgsnd Sends a message.

msgrcv Reads a message from a queue.

msgxrcv Receives an extended message.

msgctl Provides message control operations.
Chapter 7. System functions 211

/* maximum message size */
#define MAX_MSG_SIZE 64

#define NKIDS 5 /* How many children? */
#define NUM_OF_MSGS 5 /* How many predefined messages are there? */

struct mess {
mtyp_t mtype;
char mtext[MAX_MSG_SIZE];

} the_word;

char *msgs[NUM_OF_MSGS] = { "WE must redo operation","TRIED operation again",
"REDs Blues Greens", "GUN condition hot",
"RANGE value undefined" };

int identity = -1; /* Define and initialize */
int ix = -1; /* Define and initialize */

main()
{

pid_t pid = -1; /* Define and initialize */
int nkids = -1; /* Define and initialize */
int child = 0; /* Set child to false */
int parent = 0; /* Set parent to false */
key_t mkey = 0xf00; /* Define and initialize */
const int shmsize = 8192; /* Define and initialize */
int shmid = -1; /* Define and initialize */
int itemp = -1;
int msgid = -1;

/* Initialise a message queue */
itemp = IPC_CREAT|S_IRUSR|S_IWUSR;
if((msgid=msgget(IPC_PRIVATE,itemp))==-1) {

perror("msgget #1"); exit(1); }

printf("Parent > Making children\n");

/* Make NKIDS children */
for (ix = 0; ix < NKIDS; ix++) {

/* begat a child */
if ((pid = fork()) == -1) {

printf("fork #1"); exit(1); }

/* Check to see if child or parent */
if (pid == 0) {

/* CHILD */
child = 1; /* Set child true */
parent = 0; /* and parent false -just to make sure */
identity = ix; /* Set 'local' identity */
goto CHILD;

} else {
/* PARENT */
parent = 1; /* I am the parent */
child = 0; /* not the child */

}
}

/* PARENT SECTION */
/* NKIDS children have been created */
212 AIX 5L Porting Guide

for (ix = 0; ix < NKIDS; ix++) {
/* Read the message queue */
if((itemp=msgrcv(msgid,&the_word,MAX_MSG_SIZE,ix+1,0)) == -1) {

perror("Parent > msgrcv #1 > "); exit(1); }

/* Check if the message is from the children */
if(strncmp("Present",the_word.mtext,itemp) == 0) {

printf("Child %d Present\n",ix);
} else {

printf("Parent > unexpected message!\n");
}

}

/* Write some messages out */
/* The following splurge means use the minimum value */
for (ix = 0; ix < (NKIDS>NUM_OF_MSGS?NUM_OF_MSGS:NKIDS); ix++) {

/* Set the message type -Child id in this case */
the_word.mtype = ix+ 1+ NKIDS;

/* Set the message text */
strcpy(the_word.mtext,msgs[ix]);

/* Send the message */
if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {

perror("Child > msgsnd #1 > "); exit(1); }

/* Wait for child to get the message */
usleep(10000);

}

/* Have spoken to everyone, tell all children to quit */
printf("Parent > Children quit!\n");

/* Setup the quit message */
strcpy(the_word.mtext,"Quit");

for (ix = 0; ix < NKIDS; ix++) {

/* Target each child in turn */
the_word.mtype = ix+ 1+ NKIDS;

/* Send the message */
if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {

perror("Child > msgsnd #2 > "); exit(1); }
}

/* Wait for children to exit */
usleep(20000);

printf("Parent > All children have quit, completing\n");

/* Remove the message queue */
if(msgctl(msgid,IPC_RMID,NULL) == -1) perror("Parent > msgctl > ");

printf("Parent > Completed\n");
exit(0);

CHILD:
/* CHILD */

/* Tell everyone I am waiting */
/* Setup the message type */
the_word.mtype = identity+ 1;
Chapter 7. System functions 213

/* Setup the message text */
strcpy(the_word.mtext,"Present");

/* Send the message */
if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {

perror("Child > msgsnd #3 > "); exit(1); }

printf("Child > #%d waiting\n",identity);

/* Wait for something to do */
ix = 1;
while(ix) {

/* Setup the message type first for this child */
itemp = identity+ 1+ NKIDS;

/* Read the message queue */
if((itemp=msgrcv(msgid,&the_word,MAX_MSG_SIZE,itemp,0)) == -1) {

perror("Child > msgrcv #2 > "); exit(1); }

/* Am I being told to quit? */
if(strncmp("Quit",the_word.mtext,itemp) == 0) {

ix = 0; /* Yes, set ix to a 'false' value */
} else {

printf("Child %d, received message: %s\n",identity,the_word.mtext);
}

}

/* Have found QUIT, bye bye */
printf("Child > #%d quitting\n",identity);

exit(0);
}

An example output is:

Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child > #3 waiting
Child > #4 waiting
Child 0 Present
Child 1 Present
Child 2 Present
Child 3 Present
Child 4 Present
Child 0, received message: RANGE value undefined
Child 1, received message: TRIED operation again
Child 2, received message: WE must redo operation
Child 3, received message: GUN condition hot
Child 4, received message: REDs Blues Greens
Parent > Children quit!
Child > #0 quitting
Child > #1 quitting
Child > #2 quitting
Child > #3 quitting
Child > #4 quitting
Parent > All children have quit, completing
Parent > Completed
214 AIX 5L Porting Guide

7.10 Timers and cyclic signals

When porting code, there is usually a time when it is good to understand how
fast the machine is and where the CPU time is being used. Different
UNIX-based implementations use several different methods of retrieving
elapsed time from the system. In addition to timing your code, it may be
necessary to run a section of code at a fixed frame rate (every n seconds or
milliseconds and so forth). Table 66 shows the AES and System V style
interfaces that facilitate timing and periodic interrupts that can be used within
AIX 5L.

Table 66. Timer and cyclic interrupt subroutines

AIX 5L, Solaris 8, HP-UX 11, and Tru64 5.1 all support the functions listed
with one exception: Solaris does not support the gettimer routine.

The timer.c example (shown here) demonstrates the use of gettimer and
setitimer. The program uses setitimer to set up a cyclic interrupt to arrive at
20 millisecond intervals and trigger the handler. The routine foo_handler
snaps the clock with gettimer, measures the time from the last interrupt, and
prints it to stdout.

The code does not watch out for clock wrapping, so beware!

/* timer.c */
#include <stdio.h> /* Needed for printf */
#include <sys/time.h> /* Needed for gettimer */
#include <sys/types.h> /* Needed for gettimer */
#include <unistd.h> /* Needed for setitimer */
#include <signal.h> /* Needed for sigemptyset... */

#define SECS_DELAY 0 /* Period of interrupt in seconds */
#define USECS_DELAY 20000 /* Period of interrupt in microseconds */
#define NINTS 10 /* Number of interrupts to grab before exit */

struct timestruc_t the_time[2]; /* Define */

long is = -1; /* Define and initialize */
long ins = -1; /* Define and initialize */
float fthis_time = -1.0; /* Define and initialize */
float flast_time = -1.0; /* Define and initialize */
volatile long int_count = 0; /* Define and initialize */

main()
{

extern void foo_handler(); /* Define interrupt handler */

struct itimerval setup_clock, old_clock; /* Define */

Time subroutines Description

gettimer Gets the current value for the specified system-wide timer.

getitimer, setitimer Manipulates the expiration time of interval timers.
Chapter 7. System functions 215

struct timeval time_setting; /* Define */

long *old_handler = (long *)-1; /* Define and initialize */
sigset_t set, old_set; /* Define */
struct sigaction action, oaction; /* define */

sigemptyset(&set); /* Get a clean set */
sigaddset(&set,SIGALRM); /* Add SIGALARM */

/* Setup the handler */
action.sa_handler = &foo_handler;

/* Setup signal handler */
if (sigaction(SIGALRM, &action, &oaction) != 0) {

perror("sigaction > "); exit(1); }

/* Clear the time counters */
fthis_time = 0.0;
flast_time = 0.0;

/* Get the time */
if(gettimer(TIMEOFDAY,&the_time[0]) != 0) {

perror("gettimer#1 > "); exit(1); }

/* Setup the interrupt characteristics */
time_setting.tv_sec = SECS_DELAY;
time_setting.tv_usec = USECS_DELAY;

/* Setup the control structure */
setup_clock.it_interval = time_setting;
setup_clock.it_value = time_setting;

/* OK, ready to go, start the interrupt */
if(setitimer(ITIMER_REAL,&setup_clock,&old_clock) != 0) {

perror("setitimer > "); exit(1); }

/* Do the processing loop until we have hit NINTS */
while(int_count<NINTS) { /* Maybe check a variable set by the interrupt handler */

/*
* Do lots of magic processing here

*/
sleep(100); /* Sleep here instead of burning CPU time */

}
}
void foo_handler(signal, code, scp)
int signal;
int code;
struct sigcontext *scp;
{

/* Snap the clock */
if(gettimer(TIMEOFDAY,&the_time[1]) != 0) {

perror("gettimer#2 > "); exit(1); }

/* Increment the interrupt count */
int_count++;

is = the_time[1].tv_sec- the_time[0].tv_sec;
ins = the_time[1].tv_nsec- the_time[0].tv_nsec;

/* Get the time value */
fthis_time = is+ (ins/1E9);

printf("foo_handler > Interval is %.3f seconds\n", fthis_time-flast_time);
216 AIX 5L Porting Guide

/* Remember what the time is */
flast_time = fthis_time;

return;
}

An example output of timer.c is:

foo_handler > Interval is 0.020 seconds
foo_handler > Interval is 0.020 seconds
foo_handler > Interval is 0.020 seconds
foo_handler > Interval is 0.020 seconds
foo_handler > Interval is 0.020 seconds
foo_handler > Interval is 0.020 seconds
foo_handler > Interval is 0.020 seconds
foo_handler > Interval is 0.020 seconds
foo_handler > Interval is 0.020 seconds
foo_handler > Interval is 0.020 seconds
Chapter 7. System functions 217

218 AIX 5L Porting Guide

Chapter 8. The compilers

This chapter covers the IBM C and C++ compilers available for the AIX 5L
operating system on the Power platform. The compilers are perhaps the most
important part of your development environment. In this chapter, we describe
the features of the IBM C for AIX Version 5 C compiler and the IBM VisualAge
C++ Professional for AIX Version 5 compiler.

8.1 The C compiler

This section covers the IBM C for AIX Version 5 compiler. Version 5.0.2 of
this compiler is required to support AIX 5L.

8.1.1 C for AIX 5L compiler limits
Table 67 lists some compiler limits that may be of interest to large complex
programs. In general, for the sake of the sanity of the developer, most
application programs use identifiers with significantly less than 4095
characters.

Table 67. Compiler limits

Other system limits are set in the /usr/include/sys/limits.h file. The limits.h
header file is described in the AIX 5L Version 5.1 Files Reference, which can
be found in the AIX 5L online documentation.

8.1.2 Environment variables affecting the compilers
As with most applications in a UNIX environment, there are environment
variables that affect the compiler. The compiler will respond to the
environment variables that are covered in the sections below.

8.1.2.1 PATH environment variable
The most basic environment variable that affects the compiler is the same for
all other applications that are invoked from the command line, the PATH
environment variable. Section 4.9.3.1, “Finding the compiler drivers” on
page 100 describes how you can correctly set up this variable.

Language Feature Limit

Nesting levels for included files 255

Significant initial characters in identifiers No limit (but the linker has a limit of 4095
characters for external names)
© Copyright IBM Corp. 2001 219

8.1.2.2 OBJECT_MODE environment variable
The OBJECT_MODE variable is used to indicate the preferred object mode
that should be used by various development tools (such as ar, ld, dump, and
so on). The variable changes the default compilation mode behavior, unless it
is overridden by the compiler configuration file or command line options. The
actual relationship between the value of OBJECT_MODE and the 32/64 bit
mode that the compiler will compile code to is depicted in Table 68, which
assumes that no command line option or configuration file overrides the
setting.

Table 68. OBJECT_MODE settings and the compiler behavior

8.1.2.3 Return codes, warning, and error messages
Generally, you want your compiler to be quiet when compiling, but when your
program contain errors or potential errors, you want a message that states
what is wrong or potentially wrong in the program.

The compiler will produce different messages depending on what it
encounters in the program it is compiling. It will produce five different types of
messages:

 • Informational

 • Warning

 • Error

 • Severe error

 • Unrecoverable error

The messages will have a format similar to the one described in Figure 46 on
page 221.

OBJECT_MODE Compilation-mode behavior

Not set 32-bit compiler mode

32 32-bit compiler mode

62 64-bit compiler mode

32_64 Fatal error and stop with the following message:
1501-054 OBJECT_MODE=32_64 is not a valid setting for
the compiler

Any other Fatal error and stop with the following message:
1501-255 OBJECT_MODE setting is not recognized and is
not a valid setting for the compiler
220 AIX 5L Porting Guide

Figure 46. Compiler diagnostics message format

The letters in the severity section of Figure 46 correspond to the different
message types. These are specified in Table 69, where you also can see how
the compiler will react after putting out a message.

Table 69. Diagnostic messages their severity and the compiler response

In Figure 47 on page 222, you can see an example of the messages the
compiler will give you when compiling a program called a.c with a missing
semi-colon (;) in line 8. In this case, the return code from the compiler is 1.

Letter Severity Compiler Response

I Informational Compilation continues. The message reports
conditions found during compilation.

W Warning Compilation continues. The message reports valid,
but possibly unintended, conditions.

E Error Compilation continues and object code is
generated. Error conditions exist that the compiler
can correct, but the program might not run correctly.

S Severe error Compilation continues, but object code is not
generated. Error conditions exist that the compiler
cannot correct.

U Unrecoverable error The compiler halts. An internal compiler error has
been found. This message should be reported to
your IBM service representative.

15cc-nnn (severity) text.

where:
cc Is a two-digit code that tells which component issued the message:

00 Code-generation or optimization message
01 Compiler services message
05 Front-end text message
06 Front-end error message
40 - message specific to C for AIX compiler
41 - message specific to C for AIX compiler
46 - message specific to C for AIX compiler backend
86 - message specific to interprocedural analysis (IPA).

nnn
Is the message number

severity
Is a letter representing the severity level of the message

text
Is the message text describing the error
Chapter 8. The compilers 221

Figure 47. A severe error message

If you specify the compiler option -qsrcmsg and the error is applicable to a
particular line of code, the reconstructed source line or partial source line is
included with the error message in the stderr file. A reconstructed source line
is a preprocessed source line that has all the macros expanded. An example
of this is shown in Figure 48.

Figure 48. Severe error message displayed with the -qsrcmsg flag

The reconstructed source line represents the line as it appears after macro
expansion. At times, the line may be only partially reconstructed. The
characters "...." at the start or end of the displayed line indicate that some of
the source line has not been displayed.

As you can see in Figure 46 on page 221 and Table 69 on page 221, the
return code from the compiler was 1. The meaning of the return code from the
compiler can be seen in Table 70.

Table 70. Error types and return codes

Return code Error type

1 Any error with a severity level higher than the setting of the halt
compiler option has been detected.

40 An option error or an unrecoverable error has been detected.

$ cc -o fltest a.c
"a.c", line 8.1: 1506-277 (S) Syntax error: possible missing ';' or ','?
"a.c", line 10.1: 1506-045 (S) Undeclared identifier x.
$ echo $?
1
$

$ cc -o fltest fltest.c -qsrcmsg
8 | double x,y,z,v

a..............
a - 1506-277 (S) Syntax error: possible missing ';' or ','?

10 | x=1.0;
a.....

a - 1506-045 (S) Undeclared identifier x.
$ echo $?
1
$

222 AIX 5L Porting Guide

One error that you might encounter if you are compiling very big programs
and using heavy optimization is the following:

1501-229 Compilation ended due to lack of space.
1501-224 fatal error in ../exe/xlCcode: signal 9 received.

This is caused by the AIX 5L operating system running low on paging space.
If lack of paging space causes other compiler programs to fail, the following
message may be displayed:

Killed.

To minimize paging space problems, do any of the following and recompile
your program:

 • Reduce the number of processes competing for system paging space.

 • Increase the system paging space.

 • Compile your program without optimization.

 • Reduce the size of your program by splitting it into two or more source
files.

To check the current paging-space settings enter the command lsps -a or
use the AIX System Management Interface Tool (SMIT) command smit pgsp.

The paging-space overview in AIX 5L Version 5.1 System User's Guide:
Operating System and Devices section, which can be found in the AIX 5L
online documentation, describes paging space and how to allocate it.

41 A configuration file error has been detected.

250 An out-of-memory error has been detected. The xlc command
cannot allocate any more memory for its use.

251 A signal-received error has been detected, that is, an unrecoverable
error or interrupt signal has occurred.

252 A file-not-found error has been detected.

253 An input/output error has been detected: files cannot be read or
written to.

254 A fork error has been detected. A new process cannot be created.

255 An error has been detected while the process was running.

Return code Error type
Chapter 8. The compilers 223

8.1.3 Types of input files
You can input the following types of files to the C for AIX compilers.

8.1.3.1 C source files
These are files containing a C source module. The source file must have a .c
(lowercase c) suffix, for example, foo.c. A source file could look like the one
that we will use as an example, shown in Figure 49.

Figure 49. A very simple source file (foo.c)

The compiler will also accept source files with the .i suffix. This extension
indicates that the file is a preprocessed source file.

The compiler processes the source files in the order in which they appear on
the command line. If the compiler cannot find a specified source file, it
produces an error message and the compiler proceeds to the next specified
file. However, the link editor will not be run and temporary object files will be
removed.

Your program can consist of several source files. All of these source files can
be compiled at once using only one invocation of the compiler. Although more
than one source file can be compiled using a single invocation of the
compiler, you can specify only one set of compiler options on the command
line per invocation. Each distinct set of command line compiler options that
you want to specify requires a separate invocation.

By default, the compiler preprocesses and compiles all the specified source
files. Although you will usually want to use this default, you can preprocess
the source file without compiling by specifying either the -E or the -P option. If

#include "../inc/foo.h"

extern void bar(void);

void foo(void)
{
printf(FOO);

}

main() {
foo();
bar();
printf("\n");

}

224 AIX 5L Porting Guide

you specify the -P option, a preprocessed source file (foo.i) is created, and
processing ends.

The -E option preprocesses the source file, writes the result to standard
output, and halts processing without generating an output file.

8.1.3.2 Preprocessed source files
Preprocessed source files have a .i suffix, for example, foobar.i. The compiler
driver command sends the preprocessed source file (foobar.i) to the
compiler, where it is preprocessed again in the same way as a .c file.
Preprocessed files are useful for checking macros and preprocessor
directives.

8.1.3.3 Object files
Object files must have a .o suffix, for example, foo.o. Object files, library files,
and non-stripped executable files serve as input to the linkage editor.

After compilation, the linkage editor links all of the specified object files to
create an executable file.

8.1.3.4 Assembler files
Assembler files must have a .s suffix, for example, bar.s. Assembler files are
assembled to create an object file. The assembler version of the bar.c would
be similar to the example shown in Figure 50 on page 226.
Chapter 8. The compilers 225

Figure 50. PowerPC assembler version of the bar.c

#lots of set’s deleted

.rename H.11.NO_SYMBOL{PR},""

.rename E.17.__STATIC{RW},"_$STATIC"

.rename H.19.__STATIC{TC},"_$STATIC"

.rename H.23.bar{TC},"bar"

.lglobl H.11.NO_SYMBOL{PR}

.globl .bar

.lglobl E.17.__STATIC{RW}

.globl bar{DS}

.extern .printf{PR}

.text section
.file "bar.c"

.csect H.11.NO_SYMBOL{PR}
.bar: # 0x00000000 (H.11.NO_SYMBOL)

stu SP,-64(SP)
mfspr r0,LR
l r3,T.19.__STATIC(RTOC)
st r0,72(SP)
bl .printf{PR}
oril r0,r0,0x0000
l r12,72(SP)
cal SP,64(SP)
mtspr LR,r12
bcr BO_ALWAYS,CR0_LT
.long 0x00000000

traceback table
.byte 0x00 # VERSION=0
.byte 0x00 # LANG=TB_C
.byte 0x20 # IS_GL=0,IS_EPROL=0,HAS_TBOFF=1

INT_PROC=0,HAS_CTL=0,TOCLESS=0
FP_PRESENT=0,LOG_ABORT=0

.byte 0x01 # INT_HNDL=0,NAME_PRESENT=0
USES_ALLOCA=0,CL_DIS_INV=WALK_ONCOND
SAVES_CR=0,SAVES_LR=1

.byte 0x80 # STORES_BC=1,FPR_SAVED=0

.byte 0x00 # GPR_SAVED=0

.byte 0x00 # FIXEDPARMS=0

.byte 0x00 # FLOATPARMS=0,PARMSONSTK=0

.long 0x00000028 # TB_OFFSET
End of traceback table
End csect H.11.NO_SYMBOL{PR}
.data section

.toc # 0x00000038
T.23.bar:

.tc H.23.bar{TC},bar{DS}
T.19.__STATIC:

.tc H.19.__STATIC{TC},E.17.__STATIC{RW}

.csect bar{DS}

.long .bar # "\0\0\0\0"

.long TOC{TC0} # "\0\0\0008"

.long 0x00000000 # "\0\0\0\0"
End csect bar{DS}

.csect E.17.__STATIC{RW}

.long 0x62617200 # "bar\0"
End csect E.17.__STATIC{RW}
.bss section
226 AIX 5L Porting Guide

8.1.3.5 Non-stripped executable files
Extended Common Object File Format (XCOFF) files that have not been
stripped with the AIX strip command can be used as input to the compiler.

See the strip command in the AIX 5L Version 5.1 Commands Reference and
the description of a.out file format in the AIX 5L Version 5.1 Files Reference,
both of which can be found in the online documentation, for more information.

8.1.4 Output files
The C compiler will generate different types of output files, all depending on
what you ask it to do. These output files fall into different categories that are
covered in this section.

8.1.4.1 Executable file
By default, executable files are named a.out. To name the executable file
something else, use the -o <filename> option with the invocation command.
This option creates an executable file, with the name you specify as
<filename>. The name you specify can be a relative or absolute path name
for the executable file. The format of the a.out file is described in the AIX 5L
Version 5.1 Files Reference, which can be found in the online documentation.

8.1.4.2 Object files
Object files must have an .o suffix, for example, foo.o, unless the
-o <filename> option is specified. If you specify the -c option, an output object
file, <filename>.o, is produced for each input source file foobar.c. The linkage
editor is not invoked, and the object files are placed in your current directory.
All processing stops at the completion of the compilation. You can link-edit
the object files later into a single executable file using the compiler command,
or, alternatively, invoke the linker directly.

8.1.4.3 Assembler files
Assembler files must have a .s suffix, for example, foo.s. They are created by
specifying the -S option. Assembler files can then be assembled to create an
object file. An example of an assembler file can be seen in Figure 50 on
page 226.

8.1.4.4 Preprocessed source files
Preprocessed source files have a .i suffix, for example, foo.i. To make a
preprocessed source file, specify the -P option. The source files are
preprocessed but not compiled. A preprocessed source file, foo.i, is
generated for each source file, foo.c. Figure 51 on page 228 shows an
example of a preprocessed source file.
Chapter 8. The compilers 227

Figure 51. A preprocessed .i file

8.1.4.5 Listing files
Listing files have an .lst suffix, for example, foobar.lst. Specifying any one of
the listing-related options to the invocation command produces a compiler
listing (unless you have specified the -qnoprint option). The file containing
this listing is placed in your current directory and has the same file name (with
a .lst extension) as the source file from which it was produced.

8.1.4.6 Target file
Output files associated with the -M option have a .u suffix, for example,
conversion.u. The file contains targets suitable for inclusion in a description
file for the make command. A .u file is created for every input file with a .c or .i
suffix. .u files are not created for any other files (unless you use the -+ option
so other file suffixes are treated as .c files). An example of the creation of a .u

$ cat foo.c
#include "../inc/foo.h"

/*
* The bar function is located in the bar.c file.
*/

extern void bar(void);

void foo(void)
{
printf(FOO);

}

main() {

foo(); /* call foo */
bar(); /* call bar */
printf("\n");

}
$ cc -P foo.c
$ cat foo.i

extern void bar(void);

void foo(void)
{
printf("foo");

}

main() {

foo();
bar();
printf("\n");

}

228 AIX 5L Porting Guide

file can be seen in Figure 52. As you can see, the foo.o file depends on
../inc/foo.h and foo.c.

Figure 52. Using the -M flag to generate a .u target file

8.1.4.7 Static libraries
The compiler does not produce static libraries, but we mention them here
anyway because all that really happens to the object files after the compiler
has finished is that the ar archiver makes an archive of them. For further
information on how static libraries work under AIX 5L, refer to Section 9.1.1,
“Static library” on page 258.

8.1.4.8 Shared libraries
Shared libraries are described in Section 9.1.2, “Shared library” on page 258.

8.1.5 Type conversions
Type conversions are implementation dependent. Because of this, you might
have to rewrite some code. Have a look trough the tables in this section; they
summarize type conversions of arithmetic types. Arithmetic types include
signed and unsigned integral types (char, int, short and long) in addition to

$ cat foo.c
#include "../inc/foo.h"
extern void bar(void);

void foo(void)
{
printf(FOO);

}

main() {
foo();
bar();
printf("\n");

}
$ cc -c -M foo.c
$ cat foo.u
foo.o: foo.c
foo.o: ../inc/foo.h
$

Chapter 8. The compilers 229

float, double, and long double types. In Table 71 you can see how to convert
into signed types.

Table 71. Type conversions to signed integer types

To: signed char signed
short

signed int signed long signed long
long

From:

signed char None. Sign extend. Sign extend. Sign extend. Sign extend.

signed short Preserve
low-order
bytes.

None. Sign extend. Sign extend. Sign extend.

signed int Preserve
low-order
bytes.

Preserve
low-order
bytes.

None. Preserve bit
pattern.

Sign extend.

signed long Preserve
low-order
bytes.

Preserve
low-order
bytes.

Preserve
low-order
bytes.

None. Sign extend.

signed long
long

Preserve
low-order
bytes.

Preserve
low-order
bytes.

Preserve
low-order
bytes.

Preserve
low-order
bytes.

None.

unsigned
char

Preserve bit
pattern;
high-order bit
becomes sign
bit.

Zero extend. Zero extend. Zero extend. Zero extend.

unsigned
short

Preserve
low-order
bytes.

Preserve bit
pattern;
high-order bit
becomes sign
bit.

Zero extend. Zero extend. Zero extend.

unsigned int Preserve
low-order
bytes.

Preserve
low-order
bytes.

Preserve bit
pattern;
high-order bit
becomes sign
bit.

Preserve bit
pattern;
high-order bit
becomes sign
bit.

Zero extend.

unsigned long Preserve
low-order
bytes.

Preserve
low-order
bytes.

Preserve bit
pattern;
high-order bit
becomes sign
bit.

Preserve bit
pattern;
high-order bit
becomes sign
bit.
230 AIX 5L Porting Guide

Table 72 shows how to convert into unsigned types.

Table 72. Type conversions to unsigned Integer types

unsigned long
long

Preserve
low-order
bytes.

Preserve
low-order
bytes.

Preserve
low-order
bytes.

Preserve
low-order
bytes.

Preserve bit
pattern;
high-order bit
becomes sign
bit.

float Convert to int,
and convert
int to signed
char.

Convert to int,
and convert
int to signed
short.

Truncate at
decimal. If
result is too
large for int,
result is
undefined.

Truncate at
decimal. If
result is too
large for long,
result is
undefined.

Truncate at
decimal. If
result is too
large for long
long, result is
undefined.

double Convert to int,
and convert
int to signed
char.

Convert to int,
and convert
int to signed
short.

Truncate at
decimal. If
result is too
large for int,
result is
undefined.

Truncate at
decimal. If
result is too
large for long,
result is
undefined.

Truncate at
decimal. If
result is too
large for long
long, result is
undefined.

long double Convert to int,
and convert
int to signed
char.

Convert to int,
and convert
int to signed
short.

Truncate at
decimal. If
result is too
large for int,
result is
undefined.

Truncate at
decimal. If
result is too
large for long,
result is
undefined.

Truncate at
decimal. If
result is too
large for long
long, result is
undefined.

To: unsigned
char

unsigned
short

unsigned int unsigned
long

unsigned
long
long

From:

signed char Sign extend
to short, and
convert to
unsigned
short

Sign extend
to int, and
convert int to
unsigned int

Sign extend
to long, and
convert long
to unsigned
long

Sign extend
to long long,
and convert
long long to
unsigned long
long

To: signed char signed
short

signed int signed long signed long
long

From:
Chapter 8. The compilers 231

short Preserve
low-order
byte

Preserve bit
pattern; sign
function of
sign bit lost

Preserve bit
pattern; sign
function of
sign bit lost
Sign extend
to int, and
convert int to
unsigned int

Sign extend
to long, and
convert long
to unsigned
long

Sign extend
to long long,
and convert
long long to
unsigned long
long

int Preserve
low-order
byte

Preserve
low-order
byte

Preserve bit
pattern; sign
function of
sign bit lost

Preserve bit
pattern; sign
function of
sign bit lost

Sign extend
to long long,
and convert
long long to
unsigned long
long

long Preserve
low-order
byte

Preserve
low-order
byte

Preserve bit
pattern; sign
function of
sign bit lost

Preserve bit
pattern; sign
function of
sign bit lost

Sign extend
to long long,
and convert
long long to
unsigned long
long

long long Preserve
low-order
byte

Preserve
low-order
byte

Preserve
low-order
byte

Preserve
low-order
byte

Preserve bit
pattern; sign
function of
sign bit lost

unsigned
char

None Zero extend Zero extend Zero extend Zero extend

unsigned
short

Preserve
low-order
bytes

None Zero extend Zero extend Zero extend

unsigned int Preserve
low-order
bytes

Preserve
low-order
bytes

None Preserve bit
pattern

Zero extend

unsigned long Preserve
low-order
bytes

Preserve
low-order
bytes

Preserve bit
pattern

None Zero extend

To: unsigned
char

unsigned
short

unsigned int unsigned
long

unsigned
long
long

From:
232 AIX 5L Porting Guide

Table 73 shows the conversion to floating-point types.

Table 73. Type conversions to floating-point types

unsigned long
long

Preserve
low-order
bytes

Preserve
low-order
bytes

Preserve
low-order
bytes

Preserve
low-order
bytes

None

float Convert to int,
and convert
int to
unsigned
char

Convert to
unsigned int,
and convert
unsigned int
to unsigned
short

Truncate; if
result is
negative or
too large, the
result is
undefined

Truncate; if
result is
negative or
too large, the
result is
undefined

Truncate; if
result is
negative or
too large, the
result is
undefined

double Convert to int,
and convert
int to
unsigned
char

Convert to
unsigned int,
and convert
unsigned int
to unsigned
short

Truncate; if
result is
negative or
too large, the
result is
undefined

Truncate; if
result is
negative or
too large, the
result is
undefined

Truncate; if
result is
negative or
too large, the
result is
undefined

long double Convert to int,
and convert
int to
unsigned
char

Convert to
unsigned int,
and convert
unsigned int
to unsigned
short

Truncate; if
result is
negative or
too large, the
result is
undefined

Truncate; if
result is
negative or
too large, the
result is
undefined

Truncate; if
result is
negative or
too large, the
result is
undefined

To: float double long double

From:

signed char Sign extend to int,
and convert int to float

Sign extend to int,
and convert int to
double

Sign extend to int,
and convert int to long
double

signed
short

Sign extend to int,
and convert int to float

Sign extend to int,
and convert int to
double

Sign extend to int,
and convert int to long
double

To: unsigned
char

unsigned
short

unsigned int unsigned
long

unsigned
long
long

From:
Chapter 8. The compilers 233

signed int Represent as float; if
the int cannot be
represented exactly,
some loss of
precision may occur

Represent as double;
if the int cannot be
represented exactly,
some loss of
precision may occur

Represent as long
double; if the int
cannot be
represented exactly,
some loss of
precision may occur

signed long Represent as float; if
the long cannot be
represented exactly,
some loss of
precision may occur

Represent as double;
if the long cannot be
represented exactly,
some loss of
precision may occur

Represent as long
double; if the long
cannot be
represented exactly,
some loss of
precision may occur

signed long
long

Represent as float; if
the long long cannot
be represented
exactly, some loss of
precision may occur

Represent as double;
if the long long cannot
be represented
exactly, some loss of
precision may occur

Represent as long
double; if the long
long cannot be
represented exactly,
some loss of
precision may occur

unsigned
char

Sign extend to int,
and convert int to float

Sign extend to int,
and convert int to
double

Sign extend to int,
and convert int to long
double

unsigned
short

Sign extend to int,
and convert int to float

Sign extend to int,
and convert int to
double

Sign extend to int,
and convert int to long
double

unsigned int Represent as float; if
the int cannot be
represented exactly,
some loss of
precision may occur

Represent as double;
if the int cannot be
represented exactly,
some loss of
precision may occur

Represent as long
double; if the int
cannot be
represented exactly,
some loss of
precision may occur

unsigned
long

Represent as float; if
the long cannot be
represented exactly,
some loss of
precision may occur

Represent as double;
if the long cannot be
represented exactly,
some loss of
precision may occur

Represent as long
double; if the long
cannot be
represented exactly,
some loss of
precision may occur

To: float double long double

From:
234 AIX 5L Porting Guide

8.1.5.1 Converting pascal string literals
The -qmacpstr option converts Pascal string literals of the form "\pABC" into
null-terminated strings, where the first byte contains the length of the string.

8.1.5.2 Integral promotion
The default compiler action is for integral promotions to convert a char, short
int, int bit field or their signed or unsigned types, or an enumeration type, to
an int. Otherwise, the type is converted to an unsigned int.

The -qupconv option promotes any unsigned type smaller than an int to an
unsigned int instead of to an int.

8.1.5.3 Registers
Objects in registers declared with the storage class specifier register are
treated as int objects.

8.1.6 C compiler files and directories
This section should give you a feel of where the different parts of the C
compiler are installed. In Table 74 on page 236, we have the directory
structure of the C compiler. The C compiler is installed in the /usr/vac
directory structure, and has configuration files in /etc/, the include files in

unsigned
long long

Represent as float; if
the long long cannot
be represented
exactly, some loss of
precision may occur

Represent as double;
if the long long cannot
be represented
exactly, some loss of
precision may occur

Represent as long
double; if the long
long cannot be
represented exactly,
some loss of
precision may occur

float None Convert to double Convert to long
double

double Represent as float; if
result is too large,
result is undefined

None Convert to long
double

long double Convert to float Represent as double;
if result is too large to
be represented as
double, result is
undefined

None

To: float double long double

From:
Chapter 8. The compilers 235

/usr/include, and the library files in /usr/lib/. You can see the full tree in
Table 74.

Table 74. Directory structure of the C compiler

The programs in /usr/vac/exe/ are not intended to be used from the command
line, but if needed, it can be done. Figure 53 on page 237 shows how you can
use /usr/vac/exe/dis to disassemble an executable, if you so desire. But
generally, you should use the standard interface, rather than calling for
example the dissembler directly.

Description Directory

Configuration files for the C compiler /etc/

Directory that holds the C compiler
binaries.

/usr/vac/bin/

Root directory for the C compiler /usr/vac/

Header files /usr/include/
/usr/vac/include/

Library files
(This depends on what you actually have
installed on the machine.)

/usr/lib/
/usr/vac/lib/
/usr/vac/lib/<os version>

Message files /usr/lib/nls/msg/$LANG/

Directory that holds the C compiler tools
such as the preprocessor, assembler, and
disassembler

/usr/vac/exe/

C compiler documentation /usr/vac/html/
236 AIX 5L Porting Guide

Figure 53. Disassembling a program

The default links in /usr/bin (xlc, cc, c89, etc) that point to /usr/vac/bin/xlc of C
for AIX are optional. They are created at the discretion of the product installer
using replaceCSET.

Table 75. Files used by the C compiler

Description File

C for AIX README file, which contains
important information not included in other
documentation. Read this file before you use
the compiler for the first time.

/usr/vac/xlC/README.C

C front end. /usr/vac/exe/xlcentry

Help file. /usr/vac/exe/default_msg/vac.help

C preprocessor. /usr/vac/exe/xlCcpp

Disassembler /usr/vac/exe/dis

Interprocedural analysis tool. /usr/vac/exe/ipa

Code generator. /usr/vac/exe/xlCcode
/usr/vac/exe/bolt

C driver programs. /usr/vac/bin/xlc
/usr/vac/bin/xlc128
/usr/vac/bin/xlc_r
/usr/vac/bin/cc
/usr/vac/bin/cc128
/usr/vac/bin/cc_r

$ ls -l
total 13
-rwxr-xr-x 1 jasper usr 6403 Mar 22 09:49 hwinfo
$ /usr/vac/exe/dis hwinfo
$ ls -l
total 73
-rwxr-xr-x 1 jasper usr 6403 Mar 22 09:49 hwinfo
-rw-r--r-- 1 jasper usr 30550 Mar 22 09:51 hwinfo.s
$ head -3 hwinfo.s
.set r0,0; .set SP,1; .set RTOC,2; .set r3,3; .set r4,4
.set r5,5; .set r6,6; .set r7,7; .set r8,8; .set r9,9
.set r10,10; .set r11,11; .set r12,12; .set r13,13; .set r14,14
$

Chapter 8. The compilers 237

8.1.7 Command line arguments
The thing many programmers find the most confusing, or even irritating, when
translating compiler options from one platform to another is, “What is this
option now called and how come the syntax is made in this way, and not in
the way I am used to?”

Normally you know what options you want to use, or rather what you want to
do. But what you do not know is the new syntax and what the default options
are. So we tried to list and compare all the options for the C compilers for
AIX, HP-UX, Solaris and Tru64 in Appendix C, “C compiler options” on
page 527. If you are using the GNU compilers, we suggest that you continue
to use them as part of the porting process so there is no need to migrate to
the IBM compilers.

Precompiled header support. /usr/vac/lib/compmalloc.o

Memory debug support. /usr/vac/lib/libhm.a
/usr/vac/lib/libhm_r.a
/usr/vac/lib/libhmd.a
/usr/vac/lib/libhmd_r.a
/usr/vac/lib/libhu.a
/usr/vac/lib/libhu_r.a
/usr/vac/include/stdlib.h
/usr/vac/include/string.h
/usr/vac/include/umalloc.h

Profile-directed feedback library. /usr/vac/lib/libpdf.a

Profiling library. /usr/vac/lib/profiled

Configuration files. /etc/vacpp.cfg.<oslevel>
/etc/vac.cfg.<oslevel>

Link to actual used configuration file. /etc/vac.cfg

Links to /usr/vac/bin. /usr/bin/xlc
/usr/bin/xlc128
/usr/bin/xlc_r
/usr/bin/c89
/usr/bin/cc
/usr/bin/cc128
/usr/bin/cc_r

Other executables used by the compiler. /bin/as
/bin/ld
/bin/strip

Description File
238 AIX 5L Porting Guide

To make it easier for you to find the options you need to translate, we have
split the options into groups that correspond with the subsection headings
used in Section 8.1.7, “Command line arguments” on page 238. So when you
read Section 8.1.7.4, “Optimization+ and performance compiler options” on
page 240, you might want to browse the table in Appendix C.3, “Optimization
and performance compiler options” on page 529 to compare the options for
all the operating systems.

We have chosen not to make a translation table that lets you mechanically
translate option -oldopt to -newopt, because such tables normally just make a
port longer. So look at this as an excuse to have a closer look at what the C
compiler on AIX 5L offers; you will almost certainly find a new option or two
you can use.

It might be a bit difficult to find the option you are looking for because on
some platforms, to make your program use parallelization is an optimization
option and on others it is a parallelization option.

For example, the parallelization options for the C compiler on HP-UX are
normally found under the optimization flags in the manual. But For AIX 5L,
Solaris, and Tru64, the manuals put them under parallelization. So we have
listed those options under parallelization and not under optimization. We feel
this is the best possible compromise.

8.1.7.1 Default compiler options
The default compiler options are defined in the configuration files for the
compiler. The location of these files are described in Section 8.1.6, “C
compiler files and directories” on page 235.

8.1.7.2 Licensing compiler options
As you can see in Appendix C.1, “Licensing compiler options” on page 527,
only the C compiler under Solaris supports licensing options, so if you are
porting from Solaris to AIX 5L you can forget all about these options.

8.1.7.3 Standard compliance compiler options
One thing that really can help you when porting applications between
platforms is the ability to choose the level of standards compliance.

The C for AIX C compiler conforms to the following industry standards for
compiling C language source code:

 • The Federal Information Processing Standard (FIPS) PUB 160 C
language.
Chapter 8. The compilers 239

 • The American National Standard for Information Systems (ANSI) and
International Standards Organization (ISO) standard ANSI/ISO-IEC
9899-1990[1992] for the C programming language.

 • The International Standards Organization (ISO) standard ISO/IEC
9899:1990(E) for the C programming language.

A table that contains the AIX 5L Standard compliance compiler options and
the corresponding ones for Solaris, HP-UX and Tru64 can be found in
Appendix C.2, “Standards compliance compiler options” on page 527.

8.1.7.4 Optimization+ and performance compiler options
All the compilers support different methods of optimization, and some of the
compilers have quite a lot of options. We have tried to split the options up into
smaller portions.

Optimization techniques used by the C for AIX compiler include:

Aliasing Aliasing is a compiler term for a storage
location having multiple variables that
reference it. When potential aliases occur,
they inhibit the assumptions a compiler can
make when optimizing a program.

Value numbering Involves constant propagation, expression
elimination, and folding of several instructions
into a single instruction.

Branch optimizations Rearranges the program code to minimize
branching logic and to physically combine
separate blocks of code.

Elimination In common expressions, the same value is
recalculated in a subsequent expression. The
duplicate expression can be eliminated by
using the previous value. This step is done
even for intermediate expressions within
expressions. For example, if your program
contains the following statements:
a = c + d;

...

f = c + d + e;

the common expression c + d is saved from its
first evaluation and is used in the subsequent
statement to determine the value of f.
240 AIX 5L Porting Guide

Code motion If variables used in a computation within a
loop are not altered within the loop, the
calculation can be performed outside of the
loop and the results used within the loop.

Invariant IF code floating Removes invariant branching code from loops
to make more opportunity for other
optimizations.

Reassociating Rearranges the sequence of calculations in an
array-subscript expression, producing more
candidates for common-expression
elimination.

Strength reduction Replaces less efficient instructions with more
efficient ones. For example, in array
subscripting, an add instruction replaces a
multiply instruction.

Constant propagation Constants used in an expression are
combined, and new ones are generated.
Some implicit conversions between integer
and floating-point types are done.

Store motion Moves store instructions out of loops.

Dead store elimination Eliminates stores when the value stored is
never referred to again. For example, if two
stores to the same location have no
intervening load, the first store is unnecessary
and is removed.

Dead code elimination Eliminates code that cannot be reached or
code whose results are not subsequently
used.

Inlining Replaces function calls with actual program
code.

Instruction scheduling Reorders instructions to minimize execution
time.

Interprocedural analysis Uncovers relationships across function calls,
and eliminates loads, stores, and
computations that cannot be eliminated with
more straightforward optimizations.

Global register allocation Allocates variables and expressions to
available hardware registers using a graph
coloring algorithm.
Chapter 8. The compilers 241

A table that contains the AIX 5L compiler optimization options and the
corresponding ones for Solaris, HP-UX and Tru64 can be found in
Appendix C.3, “Optimization and performance compiler options” on page 529.

8.1.7.5 Data alignment compiler options
A table that contains the AIX 5L compiler data alignment compiler options and
the corresponding ones for Solaris, HP-UX, and Tru64 can be found in
Appendix C.4, “Data alignment compiler options” on page 544.

8.1.7.6 Floating point and numeric compiler options
A table that contains the AIX 5L compiler floating point and numeric compiler
options and the corresponding ones for Solaris, HP-UX, and Tru64 can be
found in Appendix C.5, “Floating point and numeric compiler options” on
page 546.

8.1.7.7 Parallelization compiler options
Parallelization options deal with the use of the OpenMP API and the IBM
parallelization directives. These are described in Chapter 5, “Program
Parallelization” in the C for AIX User’s Guide, which is part of the compiler’s
online documentation.

Furthermore, they also deal with threads, which is described in Chapter 10,
“POSIX threads” on page 307.

A table that contains the AIX 5L compiler target platform compiler options and
the corresponding ones for Solaris, HP-UX, and Tru64 can be found in
Appendix C.6, “Parallelization compiler options” on page 552.

8.1.7.8 Source code compiler options
A table that contains the AIX 5L compiler source code compiler options and
the corresponding ones for Solaris, HP-UX, and Tru64 can be found in
Appendix C.7, “Source Code compiler options” on page 553.

8.1.7.9 Compiled code compiler options
A table that contains the AIX 5L compiler compiled code compiler options and
the corresponding ones for Solaris, HP-UX, and Tru64 can be found in
Appendix C.8, “Compiled code compiler options” on page 559.

8.1.7.10 Compilation mode compiler options
A table that contains the AIX 5L compiler compilation mode compiler options
and the corresponding ones for Solaris, HP-UX, and Tru64 can be found in
Appendix C.9, “Compilation mode compiler options” on page 562.
242 AIX 5L Porting Guide

8.1.7.11 Diagnostics compiler options
A table that contains the AIX 5L compiler diagnostics compiler options and
the corresponding ones for Solaris, HP-UX, and Tru64 can be found in
Appendix C.10, “Diagnostics compiler options” on page 564.

8.1.7.12 Debugging compiler options
A table that contains the AIX 5L compiler debugging compiler options and the
corresponding ones for Solaris, HP-UX, and Tru64 can be found in
Appendix C.11, “Debugging compiler options” on page 569.

8.1.7.13 Libraries compiler options
A detailed description on how libraries work under AIX 5L can be found in
Chapter 9, “AIX shared objects and libraries” on page 257. In addition, a table
that contains the AIX 5L compiler libraries compiler options and the
corresponding ones for Solaris, HP-UX, and Tru64 can be found in
Appendix C.12, “Linking and libraries compiler options” on page 572.

8.1.7.14 Target platform compiler options
Due to the fact that the hardware platform evolves over time, you are forced
to specify compiler options that take this into account. The target platform
compiler options have several dimensions. These dimensions are:

 • 32-bit or 64-bit

 • Processor architecture

 • Physical machine issues

A table that contains the AIX 5L compiler target platform compiler options and
the corresponding ones for Solaris, HP-UX, and Tru64 can be found in
Appendix C.13, “Target platform compiler options” on page 578.

8.1.8 Predefined preprocessor macros
The AIX 5L C preprocessor has two kinds of predefined preprocessor
macros: the ones that are defined by the ANSI standard for the C
programming language (shown in Table 76 on page 244), and the ones that
are defined by the AIX 5L C compiler (for the purpose of detecting compile
time environment characteristics). These can be seen in Table 77 on
page 245.
Chapter 8. The compilers 243

Table 76. ANSI standard predefined preprocessor macros

Predefined macro Description

__LINE__ An integer describing the current source line number. The value
of __LINE__ changes during compilation as the compiler
processes subsequent lines of your source program. It can be
set with the #line directive.

__FILE__ A character string literal containing the name of the source file.
The value of __FILE__ changes as the compiler processes
include files that are part of your source program. It can be set
with the #line directive.

__DATE__ A character string literal containing the date when the source file
was compiled. The value of __DATE__ changes as the compiler
processes any include files that are part of your source program.
The date is in the form Mmm dd yyyy, where Mmm represents
the month in an abbreviated form (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, or Dec), dd represents the day of the
month (if the day is less than 10, the first d is a blank character),
and yyyy represents the year.

__STDC__ The integer 1 (one) indicates that the C compiler conforms to the
ANSI standard. This macro is undefined if the language level is
set to anything other than ANSI.

__TIME__ A character string literal containing the time when the source file
was compiled. The value of __TIME__ changes as the compiler
processes any included files that are part of your source
program. The time is in the form hh:mm:ss, where hh represents
the hour, mm represents the minutes, and ss represents the
seconds. The time is always set to the system time.

__TIMESTAMP__ A character string literal containing the date and time when the
source file was last modified. The value of __TIMESTAMP__
changes as the compiler process any include files that are part
of your source program. The date and the time are in the form
Day Mmm dd hh:mm:ss yyyy, where Day represents the day of
the week. (Mon, Tue, Wed, Thu, Fri, Sat, or Sun), Mmm
represents the month in an abbreviated form (Jan, Feb, Mar,
Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), dd represents
the day of the month (if the day is less than 10, the first d is a
blank character), hh represents the hour, mm represents the
minutes, ss represents the seconds, and yyyy represents the
year. The date and time are always set to the system date and
time.
244 AIX 5L Porting Guide

Table 77. AIX 5L specific predefined preprocessor macros

Predefined macro Description

__64BIT__ Defined if the compiler is invoked to compile in 64-bit mode. This
macro should not be user-defined or redefined.

_AIX32 Defined if the operating system is AIX Version 3.2 or higher.

_AIX41 Defined if the operating system is AIX Version 4.1 or higher.

_AIX43 Defined if the operating system is AIX Version 4.3 or higher.

__ANSI__ Allows only language constructs that conform to ANSI C
standards. Defined using the #pragma langlvl directive or the
-qlanglvl compiler option.

ARCH<arch> Indicates that the compiler generates code to run on the family
of processors denoted by <arch>.
See the -qarch option in Section 8.1.7.14, “Target platform
compiler options” on page 243.

_CHAR_SIGNED Indicates that the default character type is signed.
Defined when the -qchars=signed compiler option is in effect.
See the -qchars compiler option for more information.

CHAR
UNSIGNED

Indicates that the default character type is unsigned.
Defined when the -qchars=unsigned compiler option is in effect.
See the -qchars compiler option for more information.

__CLASSIC__ Macro defined when the classic language level is specified.
Defined using the #pragma langlvl directive or the -qlanglvl
compiler option.

__EXTENDED__ Allows additional language constructs provided by the C for AIX
implementation. Defined using the #pragma langlvl directive or
the -qlanglvl compiler option.

__FUNCTION__ Indicates the name of the function being compiled.

__HOS_AIX__ Indicates the host operating system is AIX.

__IBMC__ Macro contains the version number of the compiler, for example,
__IBMC__=502. This macro should be used in new code.

__IBMSMP Macro defined when the -qsmp compiler option is selected.

_ILP32 Defined if the compiler is using the 32-bit data model. This data
model is used when compiling programs for the 32-bit mode.
This macro should not be user-defined or redefined.

_LONG_LONG Macro defined when the compiler is in a mode that permits long
long int and unsigned long long int types.
Chapter 8. The compilers 245

_LONGDOUBLE
128

Sets the number of bits to use when representing the value of a
long double. The available options are 64 and 128 bits.

_LP64 Defined if the compiler is using the 64-bit data model. This data
model is used when compiling programs for 64-bit mode. This
macro should not be user-defined or redefined.

__MATH__ Instructs the compiler to generate substitute code for calls to
some math functions available in the standard C run-time
libraries, if appropriate. The functions handled this way are
defined as replacement text for macros that begin with two
underscores (__) in the /usr/include/math.h header file.

_OPENMP Macro defined when the -qsmp=omp compiler option is set to
enable full compliance to the OpenMP API specification.

_POWER Indicates the operating system is AIX Version 4.1 or higher.

__SAA__ Allows only language constructs that conform to the most recent
level of the SAA C standards. Defined using the #pragma
langlvl directive or the -qlanglvl compiler option.

__SAAL2__ Allows only language constructs that conform to the most recent
level of the SAA Level 2 C standards.

__STR__ Instructs the compiler to generate substitute code for calls to
some string functions available in the standard C run-time
libraries, if appropriate. The functions handled this way are
defined as replacement text for macros that begin with two
underscores (__) in the /usr/include/string.h header file.

__THW_INTEL__ Indicates that the target hardware is an Intel processor.

__THW_RS6000__ Indicates that the target hardware is a RS/6000 processor.

__xlC__ A hexadecimal constant containing the version number of the
compiler. The version is in the form:

0xVVRR

where:

VV represents the compiler version number.
RR represents the compiler release number.

Predefined macro Description
246 AIX 5L Porting Guide

Note that you cannot change the values of the ANSI predefined macros. An
example of this can be see in Figure 54, where we try to undefine the
__LINE__ macro by using the -U flag to the cc command.

Figure 54. Trying to undefine __LINE__

In Figure 55, we try to use the precompiler directive #define to redefine the
__TIME__ macro.

Figure 55. Trying to redefine __TIME__ using #define

If you try to redefine or undefine the AIX 5L C compiler provided predefined
preprocessor macros, you will either get a warning or an error, depending on
whether you have used a #pragma or compiler option that defines that specific
macro. An example can be seen in Figure 56 on page 248, where we have
made a #undef and #define of _CHAR_SIGNED and _CHAR_UNSIGNED.

__XLC121__ Instructs the compiler to generate substitute code for calls to
some new string and math functions. The functions handled this
way are defined as replacement text for macros that begin with
two underscores (__) in the following header files:

/usr/include/string.h
/usr/include/math.h
/usr/include/stdlib.h
/usr/include/stream.h

Predefined macro Description

$ ls
bar.c foo.c
$ cc -c -U"__LINE__" foo.c
"foo.c": 1506-085 (E) Predefined macro __LINE__ cannot be undefined.
$

$ ls
bar.c foo.c
$ grep -n '#define' *
foo.c:8:#define __TIME__
$ cc -c foo.c
"foo.c", line 8.9: 1506-188 (E) Reserved name __TIME__ cannot be defined
as a macro name.
$

Chapter 8. The compilers 247

Figure 56. Changing -qchars to get warnings

One practical use of predefined preprocessor macros can be to display build
information. If you look at the program shown in Figure 57 on page 249, and
the output of the compiled program shown in Figure 58 on page 249, you can
see how the macros are used to print out build information.

There are lot of other practical uses for predefined preprocessor macros.
They can be to distinguish between:

 • Different operating systems
 • Different operating system versions
 • Different hardware
 • Different processors
 • 64/32 bit

$ cc -c foo.c -qchars=unsigned
"foo.c", line 22.8: 1506-313 (W) Compiler internal name _CHAR_SIGNED has been undefined as a
macro.
"foo.c", line 23.9: 1506-312 (W) Compiler internal name _CHAR_SIGNED has been defined as a
macro.
"foo.c", line 24.8: 1506-085 (E) Predefined macro _CHAR_UNSIGNED cannot be undefined.
"foo.c", line 25.9: 1506-188 (E) Reserved name _CHAR_UNSIGNED cannot be defined as a macro
name.
$ cc -c foo.c -qchars=signed
"foo.c", line 22.8: 1506-085 (E) Predefined macro _CHAR_SIGNED cannot be undefined.
"foo.c", line 23.9: 1506-188 (E) Reserved name _CHAR_SIGNED cannot be defined as a macro
name.
"foo.c", line 24.8: 1506-313 (W) Compiler internal name _CHAR_UNSIGNED has been undefined as
a macro.
"foo.c", line 25.9: 1506-312 (W) Compiler internal name _CHAR_UNSIGNED has been defined as a
macro.
$

248 AIX 5L Porting Guide

Figure 57. A simple C program that uses #defines to determine build information

Figure 58. Compiling and running the program in Figure 57

8.2 GNU GCC for AIX 5L

We have chosen not to compare the GCC compiler to the AIX 5L C compiler.
This is partly because of the sheer number of options you can specify for the

/*
* This example tries to show how predefined precompiler macros
* can be used in a program.
*/
#include <stdio.h>
#ifdef __TWH_RS6000__
#define HARDWARE RS6000

#elif __THW_INTEL__
#define HARDWARE INTEL

#endif
#ifdef __IBMC__
#

#else
#define __IBMC__ 0x0

#endif
#ifdef _AIX50
#define AIXVER "AIX 5.0"

#elif _AIX43
#define AIXVER "AIX 4.3"

#elif _AIX41
#define AIXVER "AIX 4.1"

#elif _AIX32
#define AIXVER "AIX 3.2"

#endif
#ifdef __64BIT__
#define BITS 64

#else
#define BITS 32

#endif

int main(void)
{
printf("This program was build at %s on %s\n", __TIME__, __DATE__);
printf("Using ver. %d of the C compiler on %s or higher.\n",__IBMC__,AIXVER);
printf("This program is compiled for %d bits execution.\n",BITS);

}

$ cc -q64 build.c -o build
$./build
This program was build at 19:14:00 on Mar 22 2001
Using ver. 500 of the C compiler on AIX 5.0 or higher.
This program is compiled for 64 bits execution.
$

Chapter 8. The compilers 249

GCC compiler, but mainly due to the fact that if you are using GCC on your
source platform at the moment, then you probably will be using it on AIX 5L
also.

The primary force of the GCC compiler, besides from it being freeware, is its
great portability. But the price the GCC compiler pays is that it does not
generate code that runs as fast as the native compiler for a particular platform
(this is also true for the AIX 5L platform).

But in many cases, speed is not the key target, but having one development
environment on many hardware platforms might be the prime motivation for
choosing a compiler. For those situations, the GNU C Compiler might be the
best choice, at least to start with.

In Appendix C.14, “GCC options specific for AIX 5L” on page 580, there is a
list of the supported options for AIX 5L on Power and Itanium-based systems.

8.3 The C++ compiler

This chapter deals with the VisualAge C++ compiler for AIX 5L. Due to the
fact that the C++ compiler on AIX 5L is a superset of the C compiler, this
section only deals with the things that are different for the C++ compiler.

8.3.1 Introduction
Due to the fact that the subject of this redbook is about porting from another
platform to AIX 5L, we will only be talking about the batch compiler part of
VisualAge C++. If you wish to get further information or wish to utilize other
features of the VisualAge C++ compiler, there is, in Section 4.11.1.2, “C++
compiler documentation” on page 105, links to the online documentation for
VisualAge C++ compiler.

8.3.2 Types of input files
The VisualAge C++ compiler takes the same input files as the C compiler,
with the addition of C++ source files.

C++ source files have several different suffixes, as we saw in Section 6.1.3,
“Single suffix default inference rules” on page 159. The most common are:

 • .C
 • .cpp
 • .cxx
 • .cc
250 AIX 5L Porting Guide

So one thing you might want to do is to consider renaming all your .cc, .cpp
and .cxx files to .C, which is the suffix used for C++ files on AIX 5L. The
VisualAge C++ compiler does recognize all the above file suffixes as C++
source files. This will also enable you to use the default inference rules of the
make command. If you do want to keep the suffixes, you can always copy the
default inference rules that deal with C++ source files (the .C ones) and
include them in your makefiles after altering them to understand the suffix you
are using.

If your C++ source files use another file name suffix, another option is to use
the -+ compiler option, which informs the compiler that the file given as an
argument is a C++ source file. This is done in the way listed here:

xlC -+ cplusplussroucefile.C++ -o cplusplusexe

8.3.3 VisualAge C++ compiler files and directories
This section should give you a feel of where the different parts of the
VisualAge C++ compiler are installed. In Table 78 we have the directory
structure of the C++ compiler. The C++ compiler is installed in the /usr/vacpp,
directory. It uses the same configuration files as the C compiler.

Table 78. Directory structure of the VisualAge C++ compiler

Description Directory

Configuration files for the C and C++ compiler /etc/

Directory that holds the C++ compiler binaries /usr/vacpp/bin/

Root directory for the C++ compiler /usr/vacpp/

Header files
(This depends on what you actually have installed on
the machine.)

/usr/include/
/usr/vac/include/
/usr/vacpp/include

Library files /usr/vacpp/lib/
/usr/vacpp/lib/<os version>

Message files /usr/lib/nls/msg/$LANG/

Directory that holds the C compiler tools, such as the
preprocessor, assembler and disassembler

/usr/vacpp/exe/
Chapter 8. The compilers 251

The programs in /usr/vacpp/exe/ are not intended to be used from the
command line. Files used by the VisualAge C++ compiler are listed in
Table 79.

Table 79. Files used by the VisualAge C++ compiler

Description File

VisualAge C ++ README file, which
contains important information not included
in other documentation. Read this file before
you use the compiler for the first time.

/usr/vacpp/README

VisualAge C++ front end. /usr/vac/exe/xlCentry

Help file. /usr/vac/exe/default_msg/vac.help

C preprocessor. /usr/vac/exe/xlCcpp

Disassembler. /usr/vac/exe/dis

Code generator. /usr/vac/exe/xlCcode
/usr/vac/exe/bolt

Driver programs. /usr/vac/bin/xlc
/usr/vac/bin/xlc128
/usr/vac/bin/xlc_r
/usr/vac/bin/cc
/usr/vac/bin/cc128
/usr/vac/bin/cc_r
/usr/vac/bin/cleanpdf
/usr/vac/bin/replaceCSET
/usr/vac/bin/resetpdf
/usr/vac/bin/restoreCSET
/usr/vac/bin/showpdf

Profiling library. /usr/vacpp/lib/profiled

Configuration files. /etc/vac.cfg.<oslevel>

Link to actual used configuration file. /etc/vac.cfg
252 AIX 5L Porting Guide

8.3.4 Command line arguments
There are several options that are specific to the C++ language environment.

8.3.4.1 The priority compiler option
The priority compiler option specifies the priority level for the initialization of
static constructors. The syntax of the priority compiler option can be written
like this:

-qpriority=number

Links to /usr/vac/bin /usr/bin/xlc
/usr/bin/xlc128
/usr/bin/xlc_r
/usr/bin/c89
/usr/bin/cc
/usr/bin/cc128
/usr/bin/cc_r
/usr/vacpp/bin/xlC128_r
/usr/vacpp/bin/xlC128
/usr/vacpp/bin/xlC
/usr/vacpp/bin/CC_r4
/usr/vacpp/bin/xlc_r7
/usr/vacpp/bin/xlc_r
/usr/vacpp/bin/xlc128
/usr/vacpp/bin/xlc
/usr/vacpp/bin/xlC_r7
/usr/vacpp/bin/xlC_r4
/usr/vacpp/bin/xlC_r
/usr/vacpp/bin/xlC128_r7
/usr/vacpp/bin/xlC128_r4
/usr/vacpp/bin/showpdf
/usr/vacpp/bin/resetpdf
/usr/vacpp/bin/cleanpdf
/usr/vacpp/bin/cc_r7
/usr/vacpp/bin/cc_r4
/usr/vacpp/bin/cc_r
/usr/vacpp/bin/cc128
/usr/vacpp/bin/cc
/usr/vacpp/bin/c89

Other executables used by the compiler /bin/as
/bin/ld
/bin/strip

Description File
Chapter 8. The compilers 253

The number is the initialization priority level assigned to the static
constructors within a file, or the priority level of a shared or non-shared file or
library. You can specify a priority level from -(2147483647 + 1) (highest
priority) to +2147483647 (lowest priority).

For example, to compile the file myprogram.C to produce an object file
myprogram.o so that objects within that file have an initialization priority of
-200, enter:

xlC myprogram.C -c -qpriority=-200

All objects in the resulting object file will be given an initialization priority of
-200, provided that the source file contains no #pragma priority(number)
directives specifying a different priority level.

8.3.4.2 The staticinline compiler option
This option controls whether inline functions are treated as static or extern.
By default, VisualAge C++ treats inline functions as extern. The syntax for the
staticinline compiler option can be written like this:

-qstaticinline

or

-qnostaticinline

For example, using the -qstaticinline option causes function f in the following
declaration to be treated as static, even though it is not explicitly declared as
such.

inline void f(){/*...*/};

Using the default -qnostaticinline gives f external linkage.

8.3.4.3 The compiler twolink option
Minimizes the number of static constructors included from libraries. The
syntax can be written like this:

-qtwolink

or

-qnotwolink

Normally, the compiler links in all static constructors defined anywhere in the
object (.o) files and library (.a) files. The -qtwolink option makes link time take
longer, but linking is compatible with older versions of C or C++ compilers.
Before using -qtwolink, make sure that any .o files placed in an archive do not
change the behavior of the program.
254 AIX 5L Porting Guide

The default is -qnotwolink. All static constructors in .o files and object files are
invoked. This generates larger executable files, but ensures that placing a .o
file in a library does not change the behavior of a program.

8.3.5 Predefined preprocessor macros
Besides the predefined preprocessor macros defined in Section 8.1.8,
“Predefined preprocessor macros” on page 243, there are some that are
specific to the VisualAge C++ compiler. These are listed in Table 80.

Table 80. Specific predefined macro for C++

8.4 Migrating to VisualAge C++ Version 5

The IBM C++ compiler for AIX 5L conforms to the ANSI C++ language
specification. When migrating to AIX from other platforms (or from previous
versions of AIX), it is possible that, in addition to moving from one operating
system to another, you are migrating to ANSI C++ for the first time.

ANSI C++ introduced a number of changes and additions to the language that
may not be 100 percent compatible with existing code. This sections details
some of the more common problems that may occur.

8.4.1 New keywords
The C++ standard now defines the tokens bool, true, and false as keywords.
When you migrate programs that define these keywords, you will encounter
compilation errors. You can either remove your definitions, or use the
-qnokeyword option for each of these keywords that you want to undefine for
compatibility purposes. For example, to disable all three keywords, add the
following option to the command line:

-qnokeyword=true|false|bool

8.4.2 Changes to digraphs in the C++ language
The C++ standard now defines and, bitor, or, xor, compl, bitand, and_eq,
or_eq, xor_eq, not and not_eq as alternate tokens for &&, |, ||, ^, ~, &, &=, |=,

Predefined Macro Description

__TEMPINC__ The macro __TEMPINC__ is defined in all compilation
units in which automatic template generation is used.

__IBMCPP__ The version of the of the VisualAge C++ compiler. The value is
502 for VisualAge C++ Professional for AIX Version 5.0.2.

__cplusplus Defined if the source is C++; otherwise, it is not defined.
Chapter 8. The compilers 255

^=, ! and !=. If any of these alternate tokens are used as variable, function, or
type names, then you can add -qnodigraph to the command line to suppress
the parsing of these tokens as digraphs.

Note that the -qnokeyword option cannot be used to disable the digraph.
256 AIX 5L Porting Guide

Chapter 9. AIX shared objects and libraries

Facilities for the creation and use of shared libraries are found on many
operating systems. The AIX 5L operating system is no exception and
provides a large number of useful tools to aid in the creation, development,
testing, and debugging of shared libraries and applications that use them.

Developers porting code to AIX 5L running on the Power platform from other
operating systems may be, at first, troubled by the different implementation
methods that are available. Beginning with AIX Version 4.3, AIX contained
shared library features that are broadly compatible with other UNIX operating
systems. Previous versions of AIX did not contain all of these features.

Note that AIX 5L supports two hardware platforms, namely Power systems
and Itanium-based systems. For various reasons, there are minor differences
between the shared library implementation on each platform; however, these
differences can be contained within the configuration options of the makefile
system.

The AIX 5L operating system provides facilities for the creation and use of
dynamically bound shared libraries. Dynamic binding allows external symbols
referenced in user code and defined in a shared library to be resolved by the
loader at run time.

The shared library code is not present in the executable image on disk.
Shared code is loaded into memory once in the system shared library
segment and shared by all processes that reference it. The advantages of
shared libraries are:

 • Less disk space is used because the shared library code is not included in
the executable programs.

 • Less memory is used because the shared library code is only loaded
once.

 • The time taken to start an application may be reduced because the shared
library code may already be in memory.

 • Performance of the application program may be improved because fewer
page faults will be generated when the shared library code is already in
memory. However, there is a performance cost in calls to shared library
routines of one to eight machine instructions.

This chapter introduces the developer to shared libraries and their
implementation in AIX 5L. At the time of writing, compilers have only been
released for the IBM Power platform. Hence, this chapter is mainly concerned
© Copyright IBM Corp. 2001 257

with the IBM Power platform, but Section 9.11, “Linker differences on
Itanium-based systems” on page 299 discusses the main differences
between the linkers on the two platforms.

9.1 Terminology

When discussing shared libraries, it is very important to understand the
terminology used, since there are many terms with similar names but different
meanings.

9.1.1 Static library
A static library is a collection of object files in a single ar format archive. The
library can be used during the linking phase of creating an executable. The
object files in the library that contain symbols referenced by the main
application are extracted from the library and incorporated into the resulting
executable file. The library is used only during the linking phase and is not
relevant at run time. The executable file that is created is sufficient to run the
program. This terminology is applicable to both Power and Itanium-based
systems.

9.1.2 Shared library
Shared libraries and shared objects (normally called Dynamically Loaded
Libraries, or DLLs in Windows terminology) are terms used to refer to object
code components that are handled in a special way.

Shared libraries are used in two stages when creating an executable. At link
time, the link editor (the ld command) searches the specified library to
resolve all undefined symbols that are referenced in the main application
code. If a shared library contains the referenced symbols, the loader section
of the header of the created executable contains a reference to the shared
library (see Section 8.1.3, “Types of input files” on page 224). Unlike using
the static library, the object files containing the referenced symbols are not
incorporated into the executable. Refer to Figure 59 on page 259 for a
graphical representation. At run time, the system loader (the kernel
component that starts new processes) reads the header information of the
executable and attempts to locate and load any referenced shared libraries.
Assuming all the referenced shared libraries are found, the executable can be
started. This process is known as dynamic linking.
258 AIX 5L Porting Guide

Figure 59. Executables created using static library and shared library

Figure 59 shows the difference between two executables created using the
same main application code. One is created using a static version of the
library, the other with a shared object version of the same library.

The object code for shared libraries that get loaded into system memory
when starting an executable can then be shared by all subsequent
executables that use the library. The benefit of this is that only one copy of
the object code of a shared library is stored in system memory at any given
time, with all the executing programs sharing the same copy. Thus, dynamic
linking uses far less memory to run programs. Additionally, the executable
files are much smaller, thus potentially also saving disk space.

The AIX 5L operating system supports dynamic linking. Developers moving
code to AIX 5L often have problems, however, as the implementation
specifics on the Power platform are slightly different from other platforms.

In the UNIX world, the terms shared library and shared object are generally
used interchangeably. On the AIX system, there has historically been a
distinct difference between the two terms.

a.out using static library a.out using shared library

Header information

Program code

Library code

Program data

Library data

Header information

Program code

Program data

Shared object information
Chapter 9. AIX shared objects and libraries 259

Shared object A shared object is a single object file that has the SRE
(Shared REusable) bit set in the XCOFF header. A shared
object normally has a name of the form, filename.o. In other
words, it is a regular file with a .o (lower case O) extension
to indicate it is an object file. The SRE bit indicates that the
file is handled in a special way by the linker.

Shared library On the Power platform, a shared library refers to an ar
format archive library, where one or more of the members is
a shared object. Note that the library can also contain
normal, non-shared object files, which are handled in the
normal way by the linker. A shared library normally has a
name of the form, libname.a. This allows the linker to search
for libraries specified with the -lname option on the
command line.

9.1.3 Itanium-based system differences
On Itanium-based systems, the term shared library and shared object are
used interchangeably. The reason for this is that the system loader on AIX 5L
for Itanium-based systems does not allow a static (ar format) library to
contain shared objects.

Another difference between the Power and Itanium-based system
implementation of AIX 5L concerns the format of the ar library. AIX 5L
supports both 32-bit and 64-bit object code on both hardware platforms. On
the Power platform, it is possible to have a single ar format archive library
that contains both 32-bit and 64-bit objects. The linker (ld) command and the
system loader (the part of the kernel that loads a new process) both
understand that a library can contain both 32-bit and 64-bit objects. When
processing an archive, they will only examine the appropriate type of objects.
For example, when the ld command is being used to create a 64-bit user
executable, it will search any specified libraries for the required 64-bit objects
to complete the symbol resolution process. This is because neither Itanium or
Power systems support mixed-mode processes (a binary consisting of both
32-bit and 64-bit object code).

The linker ld command and system loader on Itanium-based systems do not
support mixed object libraries. For this reason, there are two versions of each
system library: a 32-bit version and a 64-bit version. On the Power platform,
there is only one instance of each system library, because the library can
contain both 32-bit and 64-bit objects.

In addition to these format differences, the default action of the linker/loader
combination on AIX 5L for Itanium-based systems is to use run-time linking
260 AIX 5L Porting Guide

equivalent to that performed on Power systems when the -brtl option is
specified.

As an illustration of these library differences, the following section compares
the different components of the C library (libc.a) on both Power and
Itanium-based systems.

9.1.3.1 The Power standard C library
The C library on Power systems is /usr/ccs/lib/libc.a. The symbolic link
/usr/lib/libc.a points to this file. The library contains both 32-bit and 64-bit
objects. Some of the objects are static, and some are shared. The following
command lists both 32-bit and 64-bit objects in the C library:

ar -t -v -X32_64 /usr/lib/libc.a
rw-rw---- 2715/300 1679 Aug 05 13:17 1998 frexp.o
rw-rw---- 2715/300 750 Apr 22 09:15 1998 itrunc.o
rw-rw---- 2715/300 1943 Aug 05 13:17 1998 ldexp.o
rw-rw---- 2715/300 1575 Aug 05 13:17 1998 modf.o
rw-rw---- 2715/300 909 Apr 22 08:40 1998 logb.o
rw-rw---- 2715/300 2469 Aug 05 12:48 1998 scalb.o
rw-rw---- 2715/300 330 Apr 22 08:40 1998 finite.o
rw-rw---- 2715/300 744 Apr 22 09:16 1998 uitrunc.o
rw-rw---- 2715/300 768 Apr 22 08:32 1998 _itrunc.o
r-xr-xr-x 2/2 1828 Nov 27 14:36 2000 frexp_64.o
r-xr-xr-x 2/2 891 Nov 27 14:36 2000 itrunc_64.o
r-xr-xr-x 2/2 2174 Nov 27 14:36 2000 ldexp_64.o
r-xr-xr-x 2/2 1838 Nov 27 14:36 2000 modf_64.o
r-xr-xr-x 2/2 1058 Nov 27 14:36 2000 logb_64.o
r-xr-xr-x 2/2 2774262 Nov 27 14:36 2000 shr.o
r-xr-xr-x 2/2 3153840 Nov 27 14:36 2000 shr_64.o
.
.
.

The files with 64 in the name are 64-bit objects. There is a 32-bit and 64-bit
version of most files. The files shr.o and shr_64.o are the shared object
components of the C library.

9.1.3.2 The Itanium standard C library
There are two C libraries on Itanium-based systems. One is for 32-bit
processes and the other is for 64-bit processes. This is because AIX 5L on
Itanium-based systems does not support mixed object libraries. The 32-bit
system libraries are in the directory /usr/lib/ia64l32, and the 64-bit versions
are in /usr/lib/ia64l64:

itsoia64:/>ls -l /usr/lib/ia64l??/libc.so
-r-xr-xr-x 3 bin bin 4161368 Mar 07 12:21 /usr/lib/ia64l32/libc.so
-r-xr-xr-x 3 bin bin 4320600 Mar 07 12:21 /usr/lib/ia64l64/libc.so

The C library itself is named libc.so and is a single shared object rather than
an ar format archive, as on the Power platform.
Chapter 9. AIX shared objects and libraries 261

AIX Version 4.2.1 introduced support for a new type of shared object,
commonly found on other UNIX-based systems, such as Solaris and HP-UX.
Shared files of the new format generally have a name of the form, libname.so.
Although the name incorporates the term lib, the file is, in fact, a shared
object (as indicated by the .so file name extension) rather than a shared
library, since it is a single object file rather than an ar format archive. The
benefit of this type of shared object is that, in common with a true shared
library, it can be specified on the compiler or linker command line with the
-lname option and searched for with the -Ldirectory option when the -brtl
option is being used.

The system libraries on AIX 5L for Itanium-based systems use this format,
although the -brtl option is not required.

In addition to the use of shared libraries and shared objects with the compile
and link commands, a program may choose to explicitly control their use with
the dlopen() family of subroutines.

9.2 Creating a shared library on Power systems

The method used to create a shared library depends on the type you wish to
create.

9.2.1 Traditional AIX shared object
A traditional AIX shared object is a single object file created by a call to the
linker (ld) command. Normally, the shared object is created from multiple
object files that are linked together; however, it is also possible to create a
shared object from a single object file. Although the linker is the component
that actually does the work, it is normal to create the shared object using the
compiler command line since the compiler, in turn, calls the linker once it has
performed any processing it is capable of. The benefit of using this method to
create the shared object is that default linker options are automatically used
and do not need to be specified on the command line.

Creating a traditional AIX shared object normally involves the use of an
export file. An export file is a text file containing a list of symbols. It is used to
control which symbols are visible outside the shared object. The symbols not
specified in the export file are only visible to other routines within the shared
object. The use of export files allows a developer to create a shared object
that has a well defined interface. Only the symbols listed in the export file can
be referenced by executables and other shared objects that are linked with
the object. In addition, creating a shared object may involve the use of an
import file. An import file is a text file that lists the names of symbols that the
262 AIX 5L Porting Guide

shared object may reference. It allows the object to be created without the
source of those symbols being available. This may be required in the
situation where two shared objects have dependencies on each others
symbols. Export files are normally identified by using a .exp extension to the
file name. When the run-time linker (discussed in Section 9.5, “Run-time
linking” on page 277) is not used, all symbols must be accounted for when the
module is linked. The undefined symbols must be listed in the module’s
import list or be deferred. Symbols are deferred if they are listed as being
defined by #! in the import list.

If you are creating a shared object and want all symbols to be exported, then
you do not need to use an export file. You can use the -bexpall linker option,
which will automatically export all global symbols (except imported symbols,
unreferenced symbols defined in archive members, and symbols beginning
with an underscore). Additional symbols may be exported by listing them in
an export list.

If the shared object supplies symbols that are used by another shared object,
then you still have to create an exports file, as this is used as an import file
when creating the dependent shared object.

9.2.1.1 Single shared object
The scenario described in this section for creating a shared object uses the
following source code files:

The file source1.c is as follows:

/* source1.c : First shared library source */
void private(void)
{

printf(“private\n”);
}
int addtot(int a , int b)
{

int c;
c = a+b;
return c;

}

Chapter 9. AIX shared objects and libraries 263

The file source2.c is as follows:

/* source2.c : Second shared library source */
#include <stdio.h>
int disptot(int a)
{

printf(“The total is : %d \n”,a);
}

The process of creating the shared object is as follows:

1. Create the object files that will be combined together to create the shared
object. This is achieved using the -c option of the compiler. For example:

cc -c source1.c
cc -c source2.c

2. Create an export file that lists the symbol names that should be visible
outside the shared object. In this example, the symbols addtot and disptot
are the names of the functions that will be called by the main application.
The symbol names can also include variable names in addition to function
names. The libadd.exp export file is as follows:

#!
addtot
disptot

3. Create the shared object with the following command:

cc -o shrobj.o source1.o source2.o -bE:libadd.exp -bM:SRE -bnoentry

The -bE:libadd.exp option uses the file libadd.exp as an export file that
lists the names of the symbols that should be exported. The -bM:SRE flag
marks the resultant object file, shrobj.o, as a shared reusable object. The
-bnoentry flag indicates that there is no entry point (main function) in the
object file.

The dump command can be used to list the symbols that are exported (and
imported) by the shared object. For example:

dump -Tv shrobj.o

shrobj.o:

Loader Section

Loader Symbol Table Information
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x2000020c .data EXP DS SECdef [noIMid] addtot
264 AIX 5L Porting Guide

[2] 0x20000218 .data EXP DS SECdef [noIMid] disptot

The important fields to examine are the IMEX, IMPid, and Name entries. A
value of EXP in the IMEX field indicates that this symbol is being exported
from the object. In this case, the Name field gives the name of the symbol
being exported, and the IMPid field is not used.

A value of IMP in the IMEX field means that the symbol listed in the Name
field is being imported into the object. In this case, the IMPid indicates the
target shared object that the symbol will be imported from. In the case of a
shared object that is contained in an ar format library, both the library name
and object name will be displayed. In the example shown above, the symbol
printf is being imported from the shared object shr.o, which is contained in the
libc.a archive library.

9.2.1.2 Interdependent shared objects
The process for creating interdependent shared objects is similar to the
process of creating a single shared object but requires the use of an import
file. Suppose there are two shared objects, shr1.o and shr2.o, and each
references symbols in the other. When creating the first shared object
(shr1.o), the second shared object may not exist. This means that when the
command to create the first shared object is executed, there will be
unresolved symbols since, at this point, the second shared object does not
exist. This problem is overcome with the use of an import file. An import file is
similar to the export file used when creating a shared object. In fact, in most
cases, it is possible to use the same file for both purposes.

Consider the following files for use in this example scenario:

The file source1.c is as follows:

/* source1.c : First shared library source */
int function1(int a)
{

int c;
c = a + function2(a);
return c;

}

int function3(int a)
{

int c;
c = a / 2;
return c;

}

Chapter 9. AIX shared objects and libraries 265

The file source2.c is as follows:

/* source2.c : Second shared library source */
int function2(int a)
{

int c;
c = function3(a + 5);
return c;

}

In this example, each source file needs to be made into a separate, shared
object. Note that the resulting shared objects are interdependent, because:

 • Subroutine function1 in source1.c calls function2 in source2.c.

 • Subroutine function2 in source2.c calls function3 in source1.c.

As with the simple example, each shared object requires an export file to
define which symbols will be exported. With a slight modification, the export
file for each shared object can also be used as the import file for other shared
objects that use the exported symbols. The slight change does not affect the
file when used as an export file. The modification is to add the name of the
library and shared object that contains the symbols. In the example, the
export file (libone.exp) for the first shared object is:

#!libone.a(shr1.o)
function1
function3

The export file (libtwo.exp) for the second shared object is:

#!libtwo.a(shr2.o)
function2

When used as an export file, the line starting with the #! symbol sequence is
ignored. When used as an import file, the information following the #!
sequence details the location of the symbols contained in the file. The format
of the entry is libraryname(membername). The libraryname component can
be just the name of the library (as it is in the example), or it may include a
relative or absolute path name component, for example:

#!/data/lib/libone.a(shr1.o)

Any path name component listed is used when attempting to load the shared
object at run time to resolve the symbols.

The commands used to create the shared objects and create the libraries are
as follows:
266 AIX 5L Porting Guide

cc -c source1.c
cc -o shr1.o source1.o -bE:libone.exp -bI:libtwo.exp -bM:SRE -bnoentry
ar rv libone.a shr1.o
cc -c source2.c
cc -o shr2.o source2.o -bE:libtwo.exp -bI:libone.exp -bM:SRE -bnoentry
ar rv libtwo.a shr2.o

Note the use of the file libone.exp as an export file when creating the first
shared library and as an import file when creating the second. If the file is not
used when creating the second shared library, the creation of the shared
object will fail with an error message complaining of unresolved symbols:

cc -o shr2.o source2.o -bE:libtwo.exp -bM:SRE -bnoentry
ld: 0711-317 ERROR: Undefined symbol: .function3
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more
information.

A single import file can be used to list symbols that are imported from
different modules. The import file is just a concatenation of the individual
export files for each of the shared objects. Using the example import files
shown above, suppose that a new shared object, libthree.a, was to be
created, and it imports symbols from both libone.a and libtwo.a. The import
file used to create the new shared object might be as follows:

#!libone.a(shr1.o)
function1
function3
* a comment line starts with the asterix symbol
* blank lines are ignored

#!libtwo.a(shr2.o)
function2

As the example illustrates, although it is possible to create interdependent
shared objects, from a design and implementation point of view, it is much
simpler to create shared objects that are as self-contained as possible.

9.2.2 New style shared object
Creating a new style shared object (libname.so) does not require the use of
export files; however, by default, all symbols are visible to executables that
are linked with the object.

9.2.2.1 Single shared object
Using the same source code as used in Section 9.2.1.1, “Single shared
object” on page 263, the following command is used to create a new style
shared object:
Chapter 9. AIX shared objects and libraries 267

cc -G -o libsimple.so source1.o source2.o

Note that the -G option implicitly enables a number of other default linker
options, including one that exports all symbols. This makes things simple
when creating the shared object, since you do not need to maintain a file
listing the symbols you want to be exported. The effect of this can be seen in
the output of the dump command when used on the resulting shared object:

dump -Tv libsimple.so

libsimple.so:

Loader Section

Loader Symbol Table Information
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x20000204 .data EXP DS SECdef [noIMid] addtot
[2] 0x20000210 .data EXP DS SECdef [noIMid] privatefn
[3] 0x2000021c .data EXP DS SECdef [noIMid] disptot

Although the manual pages for the compilers state that the -G option is
passed directly to the linker, the compiler itself does, in fact, perform
additional processing. This can be detected, because replacing cc with ld in
the example shown above results in an error:

ld -G -o libsimple.so source1.o source2.o
ld: 0711-327 WARNING: Entry point not found: __start
ld: 0711-244 ERROR: No csects or exported symbols have been saved.

Even resolving the warning message about the entry point by using the
-bnoentry linker option does not solve the problem. There is still a warning
that no exported symbols have been saved. Essentially, this means the
shared object has not exported any symbols.

The reason the command works when the compiler is invoked with the -G
option can be seen when we additionally use the -v option to get more
information about what the compiler is actually doing:

cc -v -G -o libsimple.so source1.o source2.o
exec: /usr/vac/bin/CreateExportList(/usr/vac/bin/CreateExportList,
/tmp/xlcSEMY4Qie,-f,/tmp/xlcSFMY4Qid,NULL)
exec: /bin/ld(ld,-bM:SRE,-bnoentry,-bpT:0x10000000,-bpD:0x20000000,
-olibsimple.so,source1.o,source2.o,-lc,-bE:/tmp/xlcSEMY4Qie,NULL)
unlink: /tmp/xlcW0MY4Qia
unlink: /tmp/xlcW1MY4Qib
unlink: /tmp/xlcW2MY4Qic
unlink: /tmp/xlcSEMY4Qie
unlink: /tmp/xlcSFMY4Qid
268 AIX 5L Porting Guide

The important thing to notice is that the compiler is using a shell script called
CreateExportList to create an export list file on the fly for the specified input
files.

9.2.2.2 Creating an export list
You can use the /usr/vac/bin/CreateExportList shell script supplied with the C
for AIX Version 5 compiler to automatically generate the symbols that should
be included in an export list. It can save a considerable amount of time if you
want to use the traditional AIX method for creating shared objects as
described in Section 9.2.1, “Traditional AIX shared object” on page 262, or if
you want to use an export list in conjunction with the -G option to create a
new style shared object that does not export all symbols.

The simplest way to use the command is as follows:

1. Compile all of the source files that will be included in the shared object.

2. Create a single file that lists the names of all of the object files that will be
included in the shared object. For example, create a file called objectlist
that contains the following lines:

source1.o
source2.o

3. Invoke the CreateExportList command as follows:

/usr/vac/bin/CreateExportList exportfile -f objectlist

where exportfile is the name of the export file you want to create, and
objectlist is the file that contains the list of object file names.

4. Edit the resulting export file to include the #!path name (member) line at
the start.

5. Edit the resulting export file to remove the symbol names you wish to keep
private within the shared object.

9.2.2.3 Interdependent shared objects
The creation of interdependent shared objects using the libname.so style
requires the use of import files so that the linker can resolve the externally
referenced symbols.

If using an export file for a new style shared object as an import file when
creating another shared object, the location specified does not need the
(member) entry since the file itself is the shared object. Using the example
described in Section 9.2.2.1, “Single shared object” on page 267, the export
file produced would have the following line inserted as the first line in the file:

#!libsimple.so
Chapter 9. AIX shared objects and libraries 269

9.2.3 Importing symbols from the main program
When creating either traditional or new style shared objects, it is possible for
the object to resolve a symbol that is provided in the main program rather
than a shared object. There are two steps required to ensure that this works
correctly.

The first step is to use an import file when creating the shared object that lists
the symbols to be imported from the main routine. The symbols should be
listed under the module name as follows:

#!.

The special module name of . (dot) indicates that the symbols will be
imported from the main program. The status of the symbols in the shared
object can be checked using the dump -Tv command, as described in Section
9.6.3.2, “The dump -Tv command” on page 285.

Link the application using the shared objects as normal. The linker will
automatically detect that the shared objects import symbols from the main
routine and will automatically export them if they exist. If a shared object tries
to import a symbol that does not exist in the main routine, then the link stage
will fail.

9.2.4 Initialization and termination routines
Optional shared object initialization and termination routines can be specified
when creating the shared object. You can use one or the other, or both. The
routines may be useful for initializing dynamic data structures or reading
configuration information. The initialization routines are called by the program
startup code and are performed before the application main routine is started.
Termination routines are called when the program makes a graceful exit.
They will not be called if the program exits due to receipt of a signal.

The -binitfini linker option is used to specify the names of the routines along
with a priority number. The priority is used to indicate the order that the
routines should be called in when multiple shared objects with initialization or
termination routines are used.

9.3 Creating a shared object on Itanium-based systems

Shared objects are created on Itanium-based systems by using the ld
command with the -G option. This is similar to the procedure used on some
other UNIX-based platforms.
270 AIX 5L Porting Guide

For example, to make the shared object libone.so from the source files
source1.c and source2.c, use:

cc -g -c source1.c
cc -g -c source2.c
ld -G -o libone.so source1.o source2.o

Since AIX 5L on Itanium-based systems uses run-time linking by default,
there is no need to use import files or export files for symbol resolution, or
when building interdependent objects. This is much easier than on Power
systems; however, the system loader has to do more work when loading an
application, and if there are problems with missing symbols, it is not as easy
to diagnose the exact problem.

9.4 Using a shared library

Once you have created the required shared libraries, you can then proceed to
use them when linking applications. There are a number of linker options that
affect the way in which the shared libraries are used.

The most important point to remember about using shared libraries is that the
way the application is linked will determine how the shared libraries will be
searched for at run time.

9.4.1 On the compile line
When using shared libraries to create an executable, there are a number of
methods that can be used to specify the library on the command line. The
method used will depend on the type of shared object being used.

As far as the linker is concerned, there are three types of shared objects that
it can handle:

 • An archive library that contains object files with the SRE bit set. Note that
this is only available on Power systems.

 • A new style shared object of the form libname.so.

 • An individual object file with the SRE bit set, for example, shr1.o.

In all cases, the shared object can be specified directly on the command line
using either an absolute or relative path name. If the shared object is in the
same directory as the current working directory, then no path component
needs to be specified, since the current directory is searched by default.

If the shared object is a single object file, then the absolute or relative path
name is the only way to include it on the command line.
Chapter 9. AIX shared objects and libraries 271

If the shared object is part of an archive library, then the -l and -L linker
options can be used to search for the library. If the shared object is a new
style shared object, then the -brtl linker option must be used. This enables the
run-time linker, described in Section 9.5, “Run-time linking” on page 277, and
also allows these shared objects to be specified on the command line using
the -l and -L options. If you want to use the new style shared object naming
conventions, but do not want to use run-time linking, then specify the -brtl and
-bnortllib options when linking the main application. This will mean that you
must build the new style shared objects using export and import files, if
required. You should use the compiler with the -G option to create the shared
objects for Power platforms, not the ld -G method described in Section 9.5,
“Run-time linking” on page 277.

The -l option is used to specify the name of the library without the .a or .so
extension and without the lib prefix. For example, the shared objects libone.a
and libtwo.so, would be specified on the command line as -lone -ltwo.

The -L option is used to specify a directory that should be searched for in the
libraries specified with the -l option. The /usr/lib and /lib directories are
automatically added to the end of the list of directories to be searched. The
list of directories specified with the -L option (along with the default /usr/lib
and /lib entries) is included in the header section of the resulting executable.
This path is used to search for the directories at run time. Refer to Section
9.6.3.1, “The dump -H command” on page 283 for details on how the use of
path names, and the -L option, can have an impact on how the system loader
searches for the shared objects at run time on Power platforms.

If your application development directory structure does not match the
directory structure used when your application is installed in a production
environment, then, potentially, you need to adjust the arguments used with
the linker to ensure that the resulting executables have the desired library
search path.

For example, consider an application that has a development source code
tree, as shown in Figure 60 on page 273.
272 AIX 5L Porting Guide

Figure 60. Sample development directory structure

Consider the application file, main.c, being compiled and linked in the
directory /development/version1.0b/src and using shared libraries stored in
the directory /development/version1.0b/lib. There are a number of options
that can be used to specify the libraries, depending on how the resulting
executable will be deployed.

When the application is installed in a production environment, for example,
after being installed on a customer machine, the directory structure may be
different. The method to use when compiling the executables will depend on
the degree of freedom the customer is permitted when installing the
application. For example, some products specify that the executables and
libraries must be installed in a specific directory, such as /opt/productname.
Some products allow the binaries and libraries to be installed in any directory
structure.

If the libraries for the product will be installed in a specific directory, then you
can either:

 • Create the shared libraries and then copy them to the same directory
structure to be used when the product is installed in a production
environment. In this case, you use the -L option to find the shared
libraries. For example:

cc -o ../bin/app1 main.c -L/product/lib -lone

 • Create the shared libraries, but leave them in the development directory
structure. When compiling the applications, use absolute path names to
specify the shared libraries along with the -bnoipath linker option to
prevent the path name being included in the header section of the final

/development

version1.0a

bin srclibhdr

version1.0b

bin srclibhdr
Chapter 9. AIX shared objects and libraries 273

executable. At the same time, use the -L option to specify the directory
where the libraries will exist on a production system. For example:

cc -o ../bin/app1 main.c -bnoipath ../lib/libone.a -L/product/lib

If your product allows the executables and libraries to be installed in any
directory structure, then you need to use the LIBPATH environment variable
to search for shared objects. AIX 5L for Itanium-based systems (along with
other UNIX-based systems) uses the LD_LIBRARY_PATH variable for the
same purpose.

The order of libraries and objects specified on the command line is not
important on the Power platform unless run-time linking is being used. See
Section 9.5, “Run-time linking” on page 277 for more information. The
ordering is important on Itanium-based systems, due to differences in the
linker.

9.4.2 Searching at run time
The LIBPATH or LD_LIBRARY_PATH environment variable is only needed
when shared libraries exist in a different directory than that specified in the
header section of the executable. The variable is a colon separated list of
directory names. If it is set, the directories specified in the environment
variable are searched for the required shared objects before the list of
directories specified in the header section of the executable. The exception to
this case is when a user other than root is attempting to run a setuid or setgid
executable. In this case, only the directories listed in the header section of
the executable are searched; the environment variable is ignored, even if set.

If a relative or absolute path name is used to specify a shared object when
the application is compiled, and the -bnoipath option is not specified, then the
system loader will only look for the shared object using the exact path name
specified at link time for that object. Even if a shared object with the same
name exists in a directory searched as part of the LIBPATH or INDEX 0 path
included in the header section, it will be ignored.

If a shared object can not be found by the system loader when trying to start
an executable, an error message similar to the following will be seen on
Power platforms:

exec(): 0509-036 Cannot load program ex1 because of the following errors:
0509-022 Cannot load library libone.so.
0509-026 System error: A file or directory in the path name does not

exist.

On Itanium-based systems, the message will be similar to the following:
274 AIX 5L Porting Guide

dynamic linker: ./example: could not find or could not open 'libone.so'
Killed

The missing objects will be listed with 0509-022 error messages. Use the find
command to search the system for the missing shared objects. If the object is
found, try setting the LIBPATH or LD_LIBRARY_PATH environment variable
to include the directory that contains the shared object and restart the
application. Also, ensure that the object or library has read permission for the
user trying to start the application.

A similar error message is produced when the system loader finds the
specified shared objects, but not all of the required symbols can be resolved.
This can happen when an incompatible version of a shared object is used
with an executable. The error message is similar to the following on Power
platforms:

exec(): 0509-036 Cannot load program ./ex1 because of the following errors:
0509-023 Symbol func1 in ex1 is not defined.
0509-026 System error: Cannot run a file that does not have a valid

format.

On Itanium-based systems, the output is similar to the following:

itsoia64:/home/richard/new>./example
address of main is 0x100005e0
address of mainfdesc struct is 0x20200820
dynamic linker: ./example: relocation error: symbol not found 'function1';
referenced from './example'
Killed

Note that because of the ‘lazy’ run-time linking, the application manages to
partially run before encountering the unresolved symbol. Compare this with
the Power platform, where the application will not even start.

On the Power platform, the unresolved symbols are listed in the 0509-023
message lines. Note the name of the missing symbol, and use the dump -Tv
command to determine which shared object the executable expects to
resolve the symbol from. For example:

dump -Tv ex1 | grep func1
[4] 0x00000000 undef IMP DS EXTref libone.a(shr1.o) func1

This indicates that the executable is expecting to resolve the symbol func1
from the shared object shr1.o which is an archive member of libone.a. This
information can help you start the problem determination process.
Chapter 9. AIX shared objects and libraries 275

9.4.3 Shared or non-shared
AIX 5L supports the use of the -bdynamic and -bstatic linker options to
determine how a shared object should be treated by the linker. On
Itanium-based systems, the options are -Bdynamic and -Bstatic.

These options are toggles and can be used repeatedly in the same link line.
When dynamic is in effect, shared objects are used in the usual way. If you
use the static option, remember to specify dynamic as the last option on the
link line to ensure that the system libraries are treated as shared objects by
the linker. If this is not done, and the system libraries are treated as normal
archive libraries, the executable produced will be larger than normal. In
addition, it will have the disadvantage that it may not work on future versions
of AIX because it is hardcoded with a specific version of system libraries.

When the static option is in effect, shared objects are treated as regular files.
On the Power platform, when -brtl is specified, and -bdynamic is in effect, the
-l flag will search for files ending in .so, as well as those ending in .a. Refer to
the following example:

cc -o main.o -bstatic -Lnewpath -lx -bdynamic

In this example, libx.a is treated as a regular archive file, even if it contains
shared objects. The -bdynamic ensures that the system libraries, such as
libc.a, are processed as shared objects:

cc -o main main.o -brtl -Lpath1 -Lpath2 -lx

Search for the object specified by -lx in the following order:

1. path1/libx.so

2. path1/libx.a

3. path2/libx.so

4. path2/libx.a

9.4.4 Lazy loading
AIX 5L on Power supports the use of the -blazy option to implement lazy
loading. Lazy loading is a mechanism for deferring the loading of modules
until one of its functions is required to be executed. Lazy loading is the default
on Itanium-based systems. By default, the system loader automatically loads
all of the module’s dependants at the same time. By linking a module with the
-blazy option, the module is loaded only when a function within it is called for
the first time. Note that lazy loading works only if the run-time linker is not
enabled. Also, only the modules referenced for their function can be lazy
loaded.
276 AIX 5L Porting Guide

9.5 Run-time linking

AIX 5L for Itanium-based systems uses run-time linking by default. This
section applies to Power systems only.

As shown in the examples above, references to the symbols in the shared
objects are, generally, bound at link time. That is, the output module
associates an imported symbol with its definition in a specific object. The
source of the definition can be seen by using the dump -Tv command on the
executable or shared object. Refer to Section 9.6.3, “The dump command” on
page 283 for more details.

At load time, the definition in the specified shared object is used even if other
shared objects export the same symbol.

Programs can be modified to use the run-time linker, therefore allowing some
symbols to be rebound at load time. To create a program that uses the
run-time linker, link the program with the -brtl option. The way that shared
modules are linked affects the rebinding of symbols.

To build shared objects enabled for run-time linking, use the -G flag and build
the shared object with the ld command rather than the compiler cc, xlc, or xlC
commands. The -G linker option enables the combination of options
described in Table 81.

Table 81. The -G option

Option Description

-berok Enables creation of the object file, even if there are unresolved
references.

-brtl Enables run-time linking. All shared objects listed on the command
line (those that are not part of an archive member) are listed in the
output file. The system loader loads all such shared modules when
the program runs, and the symbols exported by these shared objects
may be used by the run-time linker.

-bsymbolic Assigns this attribute to most symbols exported without an explicit
attribute.

-bnortllib Removes a reference to the run-time linker libraries. This means that
the module built with the -G option (which contains the -bnortllib
option) will be enabled for run-time linking, but the reference to the
run-time linker libraries will be removed. Note that the run-time
libraries should be referenced to link the main executable only.

-bnoautoexp Prevents automatic exportation of any symbol.
Chapter 9. AIX shared objects and libraries 277

The function of the -G option to the compiler command is very similar in
function to the -G option to the linker (ld) command, but there is a very subtle,
yet important, difference when it comes to creating shared objects for use
with run-time linking.

The important difference is the way the two options impact the handling of
unresolved symbols. The following source code files will be used to
demonstrate the difference.

File source1.c is used to make libone.so. The source code is as follows:

/* source1.c - demo of difference between cc -G and ld -G */
#include <stdio.h>
void function1(int a)
{

printf(“In function1\n”);
function2(a);

}

File source2.c is used to make libtwo.so. The source code is as follows:

/* source2.c - demo of difference between cc -G and ld -G */
#include <stdio.h>
void function2(int a)
{

printf(“In function2\n”);
}

If the compiler command is used to create libone.so, it initially fails with an
error message complaining about the unresolved symbol function2:

cc -G -o libone.so source1.c
ld: 0711-317 ERROR: Undefined symbol: .function2
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more
information.

We can solve this immediate problem in one of two ways. We can supply an
import file that resolves the symbol function2 to the shared object libtwo.so.
However, if we do this, the shared object, libone.so, will be created with a
reference to libtwo.so in the header section. This means we have resolved
the symbol function2 at link time, which is not what we want. Alternatively, we
can add the -berok option to the command line, which allows errors in the
output file. If we do this, then the symbol function2 is unresolved at link time,

-bM:SRE Builds this module to be shared and reusable.

Option Description
278 AIX 5L Porting Guide

which is what we want. We can then create libtwo.so, and then link both
libraries with the following main.c program:

/* main.c - demonstrate how cc -G differs from ld -G */
int main(int argc, char ** argv)
{

function1(45);
}

using the following command:

cc -o example main.c -brtl -L‘pwd‘ libone.so libtwo.so

Note the use of the -brtl option, which is required to enable the run-time
linker. If we try and run the example program, an error message is produced:

./example
in function 1
Segmentation fault(coredump)

It can be seen from the output that the program has managed to start and get
as far as the printf statement in function1. It then experiences a fatal error
when trying to call function2. If we look at the header information for libone.so
with the dump -Tv command, we can check the status of the symbols:

dump -Tv libone.so

libone.so:

Loader Section

Loader Symbol Table Information
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x200001e8 .data EXP DS SECdef [noIMid] function1
[2] 0x00000000 undef IMP DS EXTref [noIMid] function2

It can be seen that the symbol function2 is marked as undef, which is what we
expect. However, the problem is that the IMPid is marked as [noIMid], which
means that the shared object does not know where to resolve the symbol
function2. If we use the ld command to create the shared object instead of
the compiler, then the result is slightly different. Create the shared object with
the following commands:

cc -c source1.c
ld -G -o libone.so source1.o -bnoentry -bexapall -lc

The -bnoentry and -bexpall options are described previously. The -lc option is
required to link the C library to resolve the printf function. If we look at the
symbol information in the header section with the dump -Tv command:
Chapter 9. AIX shared objects and libraries 279

dump -Tv libone.so

libone.so:

Loader Section

Loader Symbol Table Information
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x00000008 .data EXP DS SECdef [noIMid] function1
[2] 0x00000000 undef IMP DS EXTref .. function2

the difference is the IMPid for the symbol function2. The shared object now
thinks it will resolve the symbol from the special module called .. (dot dot).
This indicates that the symbol will be resolved by the run-time linker. If we
create libtwo.so using the same method, then the example program works
correctly.

The run-time linker is called by the program startup code before entering the
application’s main routine.

When using run-time linking, the order of specifying libraries and objects on
the command line is important. This is because the list of libraries and objects
will be searched in sequence to resolve symbols that are imported from the
special .. module. In addition, all of the shared objects specified on the
command line will be included in the header section of the resulting
executable. Using the example described above, the main program only calls
the routine function1, which is in libone.so. Using the traditional style AIX link
time symbol resolution, this would mean that the resulting executable would
only reference libone.so in the header section. If this were the case, when the
run-time linker is called, the shared object libtwo.so would not be present,
and so the symbol resolution of function2, which is called from function1,
would fail.

Another advantage of using run-time linking is that developers do not need to
maintain a list of module interdependencies and import/export lists. By using
the -bexpall option, all shared objects can export all symbols, and the
run-time linker can be used to resolve the inter-module dependencies.

9.5.1 Rebinding system defined symbols
The shared libraries shipped with the AIX operating system are not enabled
for run-time linking, but they can be enabled by using the rtl_enable
command. For example, if a program defines its own version of the malloc
routine, and wants to run in such a way that the routines in the libc.a shared
objects also use the user defined version of malloc, then a new instance of
libc.a must be first created. This can be done as follows:
280 AIX 5L Porting Guide

rtl_enable -o /usr/local/lib/libc.a /lib/libc.a

The program must then be relinked:

cc mymalloc.o -L /usr/local/lib -brtl -bE:myexports

In this example, mymalloc.o defines malloc and the export file myexports
causes the symbol malloc to be exported from the main program. Calls to
malloc from within libc.a will now go to the malloc routine defined in
mymalloc.o.

9.6 Developing shared libraries

The way a shared library is used in a development environment is somewhat
different to that in a production environment. In a development environment,
the library may be constantly changed and altered so that new versions can
be tested. On large systems, multiple users may be working with their own
version of the shared library. There are a number of things to be aware of to
make the development environment for shared libraries easier to use.

If the system has multiple versions of a shared library, then you need to be
careful that your program uses the version of the library that you want. This
can be achieved with the use of the -L option on the command line and the
use of the LIBPATH or LD_LIBRARY_PATH (depending on platform)
environment variable.

When an application is started, the system loader reads the loader section of
the header of the executable file. It reads the dependency information for any
shared objects the executable requires and attempts to load the code for
those shared objects into the system shared object segment, if they are not
already loaded. Shared objects that are loaded into the system shared library
segment have an attribute called the use count. Each time an application
program that uses the shared object is started, the use count is incremented.
When an application terminates, the use count for any shared objects it was
using is decreased by one. When the use count for a shared object in the
system shared library segment reaches zero, the shared object is not
unloaded, but instead, remains in memory. This is done to reduce the
overhead of starting any more applications that use the shared object,
because they will not have to load the object into the system shared segment.

9.6.1 The genkld command (Power only)
The genkld command is used to list the shared objects that are loaded in the
system shared library segment. The output of the command can contain
multiple duplicate entries and be quite lengthy, so it is best to filter the output
Chapter 9. AIX shared objects and libraries 281

using the sort command or by performing a grep for the shared object you are
investigating. For example:

genkld | sort -u

d00005c0 19f26f /usr/lib/libc.a/shr.o
d01a00f8 87a /usr/lib/libcrypt.a/shr.o
d01a7100 78b4 /usr/lib/libi18n.a/shr.o
d01af100 137fe /usr/lib/libiconv.a/shr4.o
d01c3100 124f1 /usr/lib/libodm.a/shr.o
d01d6100 bc4c /usr/lib/libcfg.a/shr.o
d01e2880 19583 /usr/lib/libsm.a/shr.o
d01fc100 262fc /usr/lib/liblvm.a/shr.o
d02230f8 1624 /usr/lib/libpthreads_compat.a/shr.o

The command can only be executed by the root user or a user in the system
group. The three columns show the virtual address of the object within the
system segment, the size of the object, and the name of the file that was
loaded.

9.6.2 The slibclean command
The slibclean command can be used by the root user to unload all shared
objects with a use count value of zero from the system shared library
segment. This command is useful in an environment when shared libraries
are under development. You can run the slibclean command followed by the
genkld command to ensure that the shared objects under development are
not loaded in the system shared library segment. This means that any
application started after this will automatically use the latest version of the
shared objects, since the system loader will search for and load them. It also
prevents multiple versions of the same objects existing in the system
segment.

During the development of shared objects, you may sometimes see an error
message similar to the following when creating a new version of an existing
shared object:

make libone.so
cc -O -c source1.c
cc -berok -G -o libone.so source1.o

ld: 0711-851 SEVERE ERROR: Output file: libone.so
The file is in use and cannot be overwritten.

make: 1254-004 The error code from the last command is 12.

The error message means that the shared object in question has been loaded
into the system shared library segment. The file is marked as in use, even if
the use count is zero. Running the slibclean command will unload all of the
282 AIX 5L Porting Guide

unused shared objects from the system. An alternative (and simpler) method
of avoiding this problem is to use the rm -f command to remove the shared
object before creating it.

9.6.3 The dump command
The dump command is used to examine the header information of executable
files and shared objects. Although both Power and Itanium-based system
versions of AIX 5L have a dump command, the options and format of the
output is completely different. This is because of the difference in executable
file formats on the two platforms.

The remainder of this section is applicable to the Power platform only,
because the information is used when tracing missing symbols or object from
shared libraries. AIX 5L for Itanium-based systems does not include much of
this information in the header of the ELF executables, because the system
uses run-time linking. See Section 9.6.5, “The ldd and nm commands” on
page 288 for information on commands that can be used on Itanium-based
systems to investigate shared object problems.

The main options for dump that are useful when working with shared libraries
are the -H option and the -Tv options.

9.6.3.1 The dump -H command
The dump -H command is used to determine which shared objects an
executable or shared object depends on for symbol resolution at run time.
The interesting information is in the last section of output and has the title
Import File Strings. A sample output is as follows:

dump -H example

example:

Loader Section
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x00000006 0x0000000e 0x00000047

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000003 0x00000158 0x00000019 0x0000019f

Import File Strings
INDEX PATH BASE MEMBER
0 /tmp/addlib/old/complex:/usr/lib:/lib
1 libc.a shr.o
Chapter 9. AIX shared objects and libraries 283

2 libone.a shr1.o

The number of INDEX entries will depend on how many shared objects the
target depends on for symbol resolution. The INDEX 0 entry is a colon
separated list of directories. If the LIBPATH environment variable is not set
when the executable is started, the directories listed in the INDEX 0 entry are
searched for by the shared objects mentioned in subsequent entries. The
directories in the entry are those used with the -L option when the object was
linked. The /usr/lib and /lib entries are always present. If you want these
directories to be searched first, you need to add them explicitly to the linker
command line and ensure that they appear before any other -L options. Using
the example shown above, altering the -L options on the link command line
to be -L/usr/lib -L/lib -L/tmp/addlib/old/complex would result in an INDEX 0
entry of:

0 /usr/lib:/lib:/tmp/addlib/old/complex:/usr/lib:/lib

The format of the other entries is as follows:

Index The index number of the entry in the Import File Strings section.

Path Optional path name component of the shared object. A path
name will be present if a path name was used when the shared
object was specified on the link command line. The -bnoipath
linker option can be used to prevent the path name used on the
command line from appearing in this portion of the entry. The
-bipath option is the default. The option effects all shared
objects listed on the command line.

Base The name of the archive library containing the shared object, or
the name of the shared object itself, if it is a new style shared
object.

Member The name of the shared object if it is contained in an archive
library.

Some examples of different link commands are appended below, along with
the Import File Strings section of the output of the dump -H command on the
resulting executables. This demonstrates the relationship between the way
the shared objects are specified on the command line and the entries in the
Import File Strings section of the executable header.

This sample shows the use of the absolute path name on the link line. The
following command:

cc -o example main.c /tmp/addlib/old/complex/libone.a

results in an Import File Strings section of:
284 AIX 5L Porting Guide

Import File Strings
INDEX PATH BASE MEMBER
0 /usr/lib:/lib
1 libc.a shr.o
2 /tmp/addlib/old/complex libone.a shr1.o

This sample shows how to suppress the absolute path name used on the link
line. The following command:

cc -o example main.c -bnoipath /tmp/addlib/old/complex/libone.a

results in an Import File Strings section of:

Import File Strings
INDEX PATH BASE MEMBER
0 /usr/lib:/lib
1 libc.a shr.o
2 libone.a shr1.o

When using a new style shared object, there is no member entry in the
output, only a base entry. The following command:

cc -brtl -o example main.c -L/tmp/addlib/new/complex -lone

results in an Import File Strings section of:

Import File Strings
INDEX PATH BASE MEMBER
0 /tmp/addlib/new/complex:/usr/lib:/lib
1 libone.so
2 libc.a shr.o
3 librtl.a shr.o

9.6.3.2 The dump -Tv command
The dump -Tv command is used to examine the symbol information of a
shared object or executable. It lists information on the symbols the object is
exporting. It also lists the symbols the object or executable will try and import
at load time and, if known, the name of the shared object that contains those
symbols. The main columns to examine in the output are headed IMEX,
IMPid, and Name.

The IMEX column indicates if the symbol is being imported (IMP) or exported
(EXP). The IMPid field contains information on the shared object that the
symbol will be imported from. The Name field lists the name of the symbol.
For example:
Chapter 9. AIX shared objects and libraries 285

dump -Tv libone.so

libone.so:

Loader Section

Loader Symbol Table Information
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x00000000 undef IMP DS EXTref libtwo.so function2
[2] 0x20000264 .data EXP DS SECdef [noIMid] function3
[3] 0x20000270 .data EXP DS SECdef [noIMid] function1

The output shown above for the libone.so new style shared object indicates
that the symbols function1 and function3 are being exported from this object.
The object also has two imported symbols on which it depends. The symbol
printf is being imported from the shared object shr.o, which is a member of
the libc.a archive library. It also imports the symbol function2 from the new
style shared object libtwo.so.

9.6.4 Using a private shared object
When used under normal circumstances, a shared object is loaded into the
system global shared object segment. Subsequent executables that use the
shared object benefit from the fact that it is already loaded.

In a development environment, particularly on a system with multiple
developers, it may be preferable to use a private copy of a shared object.
This may be useful when developing and testing new functionality in a shared
object that is specific to a particular version of the application that a single
developer is working on.

If the shared object or container has the access permissions modified (as
detailed below), then when the system loader starts an application that uses
this shared object, the shared object text will be loaded into the process
private segment rather than the system shared object segment. The shared
object data will also be loaded into the process private segment instead of its
normal location of the process shared object data segment. This means every
application will have its own private copy of the shared object text and data.
Applications normally have their own copy of the shared object data and
share the text with other applications.

To use a private version of the shared object text and data, modify the access
permissions as follows:

 • If the shared object is contained in an archive library, remove read-other
permission from the archive library.
286 AIX 5L Porting Guide

 • If the shared object is a new style shared object, for example libname.so,
or a standalone shared object, for example, shrobj.o, then remove
read-other permission from the shared object.

The effect of this change can be demonstrated using the following sample
code.

The file source1.c is used to make a simple shared object. It contains the
following code:

struct funcdesc {
int codeaddr;
int TOCentry;
int env;

} * shlibfdesc;

void function1(int a)
{

shlibfdesc = (struct funcdesc *) function1;
printf("address of function1 is 0x%p\n",shlibfdesc->codeaddr);
printf("address of shlibfdesc is 0x%p\n",&shlibfdesc);

}

The shared object is linked with a small main application, which contains the
following code:

struct funcdesc {
int codeaddr;
int TOCentry;
int env;

} * mainfdesc;

int main(int argc, char ** argv)
{

mainfdesc = (struct funcdesc *) main;
printf("address of main is 0x%p\n",mainfdesc->codeaddr);
printf("address of mainfdesc struct is 0x%p\n",&mainfdesc);
function1();

}

A function pointer in the C language is implemented as a pointer to a
structure that contains three entries. The first entry is a pointer to the address
of the code, and the second is a pointer to the table of contents entry for the
module containing the function. The third entry is a pointer to environment
information and is used by certain other languages, such as Pascal.

The shared object is created with the following commands:
Chapter 9. AIX shared objects and libraries 287

cc -c source1.c
ld -G -o libone.so source1.o -bexpall -bnoentry -lc
chmod o-r libone.so

Note that read-other permission is removed from the shared object. The main
routine is then created with the following command:

cc -brtl -o example main.c -lone -L.

The output from running the program is as follows:

./example
address of main is 0x100002f0
address of mainfdesc struct is 0x200027d4
address of function1 is 0x20000150
address of shlibfdesc is 0x2000127c

Note that the address of the code for the main routine is in segment 1 (as
expected), and the data structure mainfdesc is in segment 2. Because the
shared object had read-other permission removed, it was loaded into
segment 2 by the system loader. This can be seen with the address of
function1 and shlibfdesc, starting with 0x2.

If read-other permission is restored to the shared object, and the program is
invoked again, the result is as follows:

chmod o+r libone.so
./example
address of main is 0x100002f0
address of mainfdesc struct is 0x200007d4
address of function1 is 0xd040f150
address of shlibfdesc is 0xf001f27c

The address of the main routine and the mainfdesc structure have not
changed. The address of function1 now starts with 0xd. This indicates the
code is in segment 13, the system shared object segment. The address of the
data object shlibfdesc now starts with 0xf, which indicates it is in segment 15,
the process private shared object data segment.

9.6.5 The ldd and nm commands
In AIX 5L on Itanium-based systems, the ldd and nm commands can be used
to examine the shared object and symbol dependencies of an executable.

9.6.5.1 The ldd command
When used without flags, the ldd command lists the shared objects that will
be loaded to start the executable. For example:
288 AIX 5L Porting Guide

itsoia64:/home/richard/new>ldd example
example needs:

libone.so => ./libone.so
/usr/lib/ia64l32/libc.so.1

When used with the -r option, the ldd command will attempt symbol
resolution, and print error messages if it encounters any problems with
unresolved symbols. For example:

itsoia64:/home/richard/new>ldd -r example
example needs:

libone.so => ./libone.so
/usr/lib/ia64l32/libc.so.1

dynamic linker: example: relocation error: symbol not found: fred;
referenced from: ./libone.so

9.6.5.2 The nm command
The nm command can be used to list the unresolved symbols in an executable
or shared object. Unlike the dump command on Power systems, it is not
possible to obtain information on the shared object that is expected to supply
the symbol. This is because AIX 5L for Itanium-based systems uses run-time
linking, and the information on the source of symbols is not kept in the
executable. The plus side to this of course is that creating a shared object is
much easier in the first place.

9.7 Programatic control of loading shared objects

The dlopen() family of subroutines is supported on the AIX operating system.
The functions include:

 • dlopen

 • dlclose

 • dlsym

 • dlerror

When used appropriately, they allow a program to dynamically load shared
objects into the address space, use functions in the shared object, and then
unload the shared object when it is no longer required.

9.7.1 The dlopen subroutine
The dlopen function is used to open a shared object, and dynamically map it
into the running programs address space. The specification of the function is
as follows:
Chapter 9. AIX shared objects and libraries 289

#include <dlfcn.h>

void *dlopen (FilePath, Flags);
const char *FilePath;
int Flags;

The FilePath parameter is the full path to a shared object, for example,
shrobj.o or libname.so. It can also be a path name to an archive library that
includes the required shared object member name in parenthesis, for
example, /lib/libc.a(shr1.o).

The Flags parameter specifies how the named shared object should be
loaded. The Flags parameter must be set to RTLD_NOW or RTLD_LAZY. If
the object is a member of an archive library, the Flags parameter must be
ORed with RTLD_MEMBER.

The subroutine returns a handle to the shared library that gets loaded. This
handle is then used, with the dlsym subroutine, to reference the symbols in
the shared object. On failure, the subroutine returns NULL. If this is the case,
the dlerror subroutine can be used to print an error message.

9.7.2 The dlsym subroutine
The dlopen subroutine is used to load the library. If successful, it returns a
handle for use with the dlsym routine to search for symbols in the loaded
shared object. Once the handle is available, the symbols (including functions
and variables) in the shared object can be found easily. For example:

lib_func=dlsym(lib_handle, "locatefn");
error=dlerror();
if (error)
{

fprintf(stderr, "Error:%s \n",error);
exit(1);

}

The dlsym subroutine accepts two parameters. The first is the handle to the
shared object returned from the dlopen subroutine. The other is a string
representing the symbol to be searched for.

If successful, the dlsym subroutine returns a pointer that holds the address of
the symbol that is referenced. On failure, the dlsym subroutine returns NULL.
This, again, can be used with the dlerror subroutine to print an error
message.
290 AIX 5L Porting Guide

9.7.3 The dlclose subroutine
The dlclose subroutine is used to remove access to a shared object that was
loaded into the processes’ address space with the dlopen subroutine. The
subroutine takes, as its argument, the handle returned by dlopen.

9.7.4 The dlerror subroutine
The dlerror subroutine is used to obtain information about the last error that
occurred in a dynamic loading routine (that is, dlopen, dlsym, or dlclose). The
returned value is a pointer to a null-terminated string without a final new line.
Once a call is made to this subroutine, subsequent calls without any
intervening dynamic loading errors will return NULL.

Applications can avoid calling the dlerror subroutine in many cases by
examining errno after a failed call to a dynamic loading routine. If errno is
ENOEXEC, the dlerror subroutine will return additional information. In all
other cases, dlerror will return the string corresponding to the value of errno.

9.7.5 Using dynamic loading subroutines
In order to use the dynamic loading subroutines, an application must be
linked with the libdl.a library. The shared objects used with the dynamic
loading subroutines can be traditional AIX shared objects, or shared objects
that have been enabled for run-time linking with the -G linker option.

When the dlopen subroutine is used to open a shared object, any initialization
routines specified with the -binitfini option, as described in Section 9.2.4,
“Initialization and termination routines” on page 270, will be called before
dlopen returns. Similarly, any termination routines will be called by the dlclose
subroutine.

9.7.6 Advantages of dynamic loading
The use of dynamic linking allows several benefits for application developers:

1. The ability to share commonly used code across many applications,
leading to disk and memory savings.

2. It allows the implementation of services to be hidden from applications.

The dlerror() subroutine is not thread-safe, because the string may reside
in a static area that is overwritten when an error occurs.

Note
Chapter 9. AIX shared objects and libraries 291

3. It allows the re-implementation of services, for example, to permit bug and
performance fixes or to allow multiple implementations selectable at run
time.

9.8 Shared objects and C++

The C++ language, although similar in some respects to the C language,
offers many additional facilities. One of these is known as function
overloading, which makes it possible to have multiple functions with the same
name but different parameter lists. This feature means it is not possible to
use the function name alone as a unique identifier in the symbol table of an
object file. For this reason, function names in C++ are mangled to produce
the symbol name. The mangling uses a code to indicate the number, type,
and ordering of parameters to the function.

It is the name mangling feature of C++ that means the process of creating a
shared object, that includes object code created by the C++ compiler, is
slightly more complicated than when using code produced by the C compiler.

Although it would be possible to manually create import and export files, the
process is time consuming, because a unique symbol name is required for
each instance of an overloaded function.

9.8.1 Generating an exports file on Power
A very useful option to the makeC++SharedLib command is the ability to save
the export file that is generated behind the scenes and normally discarded
after use. If saved, this export file can then be used as an import file when
creating another shared object. The -e expfile option is used to save the
export file. Note that the export file produced does not have an object file
name field (#!) on the first line, so one will have to be manually added, if
required. The makeC++SharedLib shell script is supplied with the compiler on
Power platforms.

9.8.2 The -qmkshrobj option
The -qmkshrobj option is used to instruct the C++ compiler to create a shared
object from previously created object files and archive libraries. This option
also makes it much easier to create shared objects that use template
functions. Refer to Section 11.5, “Shared objects with templates” on page 406
for more information.

For example, to create a shared object shr1.o from the files source1.o and
source2.o, use the following command:
292 AIX 5L Porting Guide

xlC -qmkshrobj -o shr1.o source1.o source2.o

The -G option can also be used in conjunction with the -qmkshrobj option to
create an object that uses the new style naming convention and is enabled
for run-time linking. This is the method that should always be used on AIX 5L
for Itanium-based systems. For example:

xlC -G -qmkshrobj -o libshr1.so source1.o source2.o

To specify the priority of the shared object, which determines the initialization
order of the shared objects used in an application, append the priority number
to the -qmkshrobj option. For example, to create the shared object shr1.o,
which has an initialization priority of -100, use the following command:

xlC -qmkshrobj=-100 -o shr1.o source1.o source2.o

On the Power platform, if none of the -bexpall, -bE:, -bexport:, or -bnoexpall
options are specified, then using the -qmkshrobj option will force the compiler
to generate an exports file that exports all symbols. This file can be saved for
use as an import file when creating other shared objects, if desired. This is
done using the -qexpfile=filename option. For example:

xlC -qmkshrobj -qexpfile=shr1.exp -o shr1.o source1.o source2.o

9.8.3 Mixing C and C++ object files
In addition to the mangling of symbol names, the C++ language may differ
from the C language in the way function arguments are passed on the calling
stack. The C++ language allows an extern definition to specify a linkage
convention. We can speak of having a function having C or C++ linkage.

When mixing C and C++ code together, it is necessary to use a linkage block
to specify a C routine that will be called from a C++ routine. This prevents the
compiler from mangling the name of the C routine, which would result in a
symbol name that could not be resolved. For example, to call the C function
foo from C++ code, the declaration of foo must be in an external linkage
block:

extern “C” {
void foo(void);
}
class1::class1(int a)
{

foo();
}

If the declaration of foo was not contained in the extern “C” block, the C++
compiler would mangle the symbol name to foo__Fv.
Chapter 9. AIX shared objects and libraries 293

When mixing C and C++ objects within a single shared object, either the
makeC++SharedLib command (which uses the C++ compiler) or the -qmkshrobj
option of the C++ compiler should be used to create the shared object. Do not
use the C compiler or the linker, because they may not produce the correct
result, as they are not aware of C++ constructors, destructors, templates, and
other C++ language features.

9.9 Order of initialization

There are situations where the order of initialization of data objects within a
program is important to the correct operation of the application. A priority can
be assigned to an individual object file when it is compiled. This is done using
the -qpriority option. For example:

xlC -c zoo.C -qpriority=-50

The C++ compiler also supports options that can be used to indicate the
relative order of initialization of shared objects. When using the C++ compiler,
the priority is specified as an additional value with the -qmkshrobj option. For
example:

xlC -qmkshrobj=-100 -o shr1.o source1.o

Priority values can also be indicated within C++ code by using the priority
compiler directive as follows:

#pragma priority(value)

These values alter the order of initialization of data objects within the object
module.

9.9.1 Priority values
Priority values may be any number from -214782623 to 214783647. A priority
value of -214782623 is the highest priority. Data objects with this priority are
initialized first. A priority value of 214783647 is the lowest priority. Data
objects with this priority are initialized last. Priority values from -214783648 to
-214782624 are reserved for system use. If no priority is specified, the default
priority of 0 is used.

The explanation of priority values uses the example data objects and files
shown in Figure 61.
294 AIX 5L Porting Guide

Figure 61. Illustration of objects in fish.o and animals.o

This example shows how to specify priorities when creating shared objects to
guarantee the order of initialization. The user should first of all determine the
order in which they want the objects to be initialized, both within each file and
between shared objects:

1. Develop an initialization order for the objects in house.C, farm.C, and
zoo.C:

a. To ensure that the object lion L in zoo.C is initialized before any other
objects in either of the other two files in the shared object animals.o,
compile zoo.C using a -qpriority=nn option, with nn less than zero, so

myprogram.C libfish.so

fresh.C salt.C

house.C farm.C zoo.C

libanimals.so

....................

main () {

.............

class Cage CAGE

..............

#pragma priority(-80)
........

class trout A
.......

#pragma priority(500)

........

class bass B

..........

#pragma priority(-200)
..........

class shark S
..........

#pragma priority(10)
..........

class tuna T

...........

#pragma priority(20)

class dog D

#pragma priority(100)

class cat C

...........

...........

...........

class horse H

...........

#pragma priority(500)

...........

class cow W

............

class lion L
............

#pragma priority(50)

............

class zebra Z
............
Chapter 9. AIX shared objects and libraries 295

that data objects have a priority number less than any other objects in
farm.C and house.C:

xlC zoo.C -c -qpriority=-50

b. Compile the house.C and farm.C files without specifying the
-qpriority=nn option. This means the priority will default to zero. This
means data objects within the files retain the priority numbers specified
by their #pragma priority(nn) directives:

xlC -c house.C farm.C

c. Combine these three files into a shared library. Use the C++ compiler
to construct the shared object libanimals.so with a priority of 40:

xlC -G -qmkshrobj=40 -o libanimals.so house.o farm.o zoo.o

2. Develop an initialization order for the objects in fresh.C and salt.C, and
use the #pragma priority(value) directive to implement it:

a. Compile the fresh.C and salt.C files

xlC -c fresh.C salt.C

b. To assure that all the objects in fresh.C and salt.C are initialized before
any other objects, including those in other shared objects and the main
application, use the C++ compiler to construct a shared object fish.o
with a priority of -100:

xlC -G -qmkshrobj=-100 -o libfish.so fresh.o salt.o

Because the shared object libfish.so has a lower priority number (-100)
than libanimals.so (40), when the files are use together by an
executable, the objects in libfish.so are initialized first.

3. Compile the main program, myprogram.C, which contains the function
main, to produce an object file, myprogram.o. By not specifying a priority,
this file is compiled with a default priority of zero, and the objects in main
have a priority of zero:

xlC -c myprogram.C

4. Produce an executable file, animal_time, so that the objects are initialized
in the required order. Enter:

xlC -o animal_time main.o -L. -lfish -lanimals
296 AIX 5L Porting Guide

When the animal_time executable is run, the order of initialization of objects
is as shown in Table 82.

Table 82. Order of initialization of objects in prriolib.a

Object Priority
value

Comment

libfish.so -100 All objects in fish.o are initialized first
because they are in a library prepared
with xlC -qmkshrobj=-100 (lowest
priority number, -100 specified for any
files in this compilation).

shark S -100(-200) Initialized first in fish.o because within
file, #pragma priority(-200).

trout A -100(-80) #pragma priority(-80).

tuna T -100(10) #pragma priority(10).

bass B -100(500) #pragma priority(500).

myprog.o 0 File generated with no priority
specifications; default is 0.

cage CAGE 0(0) Object generated in main with no
priority specifications; default is 0.

libanimals.so 40 File generated with xlC
-qmkshrobj=40.

lion L 40(-50) Initialized first in file animals.o
compiled with -qpriority=-50.

horse H 40(0) Follows with priority of 0 (since
-qpriority=nn is not specified at
compilation and no #pragma
priority(nn) directive is given).

dog D 40(20) Next priority number (specified by
#pragma priority(20)).

zebra N 40(50) Next priority number from #pragma
priority(50).

cat C 40(100) Next priority number from #pragma
priority(100).

cow W 40(500) Next priority number from #pragma
priority(500).
Chapter 9. AIX shared objects and libraries 297

9.10 Troubleshooting

The following tips and hints can be used to help link and load of C and C++
programs on AIX 5L.

9.10.1 Link failures on Power
When linking large applications with many libraries, the linker may exit with
some strange errors referring to BUMP or indicating that the binder was
killed. This may be because of low paging space or because of low resource
limits for the user invoking the command. The AIX linker offers a great deal
more functionality than traditional UNIX linkers, but it does require a
reasonable amount of virtual memory, particularly when linking large
applications with many libraries.

If this type of error is encountered, check the paging space available on the
machine. In addition, check the resource limits for the user invoking the
linker. This can be done with the ulimit command.

9.10.1.1 Unresolved symbols
When linking your application with many libraries, particularly those supplied
by a third party product, such as a database, it is not unusual during the
development cycle to see a linker error warning of unresolved symbols.

The linker supports options that can be used to generate linker log files.
These log files can then be analyzed to determine the library or object file that
references the unresolved symbol. This can help in tracking interdependent
or redundant libraries being used in error.

The -bmap:filename option is used to generate an address map. Unresolved
symbols are listed at the top of the file, followed by imported symbols.

The -bloadmap:filename option is used to generate the linker log file. It
includes information on all of the arguments passed to the linker along with
the shared objects being read and the number of symbols being imported. If
an unresolved symbol is found, the log file produced by the -bloadmap option
lists the object file or shared object that references the symbol. In the case of
using libraries supplied by a third party product, you can then search the
other libraries supplied by the product in an effort to determine which one
defines the unresolved symbol. This is particularly useful when dealing with
database products that supply many tens of libraries for use in application
development.
298 AIX 5L Porting Guide

9.10.2 Run time tips
If large parts of the shared libraries are paged in all at once because of C++
calls or many references between libraries, it may be faster to read the library
rather than demand-page it into memory. Remove read-other permission from
the applications shared libraries and see if the loading performance
improves. If it does, then reset the original permissions and set the following
environment variable:

LDR_CNTRL = PREREAD_SHLIB

By using this environment variable, the libraries are read very quickly into the
shared memory segment.

9.11 Linker differences on Itanium-based systems

This section describes a list of the major differences between the linker on
AIX 5L for Power and the linker on AIX 5L for Itanium-based systems.

9.11.1 libelf.so instead of libld.a
Since the module format on AIX 5L for Itanium-based systems is ELF, the
XCOFF specific processing library libld.a is not available. Instead, libelf.so
provides the object file specific processing code for the ELF environment.

9.11.2 Mixed mode linking no longer valid
On AIX 5L for Power, an archive may contain different types of objects. For
example, libc.a contains .o files, 32-bit shared libraries, and 64-bit shared
libraries. Applications (both 32-bit and 64-bit) can link dynamically and/or
statically against this single archive (libc.a). This behavior is not duplicated
on AIX 5L for Itanium-based systems. The System V.4 semantics for shared
library creation (static and dynamic linking), does not allow for a single
archive to be used in the same manner as on AIX 5L for Power. For AIX 5L
for Itanium-based systems, library variants exist in separate directories as
follows:

/usr/lib/ia64l32 (ILP32 little-endian libraries)
/usr/lib/ia64l64 (LP64 little-endian libraries)

Mixed mode linking is disallowed. The linker’s implementation determines its
target mode (ia64l32 or ia64l64). When a directory specifier is provided, such
as 'ld ... -Ldir ...', the linker will add that directory to its search list before the
default directories to be searched (as it always has). When the run-time linker
and link-editor are searching for libraries, it is not a fatal error if an ELF file of
the wrong type is encountered in the search. Instead, the link-editors will
Chapter 9. AIX shared objects and libraries 299

exhaust the search of all paths before determining a matching object could
not be found. This will permit having a common search path
(LD_LIBRARY_PATH) that contains a mix of directories containing differing
process models.

9.11.3 Symbol resolution performed by run-time linker
On AIX 5L for Itanium-based systems, symbol resolution in a running
program is performed by the run-time linker (in libc), according to the rules
specified in the generic IA-64 ABI. At link time, shared objects referenced on
the command line are listed in the "needed module" section of the program.
Symbols are resolved at run time by sequentially searching the needed
modules list until a definition is found. On AIX 5L for Power, symbol resolution
is performed at link time. If a symbol is defined in a shared object (or module
referenced on the command line, the linker records the symbol name and
defining module in the loader section of the program. When a program is
executed, imported symbols must be resolved by finding them in the defining
module, as recorded at link time. On both platforms, an import file can be
used in place of a shared object (module) that is not available or has not yet
been built. The inability to associate a symbol to a specific library on AIX 5L
for Itanium-based systems makes the order in which the libraries are
specified very important. For example, with respect to rpc, if you want the
streams behavior, your library order must be libnsl, then libc, and if you
want sockets behavior, it must be libc followed by libnsl. For example:

1. Module A contains a definition for function X

2. Library foo also has a definition for a different function X

3. Library foo has a function Y, which calls function X

On AIX for Power, function Y will get the X present in library foo. On AIX 5L
for Itanium-based systems, function Y will get the X present in Module A.

9.11.4 AIX system calls for binding
The AIX load(), loadquery() and unload() APIs continue to be supported on
AIX 5L for Itanium-based systems, however, loadbind() is not supported.

9.11.5 Linker options
The AIX 5L for Power linker differs from the SVR4 style linker used in AIX 5L
for Itanium-based systems in features and functionality. The flags used, as
well as their default behavior, are often different. The AIX 5L for
Itanium-based systems linker does not support relinking of an executable and
300 AIX 5L Porting Guide

will ignore the following AIX flags because they either have no meaning in an
ELF and IA-64 environment or they have no equivalent:

-k -z -basis -bautoexp -bbigtoc -bbindcmds:File -bbinder:File
-bbindopts:File -bcomprld -bcrld -bcror15 -bcror31 -bD:Number -bdbg:Option
-bdebugopt:Option -bdelcsect -berrmsg -bex1:File -bex2:File -bex3:File
-bex4:File -bex5:File -bgc -bgcbypass:Number -bglink:File -bh:Number
-bhalt:Number -bI:File -nimport:File -binitfini:Init:Term:Priority -bipath
-bkeepfile:File -blazy -bL:File -bloadmap:File -bM:ModuleType
-bmodtype:ModuleType -bmaxdata:Number -bmaxstack:Number -bS:Number -bnl
-bnoloadmap -bnoautoimp -bnobigtoc -bnobind -bnocomprld -bnocrld
-bnodelcsect -bnoentry -bnoerrmsg -bnogc -bnoglink -bnoipath -bnolibpath
-bnom -bnoobjreorder -bnop:Nop -bnoquite -bnoreorder -bnortl -bnortllib
-bnostrip -bnosymbolic -bnotextro -bnro -bnotypchk -bnov -bnox -bquiet -br
-breorder -brename:Old -brtl -brtllib -bS:number -bsmap -bstabcmpct
-bsxref:File -btypchk -bx -bX:File -bxref:File -m -M -SNumber -uName -v
-zString

There are other AIX linker flags for which there are corresponding AIX 5L for
Itanium-based system linker flags that provide either identical or similar
functionality. Table 83 details the AIX linker flags and their semantics with the
corresponding AIX 5L for Itanium-based systems linker flags and semantics.

Table 83. Linker flag comparison

AIX 5L for Power linker flag AIX 5L for Itanium-based systems
equivalent flag

-DNumber locates the initialized data. Possible with the Map File (-M option).

-eLabel sets the entry point to Label. -e epsym sets the entry point to epsym.

-G produces a shared object. -G produces a shared object.

-HNumber aligns the text, data, and loader
sections at a multiple of number.

Possible with the Map File (-M option).

-lName processes libName.a in static
mode.

-l x

-LDir adds Dir to the list of search
directories.

-L path

All -L options are processed first, before
any of the -l options; therefore, each
library specified with the -l option will be
searched in all directories specified.

Each directory specified with the -l option
is searched in the directory specified with
-L only if -L precedes the -l option.
Chapter 9. AIX shared objects and libraries 301

LDPATH = dirlist
Libraries are searched in the following
order:

1. Directories specified by -L or
LIBPATH if there is no -L option.

2. Standard directories (/usr/lib and /lib).

LD_LIBRARY_PATH = dir1:dir2; dir3:dir4
Libraries are searched in the following
order:

1. dir1 and dir2.

2. directories specified by the -L option.

3. dir3 and dir4.

4. standard directories (/usr/lib and
/usr/ccs/lib).

-oName names the output file. -o outfile names the output file.

-r produces non-executable output file
suitable for another linking.

-r produces a relocatable file (partially
linked file).

-s strips symbolic debugging information. -s strips symbolic debugging information.

-TNumber sets the starting address of the
text section. It does not have any effect on
run-time addresses.

Possible with the Map File (-M option).

-bautoimp or -bso imports symbols from
any shared object specified as input. This
option is valid for all shared objects.

-Bdynamic links with the shared object
version of a library (when available). This
option is valid only for the shared objects
following it and until the next -Bstatic.

-bC:File or -bcalls:File writes an address
map to a file.

-m produces a memory map of
input/output sections.

-bdynamic or -bshared processes
subsequent shared objects in dynamic
mode.

-Bdynamic links with the shared object
version of a library (when available) until
the next -Bstatic.

-bstatic processes subsequent shared
objects in static mode.

-Bstatic links with the archive version of a
library until next -Bdynamic.

-bE:File or -bexport:File exports the
external symbols listed in File.

-Bexport:File exports all global and weak
symbols listed in File.

-bernotok or -bf reports an error if there
are any unresolved external references.

-z defs do not allow undefined symbols
(default for executables).

 -berok allows unresolved external
references in the output file.

-z nodefs allows undefined symbols
(default for shared objects).

-bexpall exports all global symbols. -Bexport.

AIX 5L for Power linker flag AIX 5L for Itanium-based systems
equivalent flag
302 AIX 5L Porting Guide

Refer to the ld product documentation for a full description of all of the linker
options.

9.11.6 Import/export file support
As an accommodation for existing AIX applications, the AIX 5L for
Itanium-based systems linker provides support for the use of Import and
Export files. This support is different from the support on AIX 5L for Power in
both syntax and semantics which may require makefile changes. The
command line arguments to ld are:

-Bimport:file
-Bexport:file

The difference is that the option is specified with -B instead of -b. In addition,
the optional short form (equivalent to -bI:file and -bE:file) is not supported.

-blibpath:Path uses Path when writing the
loader section of the output file.

-R path records path for run-time library
search (this may not be equivalent).

-bnoexpall does not export any symbol not
listed in the export file (default).

-Bexport:File hides all symbols except
those listed in File.

-bpD:Origin specifies origin as the address
of the first byte of the file page containing
the beginning of the data section.

Possible with the Map File (-M option).

-bpT:Origin specifies origin as the address
of the first byte of the file page containing
the beginning of the text section.

Possible with the Map File (-M option).

-bro or -btextro ensures that there are no
load-time relocations for the text section.

-z text in dynamic mode only. Do not allow
relocations against non-writable
allocatable segment.

-bsymbolic assigns the symbolic attribute
to most symbols exported without an
explicit attribute.

-Bsymbolic=[list | :File] binds all
references to the named symbol to its
definition.

LIBPATH environment variable. -YP, dirlist changes default library search
directories.

-bnso -bI:/lib/syscalss.exp. -a produces a statically-linked executable
file (must not be used with -r and -dy
options).

AIX 5L for Power linker flag AIX 5L for Itanium-based systems
equivalent flag
Chapter 9. AIX shared objects and libraries 303

9.11.6.1 Import/export file syntax
Directives begin with a %, which must be in column one. There is currently
one directive, %soname. The directive is followed by a string (quoted or not):

%soname <name>

This directive has the effect of adding the named shared object to the needed
list of the object being built. (The needed objects of a dynamic executable or
shared object can be listed with the -Lv option of the dump command.) The
comment character is #. It may occur in any column. The comment goes to
the end of line. Symbols should be listed one per line. Symbol entries may
contain an optional tag which may have an optional number:

sym_name [{ws} tag [{ws} decimal_number]] {eol}

where tag is one of syscall, function, object, and decimal_number is a system
call number for the syscall tag and a size for an object. {ws} stands for white
space, either space or tab; {eol} stands for end-of-line. In an export file,
symbols with the syscall tag will be marked for export by the system loader as
system calls. All symbols not marked for export will not be visible outside of
the shared object defining them. The %soname directive is ignored in an
export file. Multiple import files can be specified on the ld command line, but
only one export file.

The -Bsyscall option is still present and functioning, but its functionality is
now additionally obtainable through export files. The -Bsyscall option will be
removed in the future.

9.11.7 Shared library
The creation process of shared library on AIX 5L for Itanium-based systems
is somewhat different from that of AIX for Power.

9.11.7.1 Creating a shared object
The steps to create a shared object are as follows:

1. Compile object files:

$ cc -c mine. c common.c

2. Create export file if required. The linker exports all global symbols of a
shared object. You can use an export file to export only symbols needed
to be visible to the outside of the object and hide the rest. For example, we
want to export only a function named myentry and a global variable named
visit. We create an export file export.mine and put those two symbols in it:

%soname /home/guest/libmine.so
304 AIX 5L Porting Guide

myentry
visit

3. Link with the -G option:

$ ld -G -o libmine.so mine.o common.o -Bexport:export.mine -lc

You can set the name that will be recorded by other objects when they are
linked against this object, and which will subsequently be used to locate the
library at run time if it contains a slash (/) (the SONAME dynamic section
entry) with the -h option:

$ ld -G -o libmine.so mine.o common.o -h/home/guest/libmine.so
-Bexport:export.mine -lc

9.11.7.2 Examine a shared library
You can examine the dynamic section information with the dump command:

$ dump -Lv libmine. so
libmine. so:
**** DYNAMIC SECTION INFORMATION ****
[INDEX] Tag Value
[1] SONAME /home/guest/libmine.so
[2] ...

9.11.7.3 Link a shared library
Once the shared object has been installed into the desired location, in this
case, /home/guest, you can then link an executable against this object as
follows:

$ cc -o main main. c -Bimport:import.mine -L/home/guest -lmine

You need to import the global symbol from an import file. In the case of
libmine.so, the content of the import file can be exactly like export file, except
that the %soname is ignored in the export file by the static linker ld.
Chapter 9. AIX shared objects and libraries 305

306 AIX 5L Porting Guide

Chapter 10. POSIX threads

This chapter covers porting issues with respect to the IEEE POSIX 1003.1
1996 thread interface standard (or just POSIX threads). This standard can be
found at:

http://standards.ieee.org

For certain downloads and access to information from this site, you are
required to register as a member.

Although this standard dates back to 1996, there are running applications that
are based on thread libraries not conforming to this standard.

Furthermore, the POSIX threads standard consists of both requirements and
options. Certain aspects are left implementation defined, unspecified, or even
undefined. Hence, running applications based on the same source code on
platforms having POSIX threads conforming implementations may result in a
different behavior.

In an attempt to best support the reader’s porting task, this section gives an
introduction to POSIX threads (to support the case where the system being
ported from does not support POSIX threads), provides coding examples,
lists porting issues, summarizes recommendations at the end of each
subsection, and ends with a quick reference to the thread library.

AIX 5L conforms to the POSIX threads specification.

10.1 Introduction to threads

A thread is a part of a process that can execute a set of instructions
independently. All threads of a process share its data, but they can also
create an area for private data.

The scheduling of threads resembles that of processes, but there is no
inherent parent/child hierarchy between threads. They are all equal within a
process and identified by a thread ID.

Synchronization of threads’ access to shared data can be governed by the
use of mutual locks (mutexes) and condition variables.

Threads are often more efficient than processes. They start up faster, require
less overhead, simplify access to shared data, and are easier to synchronize.

The following section gives an introduction to POSIX threads.
© Copyright IBM Corp. 2001 307

10.1.1 Threads versus processes
A characterizing feature of UNIX-based operating systems is their ability to
multi-task, that is, execute processes simultaneously. The individual
processes’ execution flows are either interleaved and/or non-interleaved,
depending on the underlying hardware.

10.1.1.1 Processes
Each process has its own run-time environment. It includes, among other
things, a set of identifiers (for example, the PID and GID), a current directory,
an environment (variables and their associated values), a set of file
descriptors, a file-mode creation mask, a signal mask, a set of pending
signals, and a private address space (including a stack and a heap).

New processes are created by forking a child process. Child processes are
themselves processes, so they have their own environment. When created,
the environment of a child process inherits/copies certain values from its
parent process. Values are being passed implicitly from one process to
another, that is, from one address space to another. Except for shared
memory, changes in one process’ address space does not cause a change in
another process’ address space.

Once a process has been forked, any communication between the parent and
child process, or for that matter two processes not directly related by a
parent-child relationship, must be done explicitly. This can be achieved using
interprocess communication (IPC).

For this purpose, UNIX-based OSes support constructs such as named and
unamed pipes, shared memory, sockets, and semaphores. Developing
applications using these constructs can be an intellectually challenging task.
The challenge can usually be traced back to the fact that resources may have
to be shared among more than one process.

To avoid inconsistency of shared resources, processes sometimes need
exclusive access to a resource. A process may need to perform several
computational steps in order to complete a logically atomic step on a shared
resource. Semaphores provide a way of preventing other processes from
disturbing a single process’ logical step (for example, updating some shared
memory), even while it has been preempted.

While semaphores provide a possible solution to this challenge, they may
also introduce unwanted situations, such as deadlocks, if not used carefully.
Because the fork routine also copies semaphores and their state, a child
process may grab a semaphore and terminate without having released a
308 AIX 5L Porting Guide

semaphore. The use of sockets and pipes for IPC can also be challenging
when developing code.

When a child process terminates, it can return an integer value to its parent. If
more information needs to be returned, IPC may be needed or the child
process may even use a file for the purpose.

Although exchanging data correctly between separate processes can seem
demanding from a coding point of view, there are many reasons why one
would want processes to communicate.

For example, on a multiprocessor system, one may reduce the overall time
required to solve a computational problem by executing processes in parallel
on several processors. But at the same time, the correctness of the
computation may depend on the processes exchanging data, that is
performing IPC.

Another reason for having several processes executing concurrently may
simply be that it is simpler, both conceptually and from a design point of view,
if one masters IPC.

However, from the operating systems point of view, forking processes and
handling IPC can be computationally “expensive.” Forking processes takes
time and can require considerable amounts of memory.

10.1.1.2 Threads
Threads provide a “cheaper” alternative, when there is no explicit need for
creating separate processes, but merely a need to have some degree of
parallel execution and manipulation of the same global memory.

Threads are created within a process. They are schedulable entities, which
share the process’:

 • Program instructions

 • Global data (address space)

 • File descriptors

 • Signal handlers

 • Environment (variable) and working directory

 • Set of identifiers (PID, GID, and so forth)

but have their own flow control and identity:

 • Stack
Chapter 10. POSIX threads 309

 • Thread ID

 • Signal mask

 • Priority

 • Errno

 • Program counter/stack pointer and other registers

Access to the process’ global data makes exchanging data easy (as opposed
to processes which cannot see each others data, except what is placed in
shared memory). But there is still a need for mechanisms such as mutual
exclusion.

Creating threads is much faster than forking processes and does not require
a copy of the forking process’s address space. In fact, on systems supporting
threading, a process initially has a single implicit thread, which controls the
program’s main flow.

In this chapter, we shall only be concerned with systems supporting
threading.

10.1.1.3 Example of a POSIX threaded program
This section show a simple example of a threaded program. The program
prints two words to the standard output. A complete listing of the POSIX
thread functions is given in Section 10.1.2.3, “Summary of POSIX threads
library routines” on page 313.

1 #include <pthread.h> /* include file for pthreads - include 1st */
2 #include <stdio.h>
3
4 void *my_thread(void *string)
5 {
6 printf("%s\n", (char *)string);
7 pthread_exit(NULL);
8 }
9
10 int main(int argc, char **argv)
11 {
12 char *hello = "hello ";
13 char *world = "world";
14
15 pthread_t my_th1, my_th2;
16
17 int rc;
18
19 rc = pthread_create(&my_th1, NULL, my_thread, hello);
310 AIX 5L Porting Guide

20 rc = pthread_create(&my_th2, NULL, my_thread, world);
21
22 rc = pthread_join(my_th1, NULL);
23 rc = pthread_join(my_th2, NULL);
24
25 exit(0);
26 }

To compile the code, use one of the _r-suffixed invocations of the base
compilers (for further details, see Section 10.7, “Compiling and linking” on
page 362):

xlc_r -o hello hello.c

Executing the application hello prints the words hello and world on the
screen, not necessarily in that order. In Section 10.2, “Thread scheduling” on
page 322, the scheduling of threads is explained. The scheduling controls
how threads are run on the underlying operating system and hardware.

When the function main is being run, only one thread exists. In lines 19 and
20, two additional threads are started. For the sake of compactness of the
code, we have chosen not to check the return code. This could have been
done by the following code:

rc = pthread_create(&my_th1, NULL, my_thread, hello)
if (rc ==) {

/* process error */
}

The calls in line 19 shows that a thread within a process has an associated ID
(first argument), a function which it will run (third argument), and a pointer to
an argument passed to that function (fourth argument). The second argument
controls the thread’s attribute. Here, NULL just means that the default values
are being used.

Notice that the starting point of flow of control of a created thread is not the
same as that of the creating thread. For the fork call, both parent and child
process continue from the same point, which is the return from the fork call.

Once the two new threads have been started, the main thread waits for them
(line 22-23) to complete (line 7).
Chapter 10. POSIX threads 311

Table 84 shows the similarities between some basic operations on processes
and threads.

Table 84. Operations similarities for processes and threads

A larger example of a threaded program is given in Section 10.11, “Example:
The Mandelbrot set” on page 391.

10.1.2 Thread library versions
Prior to the POSIX 1003.1 1996 thread interface standard, several draft
versions were used as a basis for implementations.

10.1.2.1 Draft versions
There are several draft versions of the POSIX threads standard. Table 85
shows the AIX POSIX thread conformance. The third column specifies how
threads (user threads) are mapped to kernel threads. Thread models are
discussed in Section 10.2, “Thread scheduling” on page 322.

Table 85. AIX POSIX thread conformance

Other common versions of thread packages are DCE threads, based on The
Open Group's DCE 1.2.1 version, which in turn is based on POSIX Draft4.
DCE threads are also sometimes referred to as CMA threads.

Operation Processes Threads

Creation fork/exec pthread_create

Termination exit pthread_exit

Identification getpid pthread_self

Synchronization waitpid pthread_join

Yield processor yield sched_yield

Sending signals kill pthread_kill

Set signal mask sigsetmask pthread_sigmask

AIX version and release Threads version Thread model

3.2 POSIX Draft 4 M:1

4.1 and 4.2 POSIX Draft 7 1:1

4.3 and 5.1 UNIX 98, POSIX 1003.1
1996, POSIX Drafts 7 and
4

M:N
312 AIX 5L Porting Guide

Implementations of draft versions include routines that are either not named
in the final standard or which return values different from the final standard.

AIX 5L provides program support for both Draft 7 of the POSIX Thread
Standard and Xopen Version 5 Standard, which includes the final IEEE
POSIX 1003.1 1996 thread interface standard.

The libpthreads_compat.a library is provided for program development.

10.1.2.2 Final version
The final version of POSIX threads leaves certain aspects implementation
defined, unspecified, or even undefined. This means that porting from
another POSIX threads conforming platform to AIX 5L cannot be assumed to
not require some amount of work. Getting the code to compile should be
relatively straightforward, but issues, such as performance, could turn out to
require work. For instance, under AIX 5L, the default ratio between user
threads and kernel threads of 8:1 is used. It might be necessary to choose
another ratio. This will be discussed in Section 10.2, “Thread scheduling” on
page 322.

Using POSIX threads will result in a more portable application code.

10.1.2.3 Summary of POSIX threads library routines
This section classifies and summarizes the POSIX threads library routines in
AIX 5L.

The library routines can be classified into four functional categories. There
are other ways of classifying the routines; here we merely suggest one. The
categories are:

 • Thread management

 • Execution scheduling

 • Synchronization

 • Thread-specific data

In Table 86 to Table 91, the functional categories are described by routine
names and short descriptions. In Section 10.10, “Quick reference” on
page 371, detailed information about the function headers can be found.
Rather than setting the errno variable, most routines return an integer value,
to be interpreted as an error code. A value of zero indicates that the call was
successful. Other values are passed or retrieved through appropriately typed
arguments.
Chapter 10. POSIX threads 313

Table 86. Thread management

Name Description

pthread_attr_init Initializes a thread attributes object.

pthread_attr_destroy Destroys a thread attributes object.

pthread_attr_setdetachstate Sets the detachstate attribute of a thread attributes
object. This attribute determines if a thread created
with this thread attributes object is in a detached
state or not.

pthread_attr_getdetachstate Gets the detach state attribute from a thread
attributes object.

pthread_attr_setstackaddr Sets the value of the stackaddr attribute of a thread
attributes object. This attribute specifies the stack
address of a thread created with this attributes
object.

pthread_attr_getstackaddr Gets the stackaddr attribute from a thread attributes
object.

pthread_attr_setstacksize Sets the value of the stacksize attribute of a thread
attributes object. This attribute specifies the
minimum stack size, in bytes, of a thread created
with this thread attributes object.

pthread_attr_getstacksize Gets the stacksize attribute from a thread attributes
object.

pthread_testcancel Creates a cancellation point in the calling thread.

pthread_setcancelstate Atomically sets the calling thread's cancelability
state to the indicated state and returns the previous
cancelability state at a specified location reference.

pthread_setcanceltype Atomically sets the calling thread's cancelability
type to the indicated type and returns the previous
cancelability type at a specified location reference.

To use the thread routines, #include <pthread.h> must be included as the
first header file of each source file using the threads library, as shown in
the example in Section 10.1.1.3, “Example of a POSIX threaded program”
on page 310. This is because it defines some important macros that affect
other system header files. Having the pthread.h header file as the first
included file ensures the usage of thread-safe subroutines.

Note
314 AIX 5L Porting Guide

pthread_create Creates a new thread and initializes its attributes
using the thread attributes object specified, or
standard values instead, if the NULL pointer is
specified. After thread creation, a thread attributes
object can be reused to create another thread, or
deleted.

pthread_exit Terminates the calling thread safely, and stores a
termination status for any thread that may join the
calling thread.

pthread_cancel Requests the cancellation of the specified thread.
The action depends on the cancelability of the
target thread.

pthread_kill Sends the specified signal to the specified thread. It
acts with threads like the kill subroutine with
single-threaded processes.

pthread_join Blocks the calling thread until the specified thread
terminates. If the specified thread is in a detached
state (non-joinable), an error is returned.

pthread_detach Used to indicate to the implementation that storage
for the specified thread can be reclaimed when that
thread terminates.

pthread_once Executes the specified routine exactly once in a
process. The first call to this subroutine by any
thread in the process executes the given routine,
without parameters. Any subsequent call will have
no effect.

pthread_self Returns the calling thread's ID.

pthread_equal Compares the two specified thread IDs. Returns
zero if and only if the IDs are equal.

pthread_atfork Threads can fork processes. This routine registers
fork cleanup handlers. Three handlers can be
specified: prepare, parent, and child. The prepare
handler is called before the processing of the fork
subroutine commences. The parent handler is
called after the processing of the fork subroutine
completes in the parent process. The child handler
is called after the processing of the fork subroutine
completes in the child process.

Name Description
Chapter 10. POSIX threads 315

Table 87. Execution scheduling

Name Description

pthread_attr_setschedparam Sets the value of the schedparam attribute
of the specified thread attributes object.
The given schedparam attribute specifies
the scheduling parameters of a thread
created with this attributes object.

pthread_attr_getschedparam Gets the value of the schedparam attribute
of the specified thread attributes object.

pthread_attr_setscope The contention scope can only be set
before thread creation by setting the
contention-attribute of a thread attributes
object. The pthread_attr_setscope
subroutine sets the attribute to the
specified value.

pthread_attr_getscope Gets the contention-scope attribute of the
specified thread attributes object.

pthread_attr_setinheritsched Sets the inheritsched attribute of the
specified thread attributes object to a
given value.

pthread_attr_getinheritsched Gets the inheritsched attribute of the
specified thread attributes object.

pthread_attr_setschedpolicy Sets the schedpolicy attribute of the
specified thread attributes object.

pthread_attr_getschedpolicy Gets the schedpolicy attribute of the
specified thread attributes object.
316 AIX 5L Porting Guide

pthread_setschedparam Dynamically sets the schedpolicy and
schedparam attributes of the specified
thread. The given schedpolicy attribute
specifies the scheduling policy of the
thread. The given schedparam attribute
specifies the scheduling parameters.

The implementation of this subroutine is
dependent on the priority scheduling
POSIX option. The priority scheduling
POSIX option is implemented in the
operating system. If the target thread has
system contention-scope, the process
must have root authority to set the
scheduling policy to either SCHED_FIFO
or SCHED_RR.

pthread_getschedparam Returns the current schedpolicy and
schedparam attributes of the thread
thread. The schedpolicy attribute specifies
the scheduling policy of a thread.

Name Description
Chapter 10. POSIX threads 317

Table 88. Synchronization

Name Description

pthread_mutexattr_init Initializes a mutex attributes object with the
default value for all of the attributes defined by
the implementation.

pthread_mutexattr_destroy Destroys a mutex attributes object; the object
becomes, in effect, uninitialized.

pthread_mutexattr_setpshared Sets the process-shared attribute in a given
initialized attributes object.

pthread_mutexattr_getpshared Obtains the value of the process-shared attribute
from the given attributes object.

pthread_mutexattr_setprioceiling
pthread_mutexattr_getprioceiling
pthread_mutexattr_setprotocol
pthread_mutexattr_getprotocol
pthread_mutex_setprioceiling
pthread_mutex_getprioceiling

AIX does not support these routine; the symbols
are provided but they always return ENOSYS.

pthread_mutex_init Initializes the given mutex with attributes
specified by a given attributes object. If the
attributes object is NULL, the default mutex
attributes are used.

pthread_mutex_destroy Destroys the specified mutex object; the mutex
object becomes, in effect, uninitialized.

pthread_mutex_lock The specified mutex object is locked by calling. If
the mutex is already locked, the calling thread
blocks until the mutex becomes available.

pthread_mutex_trylock Identical to pthread_mutex_lock, except that if
the referenced mutex object is currently locked
(by any thread, including the current thread), the
call returns immediately.

pthread_mutex_unlock Releases the referenced mutex object. The
manner in which a mutex is released is
dependent upon the mutex's type attribute.

pthread_condattr_init Initializes a specified condition variable
attributes object with the default value for all of
the attributes defined by the implementation.

pthread_condattr_destroy Destroys a specified condition variable attributes
object; the object becomes, in effect,
uninitialized.
318 AIX 5L Porting Guide

Table 89. Thread specific data

pthread_condattr_setpshared Sets the value of the pshared attribute of the
specified condition attributes object. This
attribute specifies the process sharing of the
condition variable created with this attributes
object.

pthread_condattr_getpshared Returns the value of the pshared attribute of the
specified condition attribute object. This attribute
specifies the process sharing of the condition
variable created with this attributes object.

pthread_cond_init Initializes the given condition variable with
attributes given by a condition attributes object.
If that object is NULL, the default condition
variable attributes are used.

pthread_cond_destroy Destroys the given condition variable; the object
becomes, in effect, uninitialized.

pthread_cond_wait Blocks on a condition variable. Must be called
with a specified mutex locked by the calling
thread or undefined behavior will result.

pthread_cond_timedwait Same as pthread_cond_wait except that an error
is returned if the specified absolute time passes
(that is, system time equals or exceeds the
specified absolute time) before the specified
condition is signaled or broadcasted, or if the
absolute time specified has already been passed
at the time of the call.

pthread_cond_signal Unblocks one or more threads blocked on the
specified condition.

pthread_cond_broadcast Unblocks all the blocked threads on the specified
condition.

Name Description

pthread_key_create Creates a thread-specific data key. The key is shared
among all threads within the process, but each thread has
specific data associated with the key. The thread-specific
data is a void pointer, initially set to NULL. An optional
destructor routine can be specified. It will be called for each
thread when it is terminated and detached, after the call to
the cleanup routines, if the specific value is not NULL.

Name Description
Chapter 10. POSIX threads 319

10.1.2.4 UNIX 98 specification
For the sake of completeness, Table 90 lists additional pthread routines under
AIX 5L that conform to the UNIX 98 specification. These routines are not part
of POSIX, but part of the Single Unix Specification Interfaces.

Table 90. UNIX 98

pthread_key_delete Deletes the given thread-specific data key, previously
created with the pthread_key_create subroutine. The
application must ensure that no thread-specific data is
associated with the key.

pthread_setspecific Associates a thread-specific value with a key obtained
through a previous call to pthread_key_create. Different
threads may bind different values to the same key.

pthread_getspecific Returns the value currently bound to the specified key on
behalf of the calling thread.

pthread_cleanup_push Pushes the specified cancellation cleanup handler routine
onto the calling thread's cancellation cleanup stack.

pthread_cleanup_pop Removes the routine at the top of the calling thread's
cancellation cleanup stack and optionally invokes it (if
execute is non-zero).

Name Description

pthread_rwlockattr_init Initializes the read-write specified lock with the
attributes referenced by the given read-write lock
attribute object. If that object is NULL, the default
read-write lock attributes are used.

pthread_rwlockattr_destroy Destroys the specified read-write lock attribute
object and releases any resources used by the lock.

pthread_rwlockattr_setpshared Sets the process-shared attribute in the given
initialized read-write lock attributes object.

pthread_rwlockattr_getpshared Obtains the value of the process-shared attribute
from the given initialized read-write lock attributes
object.

pthread_rwlock_init Initializes the specified read-write lock with the
attributes from a given read-write lock attributes
object. If that object is NULL, the default read-write
lock attributes are used.

Name Description
320 AIX 5L Porting Guide

pthread_rwlock_destroy Destroys the specified read-write lock object and
releases any resources used by the lock.

pthread_rwlock_rdlock Applies a read lock to the given read-write lock. The
calling thread acquires the read lock if a writer does
not hold the lock and there are no writers blocked on
the lock.

pthread_rwlock_tryrdlock Applies a read lock as in the pthread_rwlock_rdlock
function with the exception that the function fails if
any thread holds a write lock on the specified
read-write lock or there are writers blocked the lock.

pthread_rwlock_wrlock Applies a write lock to the given read-write lock. The
calling thread acquires the write lock if no other
thread (reader or writer) holds the read-write lock.
Otherwise, the thread blocks (that is, does not
return from the pthread_rwlock_wrlock call) until it
can acquire the lock.

pthread_rwlock_trywrlock Applies a write lock like the pthread_rwlock_wrlock
function, with the exception that the function fails if
any thread currently holds the specified read-write
lock (for reading or writing).

pthread_rwlock_unlock Releases a lock held on the specified read-write
lock object.

pthread_setconcurrency Allows an application to inform the threads
implementation of its desired concurrency level.
The actual level of concurrency provided by the
implementation as a result of this function call is
unspecified.

pthread_getconcurrency Returns the value set by a previous call to the
pthread_setconcurrency function.

pthread_attr_setguardsize Sets the guardsize attribute in a thread attribute
object. The guardsize attribute controls the size of
the guard area for the created thread's stack. The
guardsize attribute provides protection against
overflow of the thread’s stack pointer.

pthread_attr_getguardsize Gets the guardsize attribute of a thread attributes
object.

pthread_mutexattr_settype Sets the mutex type attribute of a mutex attributes
object to a given type.

Name Description
Chapter 10. POSIX threads 321

10.1.2.5 Thread extensions - _np routines
For the sake of completeness, this section lists pthread routines under AIX 5L
which are “non-portable.” They all have the extension _np and should be
avoided, because it would, in general, render the code non-portable. The
routines are not part of the POSIX threads, but provide compatibility with
DCE threads (implementation of POSIX 1003 Draft 4). The routines are
shown in Table 91.

Table 91. Non-portable thread routines in AIX 5L

10.2 Thread scheduling

When porting threaded applications, it is important to understand which
thread models are implemented in AIX 5L. For instance, the choice of thread
model affects the semantics of a thread’s scheduling priority and policy.

Under the system contention model, the user thread’s underlying kernel
thread will be scheduled against all other threads in the system.

pthread_mutexattr_gettype Gets the type attribute of a given mutex attributes
object.

pthread_suspend Suspends execution of specified thread.

pthread_continue Resumes execution of specified thread.

Routine Routine (continued)

pthread_atfork_np
pthread_atfork_unregister_np
pthread_attr_getsuspendstate_np
pthread_attr_setstacksize_np
pthread_attr_setsuspendstate_np
pthread_cleanup_information_np
pthread_cleanup_pop_np
pthread_cleanup_push_np
pthread_clear_exit_np
pthread_continue_np
pthread_continue_others_np
pthread_delay_np
pthread_get_expiration_np
pthread_getrusage_np

pthread_getthrds_np
pthread_getunique_np
pthread_join_np
pthread_lock_global_np
pthread_mutexattr_getkind_np
pthread_mutexattr_setkind_np
pthread_set_mutexattr_default_np
pthread_setcancelstate_np
pthread_signal_to_cancel_np
pthread_suspend_np
pthread_suspend_others_np
pthread_test_exit_np
pthread_unlock_global_np

Name Description
322 AIX 5L Porting Guide

Under the process contention model, the user thread will be scheduled by a
POSIX pthread library scheduler against all other process contention model
threads of the given process.

In the first case, the policy and priority is interpreted globally on the system;
in the latter, they are being interpreted within a process.

10.2.1 Lightweight processes
User threads, or just threads, are mapped to underlying kernel threads. A
thread model refers to the way this mapping is done. A lightweight process
(LWP) refers to a kernel thread.

There are three possible thread models, corresponding to three different
ways to map user threads to kernel threads:
Chapter 10. POSIX threads 323

 • 1:1 model

 • M:1 model

 • M:N model

The mapping of user threads to kernel threads is done using virtual
processors. A virtual processor (VP) is a library entity that is usually implicit.
For a user thread, the virtual processor behaves as a CPU for a kernel
thread. In the library, the virtual processor is a kernel thread or a structure
bound to a kernel thread. That is, user threads sit on top of virtual processors
which are themselves on top of kernel threads.

10.2.2 Bound thread scheduling
The 1:1 model is sometimes referred to as bound thread scheduling. In this
model, each user thread is bound to a VP and linked to exactly one kernel
thread (LWP). The VP is not necessarily bound to a real CPU (unless binding
to a processor was done). Each VP can be thought of as a virtual CPU
available for executing user code and system calls. A thread which is bound
to a VP is said to have system scope because it is directly scheduled with all
the other user threads by the kernel scheduler. Most of the user threads
programming facilities are directly handled by the kernel threads. Figure 62
on page 325 illustrates this model.
324 AIX 5L Porting Guide

Figure 62. 1:1 thread model

10.2.3 Multiplexed thread scheduling
Multiplexed thread scheduling refers to the case where threads share a pool
of available LWPs.

In the M:1 model, all user threads run on one VP and are linked to exactly
one LWP; the mapping is handled by a POSIX thread library scheduler. All
user threads programming facilities are completely handled by the library.
This model can be used on any system, especially on traditional
single-threaded systems. Figure 63 on page 326 illustrates this model.

CPU CPU

VP VP VP

K K K

TTT

Kernel scheduler

Kernel scheduler

Pthreads library

User pthreads
Chapter 10. POSIX threads 325

Figure 63. M:1 thread model

In the M:N model, several user threads can share the same virtual processor
or the same pool of VPs. A thread that is not bound to a VP is said to be a
local or process scope, because it is not directly scheduled with all the other
threads by the kernel scheduler. The pthreads library will handle the
scheduling of user threads to the VP and then the kernel will schedule the
associated kernel thread. This is the most efficient and most complex thread
model; the user threads programming facilities are shared between the
threads library and the kernel threads. Figure 64 on page 327 illustrates this
model.

CPU CPU

VP

K

TTT

Kernel scheduler

Kernel scheduler

Pthreads library

User pthreads

User scheduler
326 AIX 5L Porting Guide

Figure 64. M:N thread model

Table 103 on page 379 lists the supported thread models for various UNIX
implementations.

10.2.4 Comparing bound and multiplexed threads
Bound thread scheduling differs from multiplexed thread scheduling in the
following important ways:

 • A bound thread is permanently associated to its kernel thread. Hence, it is
exempt from the intermediate level of scheduling provided by the POSIX
threads library used under the M:1 and M:N thread models.

CPU CPU

VP VP VP

K K K

TTT

Kernel scheduler

Kernel scheduler

Pthreads library

User pthreads

User scheduler
Chapter 10. POSIX threads 327

 • A bound thread executes exactly when its associated kernel thread is
scheduled by the kernel scheduler.

 • A bound thread’s scheduling policy is related to the underlying kernel
thread. In AIX 5L, only kernel threads with root authority can use a
fixed-priority scheduling policy.

Multiplexed thread scheduling has the following important characteristic:

 • A multiplexed thread is subject to two levels of scheduling. First, the
thread is assigned to a kernel thread and preempted by a POSIX thread
library scheduler. Second, the kernel scheduler assigns the LWPs to
processors and then preempts them.

10.2.5 Scheduling scope, policy, and priority
The pthreads library allows the programmer to control the execution
scheduling of the threads. The control can be performed in two different
ways:

 • By setting scheduling attributes when creating a thread.

 • By dynamically changing the scheduling attributes of a created and
executing thread.

A thread has three scheduling parameters:

Scope The contention scope of a thread is defined by the thread model
used in the threads library.

Policy The scheduling policy of a thread defines how the scheduler treats
the thread once it gains control of the CPU.

Priority The scheduling priority of a thread defines the relative importance
of the work being done by each thread.

In general, controlling the scheduling parameters of threads is important only
for threads that are “compute intensive.” Thus, the threads library provides
default values that are sufficient for most cases.

Controlling the scheduling of a thread is often a complicated task. Because
the scheduler can handle all threads system or process-wide, depending on
the scope context, the scheduling parameters of a thread can interact with
those of all other threads in the process and in the other processes on the
system.
328 AIX 5L Porting Guide

10.2.5.1 Scope
The contention scope can only be set before thread creation by setting the
contention-scope attribute of a thread attributes object. If no specific value is
chosen, the default choice is the process scope.

10.2.5.2 Policies
On AIX 5L, the threads library provides three scheduling policies:

SCHED_FIFO First-in first-out (FIFO) scheduling. Each thread has a
fixed priority; when multiple threads have the same priority
level, they run to completion in FIFO order.

SCHED_RR Round-robin (RR) scheduling. Each thread has a fixed
priority; when multiple threads have the same priority
level, they run for a fixed time slice in FIFO order.

SCHED_OTHER Default AIX scheduling. Each thread has an initial priority
that is dynamically modified by the scheduler according to
the thread's activity; thread execution is time-sliced. On
other systems, this scheduling policy may be different.

Normally, applications should use the default scheduling policy unless a
specific application requires the use of a fixed-priority scheduling policy.

Using the RR policy ensures that all threads having the same priority level will
be scheduled equally, regardless of their activity. This can be useful in
programs where threads have to read sensors or write actuators.

Using the FIFO policy should be done with great care. A thread running with
FIFO policy runs to completion unless it is blocked by some calls, such as
performing input and output operations. A high-priority FIFO thread may not
be preempted and can affect the global performance of the system. For
example, threads doing intensive calculations, such as inverting a large
matrix, should never run with FIFO policy.
Chapter 10. POSIX threads 329

Figure 65. State transitions for a common multiplexed thread

The multiplexed threads run over a state machine, as shown in Figure 65.
The state transitions are described as follows:

1. At creation time, the system initializes the thread in the RUNNABLE state.

2. When it is mapped to a kernel LWP from the pool, it transitions from
RUNNABLE to PROCESSING state when the kernel dispatches the LWP
for execution. While in the PROCESSING state, the thread issues kernel
calls and remains mapped to the LWP. In the same way, if the kernel call
blocks the multiplexed thread, then the LWP will also block. In the next

Start

Suspended Sleeping

Runnable

Processing

Dead

1

2

3

4

5

6

7

330 AIX 5L Porting Guide

piece of code, the multiplexed thread and its associated LWP will block
until the read request completes:

read (file_description, buffer, size);

3. If, during the processing time, the thread blocks waiting for a
synchronization event, described in the next section, it goes to the
SLEEPING state. In the SLEEPING state, it is no longer mapped to a
LWP.

4. When a signal wakes up the thread, it then transitions from SLEEPING to
the RUNNABLE state again.

5. It is also possible for a thread to transition to the SUSPENDED state. It
remains there until another thread from the user level resumes it.

6. At the finalization time, the thread transitions from PROCESSING to the
DEAD state, when it releases its resources. The system will remove the
threads data on DEAD state from the process data space.

10.2.5.3 Priority
The priority is an integer value, in the range from 1 to 127. 1 is the
least-favored priority, 127 is the most-favored. Priority level 0 cannot be used:
it is reserved for the system. Note that in AIX 5L, the kernel inverts the priority
levels. For the AIX 5L kernel, the priority is in the range from 0 to 255, where
0 is the most favored priority and 255 the least-favored. Commands, such as
the ps -emo THREAD command, report the kernel priority.

The threads library handles the priority through a sched_param structure,
defined in the sys/sched.h header file. Currently, this structure contains two
fields:

sched_priority Specifies the priority.

sched_policy This field is ignored by the threads library and should not be
used.

The scheduling policy can be set when creating a thread by setting the
schedpolicy attribute of the thread attributes object. In the following code
fragment, a thread is created with the round-robin scheduling policy, using a
priority level of 3:

sched_param schedparam;
schedparam.sched_priority = 3;
pthread_attr_init(&attr);
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_RR);
pthread_attr_setschedparam(&attr, &schedparam);
pthread_create(&thread, &attr, &start_routine, &args);
Chapter 10. POSIX threads 331

pthread_attr_destroy(&attr);

The scheduling policy can also be altered during execution of a thread. The
current schedpolicy and schedparam attributes of a thread are returned by
the pthread_getschedparam subroutine. These attributes can be set by
calling the pthread_setschedparam subroutine. If the target thread is
currently running on a processor, the new scheduling policy and priority will
be implemented the next time the thread is scheduled. If the target thread is
not running, it may be scheduled immediately at the end of the subroutine
call.

10.2.6 Porting issues
In general, applications should use the default scheduling policy, unless a
specific application requires the use of a fixed-priority scheduling policy.

Depending on the type of application, the administrator can choose to use a
different thread model. Tests have shown that certain applications can
perform much better with the 1:1 model. This is an important point because
the default thread model is M:N. By simply setting the environment variable
AIXTHREAD_SCOPE=S for that process, we can set the thread model to 1:1
and then compare the performance to its previous performance when the
thread model was M:N.

If you see an application creating and deleting threads, it could be due to
kernel threads being harvested because of the 8:1 default ratio of user
threads to kernel threads. This harvesting, along with the overhead of the
library scheduling, can affect the performance. On the other hand, when
thousands of user threads exist, there may be less overhead to schedule
them in user space in the library rather than manage thousands of kernel
threads. You should always try changing the scope if you encounter a
performance problem when using pthreads; in many cases, the system scope
can provide better performance.

Material regarding performance and tuning can be found in Section 10.8,
“Tuning” on page 367.

10.3 Thread creation, termination, and synchronization

This section briefly discusses the process of creating and working with
POSIX phtreads on AIX 5L.
332 AIX 5L Porting Guide

10.3.1 Creating threads
A thread has attributes, which specify the characteristics of the thread. The
attributes default values fit for most common cases. To control thread
attributes, a thread attributes object must be defined before creating the
thread.

10.3.1.1 Thread attributes object
The thread attributes are stored in an opaque object, the thread attributes
object, used when creating the thread. It contains several attributes,
depending on the implementation of POSIX options. It is accessed through a
variable of type pthread_attr_t. In AIX 5L, the pthread_attr_t data type is a
pointer to a structure; on other systems, it may be a structure or another data
type.

The thread attributes object is initialized to default values by the
pthread_attr_init subroutine; see Table 92.

Table 92. Attributes of the pthread_attr_t type for AIX 5L

The thread attributes object is destroyed by the pthread_attr_destroy
subroutine. Here is an example:

#include <pthread.h> /* must be the first #include file */
...
pthread_attr_t attr; /* defines a variable somewhere */

/* in the code, globally or */
/* locally. */

...
pthread_attr_init(&attr); /* creates and initializes with */

/* default variables, used for */

Attribute Default value

Detachstate PTHREAD_CREATE_JOINABLE

Contention-scope PTHREAD_SCOPE_PROCESS (the default ensures
compatibility with implementations that do not support this
POSIX option).

Inheritsched PTHREAD_INHERIT_SCHED

Schedparam A sched_param structure where the sched_prio field is set to
1, the least favored priority.

Schedpolicy SCHED_OTHER

Stacksize PTHREAD_STACK_MIN

Guardsize PAGESIZE
Chapter 10. POSIX threads 333

..... /* setting non-default values */
pthread_attr_destroy(&attr); /* releases the variable */

Setting other attribute values can be done using the pthread_attr_set...
routines mentioned in Section 10.1, “Introduction to threads” on page 307.
For example, the detachstate attribute can hold one of two values:

PTHREAD_CREATE_DETACHED Specifies that the thread will be created
in the detached state.

PTHREAD_CREATE_JOINABLE Specifies that the thread will be created
in the joinable state.

For more details on manipulation of the attributes, please consult the online
documentation.

The same attributes object can be used to create several threads. It can also
be modified between two thread creations. When the threads are created, the
attributes object can be destroyed without affecting the threads created with
it.

10.3.1.2 Example of the pthread_create routine
The creation of a new thread is performed using the pthread_create
subroutine. This function creates a new thread and makes it runnable. It is
defined as:

int pthread_create (pthread_t *thread, const pthread_attr_t *attr, void
*(*start_routine) (void), void *arg);

where the arguments are:

thread A pointer to the new thread’s ID variable.

attr Points to a pthread_attr_t variable properly declared and
initialized.

start_routine A pointer to the routine that will be executed by the new
thread.

arg A pointer to arguments that will be passed to the new thread.

When calling the pthread_create subroutine, you may specify a thread
attributes object. If you specify a NULL pointer, the created thread will have
the default attributes. Thus, the code fragment:

pthread_t thread;
pthread_attr_t attr;
...
pthread_attr_init(&attr);
334 AIX 5L Porting Guide

pthread_create(&thread, &attr, start_routine, NULL);
pthread_attr_destroy(&attr);

is equivalent to:

pthread_t thread;
...
pthread_create(&thread, NULL, start_routine, NULL);

When calling the pthread_create subroutine, you must specify an entry-point
routine. This routine, provided by your program, is similar to the main routine
for a process. It is the user routine executed by the new thread. When the
thread returns from this routine, the thread is automatically terminated.

The entry-point routine has one parameter, a void pointer, specified when
calling the pthread_create subroutine. You may specify a pointer to some
data, such as a string or a structure. The creating thread (the one calling the
pthread_create subroutine) and the created thread must agree upon the
actual type of this pointer. The entry-point routine returns a void pointer. After
the thread termination, this pointer is stored by the threads library unless the
thread is detached.

The thread ID of a newly created thread is returned to the creating thread
through the thread parameter. A thread ID is an opaque object; its type is
pthread_t. In AIX 5L, the pthread_t data type is an integer. On other systems,
it may be a structure, a pointer, or any other data type.The caller can use this
thread ID to perform various operations on the thread.

Depending on the scheduling parameters, the new thread may start running
before the call to the pthread_create subroutine returns. It may even happen
that, when the pthread_create subroutine returns, the new thread has already
terminated. The thread ID returned by the pthread_create subroutine through
the thread parameter is then already invalid. It is, therefore, important to
check for the ESRCH error code returned by threads library subroutines when
using a thread ID as a parameter.

If the pthread_create subroutine is unsuccessful, no new thread is created;
the thread ID in the thread parameter is invalid, and the appropriate error
code is returned.

10.3.2 Termination of threads
Execution of a thread can end in several ways.
Chapter 10. POSIX threads 335

10.3.2.1 Exiting
A process can exit at any time from any thread by calling the exit subroutine.
Similarly, a thread can exit at any time by calling the pthread_exit subroutine.

Calling the exit subroutine terminates the entire process, including all its
threads. In a multithreaded program, the exit subroutine should only be used
when the entire process needs to be terminated; for example, in the case of
an unrecoverable error. The pthread_exit subroutine should be preferred,
even for exiting the initial thread.

Calling the pthread_exit subroutine terminates the calling thread. The status
parameter is saved by the library and can be further used when joining
(explained in Section 10.3.3, “Joining threads” on page 343) the terminated
thread. Calling the pthread_exit subroutine is similar, but not identical, to
returning from the thread's initial routine. The result of returning from the
thread's initial routine depends on the thread:

 • Returning from the initial thread implicitly calls the exit subroutine, thus
terminating all the threads in the process.

 • Returning from another thread implicitly calls the pthread_exit subroutine.
The return value has the same role as the status parameter of the
pthread_exit subroutine.

It is recommended always to use the pthread_exit subroutine to exit a thread
to avoid implicitly calling the exit subroutine.

Exiting the initial thread by calling the pthread_exit subroutine does not
terminate the process; it only terminates the initial thread. If the initial thread
is terminated, the process will be terminated when the last thread in it
terminates. In this case, the process return code (usually the return value of
the main routine or the parameter of the exit subroutine) is 0 if the last thread
was detached or 1 otherwise.
336 AIX 5L Porting Guide

10.3.2.2 Killing a thread
It is possible to send a signal to a specific thread. The routine pthread_kill is
described in Section 10.5.3, “Signal generation” on page 355.

10.3.2.3 Canceling threads
The thread cancellation mechanism allows a thread to terminate the
execution of any other thread in the process in a controlled manner. The
target thread (that is, the one that's being canceled) can hold cancellation
requests pending in a number of ways and perform application-specific
cleanup processing when the notice of cancellation is acted upon. When
canceled, the thread implicitly calls the pthread_exit((void *)-1) subroutine.
The cancellation of a thread is requested by calling the pthread_cancel
subroutine. When the call returns, the request has been registered, but the
thread may still be running.

The cancelability state and type of a thread determines the action taken upon
receipt of a cancellation request:

Disabled cancelability Any cancellation request is set pending, until
the cancelability state is changed or the thread
is terminated in another way. A thread should
disable cancelability only when performing
operations that cannot be interrupted. For
example, if a thread is performing some
complex file save operations (such as an
indexed database) and is canceled during the
operation, the files may be left in an
inconsistent state. To avoid this, the thread

It is important to note that the pthread_exit subroutine frees any
thread-specific data, including the thread's stack. Any data allocated on the
stack becomes invalid, since the stack is freed and the corresponding
memory may be reused by another thread. Therefore, thread
synchronization objects (mutexes and condition variables) allocated on a
thread's stack must be destroyed before the thread calls the pthread_exit
subroutine.

Unlike the exit subroutine, the pthread_exit subroutine does not clean up
system resources shared among threads. For example, files are not closed
by the pthread_exit subroutine, since they may be used by other threads.

Note
Chapter 10. POSIX threads 337

should disable cancelability during the file
save operations.

Deferred cancelability Any cancellation request is set pending until
the thread reaches the next cancellation point.
This is the default cancelability state. This
cancelability state ensures that a thread can
be cancelled, but limits the cancellation to
specific moments in the thread's execution,
called cancellation points. A thread canceled
on a cancellation point leaves the system in a
safe state; however, user data may be
inconsistent or locks may be held by the
canceled thread. To avoid these situations,
you may use cleanup handlers or disable
cancelability within critical regions.

Asynchronous cancelability Any cancellation request is acted upon
immediately. A thread that is asynchronously
canceled while holding resources may leave
the process, or even the system, in a state
from which it is difficult or impossible to
recover.

Cancellation points are points inside of certain subroutines where a thread
must act on any pending cancellation request if deferred cancelability is
enabled. An explicit cancellation point can also be created by calling the
pthread_testcancel subroutine. This subroutine simply creates a cancellation
point. If deferred cancelability is enabled, and if a cancellation request is
pending, the request is acted upon, and the thread is terminated. Otherwise,
the subroutine simply returns.

Other cancellation points occur when calling the following subroutines:

 • pthread_cond_wait

 • pthread_cond_timedwait

 • pthread_join

The following code shows a thread where the cancelability is disabled for a
set of instructions and then restored using the pthread_setcancelstate
function:

void *Thread(void *string)
{

int i;
338 AIX 5L Porting Guide

int o_state;

/* disables cancelability */
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &o_state);

/* writes five messages */
for (i=0; i<5; i++)

printf("%s\n", (char *)string);

/* restores cancelability */
pthread_setcancelstate(o_state, &o_state);

/* writes further */
while (1)

printf("%s\n", (char *)string);
pthread_exit(NULL);

}

Table 93 lists the functions that contain cancellation points, as required in the
POSIX threads standard.

Table 93. Cancellation point functions

Name Name (continued) Name (continued)

aio_suspend close creat

fcntl fsync getmsg

getpmsg lockf mq_receive

mq_send msgrcv msgsnd

msync nanosleep open

pause poll pread

pthread_cond_timedwait pthread_cond_wait pthread_join

pthread_testcancel putpmsg pwrite

read readv select

sem_wait sigpause sigsuspend

sigtimedwait sigwait sigwaitinfo

sleep system tcdrain

usleep wait wait3

waitid waitpid write
Chapter 10. POSIX threads 339

Table 94 lists the functions that may contain cancellation points, as specified
in the POSIX threads standard.

Table 94. Function where cancellation points may occur

writev

Name Name (continued) Name (continued)

catclose catgets catopen

closedir closelog ctermid

dbm_close dbm_delete dbm_fetch

dbm_nextkey dbm_open dbm_store

dlclose dlopen endgrent

endpwent endutxent fclose

fcntl fflush fgetc

fgetpos fgets fgetwc

fgetws fopen fprintf

fputc fputs fputwc

fputws fread freopen

fscanf fseek fseeko

fsetpos ftell ftello

ftw fwprintf fwrite

fwscanf getc getc_unlocked

getchar getchar_unlocked getcwd

getdate getgrent getgrgid

getgrgid_r getgrnam getgrnam_r

getlogin getlogin_r getpwent

getpwnam getpwnam_r getpwuid

getpwuid_r gets getutxent

getutxid getutxline getw

Name Name (continued) Name (continued)
340 AIX 5L Porting Guide

10.3.2.4 Cleanup handlers
Cleanup handlers are specific to each thread. A thread can have several
cleanup handlers; cleanup handlers are stored in a thread-specific LIFO (Last
In First Out) stack. They are all called in the following cases:

 • The thread returns from its entry-point routine.

 • The thread calls the pthread_exit subroutine.

 • The thread acts on a cancellation request.

A cleanup handler is pushed onto the cleanup stack by the
pthread_cleanup_push subroutine. The pthread_cleanup_pop subroutine
pops the topmost cleanup handler from the stack, and optionally executes it.
Use this subroutine when the cleanup handler is no longer needed.

getwc getwchar getwd

glob iconv_close iconv_open

ioctl lseek mkstemp

nftw opendir openlog

pclose perror popen

printf putc putc_unlocked

putchar putchar_unlocked puts

pututxline putw putwc

putwchar readdir readdir_r

remove rename rewind

rewinddir scanf seekdir

semop setgrent setpwent

setutxent strerror syslog

tmpfile tmpnam ttyname

ttyname_r ungetc ungetwc

unlink vfprintf vfwprintf

vprintf vwprintf wprintf

wscanf

Name Name (continued) Name (continued)
Chapter 10. POSIX threads 341

The cleanup handler is a user-defined routine. It has one parameter, a void
pointer, specified when calling the pthread_cleanup_push subroutine. You
may specify a pointer to some data the cleanup handler needs to perform its
operation.

In the following example, a buffer is allocated for performing some operation.
With deferred cancelability enabled, the operation may be stopped at any
cancellation point. A cleanup handler is established to free the buffer in that
case.

/* the cleanup handler */

cleaner(void *buffer)

{
free(buffer);

}

/* fragment of another routine */
...
myBuf = malloc(1000);
if (myBuf != NULL) {

pthread_cleanup_push(cleaner, myBuf);

/*
* perform any operation using the buffer,
* including calls to other functions
* and cancellation points
*/

/* pops the handler and frees the buffer in one call */
pthread_cleanup_pop(1);

}

Using deferred cancelability ensures that the thread will not act on any
cancellation request between the buffer allocation and the registration of the
cleanup handler, because neither the malloc subroutine nor the
pthread_cleanup_push subroutine provides any cancellation point. When
popping the cleanup handler, the handler is executed, freeing the buffer.
More complex programs may not execute the handler when popping it,
because the cleanup handler should be thought of as an emergency exit for
the protected portion of code.
342 AIX 5L Porting Guide

10.3.2.5 Balancing the push and pop operations
The pthread_cleanup_push and pthread_cleanup_pop subroutines should
always appear in pairs within the same lexical scope, that is, within the same
function and the same statement block. They can be thought of as left and
right parentheses enclosing a protected portion of code.

The reason for this rule is that on some systems, these subroutines are
implemented as macros. The pthread_cleanup_push subroutine is
implemented as a left brace, followed by other statements:

#define pthread_cleanup_push(rtm,arg) { \
/* other statements */

The pthread_cleanup_pop subroutine is implemented as a right brace
following other statements:

#define pthread_cleanup_pop(ex) \
/* other statements */ \

}

10.3.3 Joining threads
Joining a thread means waiting for it to terminate. The pthread_join
subroutine provides a simple mechanism that allows a thread to wait for
another thread to terminate.

The pthread_join subroutine blocks the calling thread until the specified
thread terminates. The target thread (the thread whose termination is
awaited) must not be detached. If the target thread is already terminated, but
not detached, the pthread_join subroutine returns immediately. Once a target
thread has been joined, it is automatically detached, and its storage can be
reclaimed.

Table 95 indicates the two possible cases when a thread calls the
pthread_join subroutine, depending on the state and the detachstate attribute
of the target thread.

Table 95. Effect of calling pthread_join

Status of target Undetached target Detached target

Target is still running. The caller is blocked until the
target is terminated.

The call returns immediately,
indicating an error.

Target is terminated. The call returns immediately,
indicating a successful
completion.

The call returns immediately,
indicating an error.
Chapter 10. POSIX threads 343

It is possible for several threads to join the same target thread if the target is
not detached. The success of this operation depends on the order of the calls
to the pthread_join subroutine and the moment when the target thread
terminates.

 • Any call to the pthread_join subroutine occurring before the target thread's
termination blocks the calling thread.

 • When the target thread terminates, all blocked threads are awoken, and
the target thread is automatically detached.

 • Any call to the pthread_join subroutine occurring after the target thread's
termination will fail, because the thread is detached by the previous join.

 • If no thread called the pthread_join subroutine before the target thread's
termination, the first call to the pthread_join subroutine will return
immediately, indicating a successful completion, and any further call will
fail.

A thread cannot join itself; a deadlock would occur and it is detected by the
library. However, two threads may try to join each other; they will deadlock.
This situation is not detected by the library.

The pthread_join subroutine also allows a thread to return information to
another thread. When a thread calls the pthread_exit subroutine or when it
returns from its entry-point routine, it returns a pointer. This pointer is stored
as long as the thread is not detached, and the pthread_join subroutine can
return it.

10.3.4 Porting issues
To enhance the portability of programs using the threads library, the thread
ID should always be handled as an opaque object. For this reason, thread
IDs should be compared using the pthread_equal subroutine. Never use the
C equality operator (==) because the pthread_t data type may be neither an
arithmetic type nor a pointer.

In AIX 5L, the pthread_cleanup_push and pthread_cleanup_pop subroutines
are library routines, and can be unbalanced within the same statement block.
However, they must be balanced in the program, since the cleanup handlers
are stacked.

Not following the balancing rule for the pthread_cleanup_push and
pthread_cleanup_pop subroutines may lead to compile errors or to
unexpected behavior of your programs when porting to other systems.
344 AIX 5L Porting Guide

10.4 Synchronized access to data objects

Access to shared data presents potential problems when it is shared between
processes and when it is shared within a process by multiple threads.

10.4.1 Synchronization
Synchronization is a programming method that allows multiple threads to
coordinate their data accesses, therefore avoiding the situation where one
thread can change a piece of data at the same time another one is reading or
writing the same piece of data. This situation is commonly called a race
condition.

Consider, for example, a single counter X that is incremented by two threads,
A and B. If X is originally 1, then by the time threads A and B increment the
counter, X should be 3. Both threads are independent entities and have no
synchronization between them. Although the C statement X++ looks simple
enough to be atomic, the generated assembly code may not be, as shown in
the following pseudo-assembler code:

move X, REG /* put the value of X on register */
inc REG /* increment register */
move REG, X /* store register value at X */

If both threads are executed concurrently on two CPUs, or if the scheduling
makes the threads alternatively execute on each instruction, the following
steps may occur:

1. Thread A executes the first instruction and puts X, which is 1, into the
thread A register. Then thread B executes and puts X, which is 1, into the
thread B register.

2. Thread A executes the second instruction and increments the content of
its register to 2. Then, thread B increments its register to 2. Nothing is
moved to memory X, so memory X stays the same.

3. Thread A moves the content of its register, which is now 2, into memory X.
Then thread B moves the content of its register, which is also 2, into
memory X, overwriting thread A's value.

Note that, in most cases, thread A and thread B will execute the three
instructions one after the other, and the result would be 3, as expected. Race
conditions are usually difficult to discover because they occur intermittently.

To avoid this race condition, each thread should lock the data before
accessing the counter and updating memory X. For example, if thread A
takes a lock and updates the counter, it leaves memory X with a value of 2.
Chapter 10. POSIX threads 345

Once thread A releases the lock, thread B takes the lock and updates the
counter, taking 2 as its initial value for X and incrementing it to 3, the
expected result.

Basically, there are two ways for implementing how a thread can deal with the
situation where it is trying to lock some data that is, in fact, already locked by
another thread:

busy/wait This approach is based on the hope that the lock data will be
available in a very short period of time. Basically, the thread
enters a loop and continuously attempts to get the lock for the
data. This model, despite its simplicity, normally runs well on
multiple CPU machines. Otherwise, on a single CPU machine,
the thread keeps occupying the CPU, and there is no chance for
the other thread, that actually has the lock, to resume execution
and free the locked data. This type of lock is also known as a
spin lock.

sleep/wait This model is a bit more elaborate but still simple and
understandable. The idea is to put the thread in a SLEEPING
state while the required lock is not available. The operating
system will reactivate the thread whenever the desired locked
data is ready. On SLEEPING state, the thread is not mapped to
any LWP and is not consuming CPU, which gives the
opportunity for the other threads to run.

We cannot say that one implementation approach is better than the other.
The decision is dependent on the problem and on the machine where it will
run, and must be carefully considered at design time.

Another very important issue when dealing with multithreaded programs is
the deadlock situation. This is a situation where a thread, for example, locked
data and then attempts to re-lock it before unlocking. Another well-known
situation of deadlock is when a thread, for example, th_a, locks a data called
A and then attempts to lock the data B; but at the same time, another thread,
th_b, locked the data B and then starts trying to lock the A data. It is a
recursive interaction and results in an infinite deadlock.

The pthread library provides a set of synchronization primitives and its
associated API. Respecting the formalism of those primitives is a very good
way to avoid conflicts when using shared resources. The following section
describes, in detail, the most common synchronization methods.
346 AIX 5L Porting Guide

10.4.2 Mutex
The mutual exclusion lock (mutex) is the simplest synchronization primitive
provided by the pthread library, and many of the other synchronization
primitives are built upon it.

It is based on the concept of a resource that only one person can use in a
period of time, for example, a chair or a pencil. If one person sits in a chair,
no one can sit on it until the first person stands up. A mutex can only be
locked by one thread and it can only be unlocked by that very same thread.

This kind of primitive is quite useful for creating critical sections. A critical
section is a portion of code that must run atomically because it normally is
handling resources, such as file descriptors, I/O devices, or shared data. A
critical section is therefore delimited by the instructions that lock and unlock a
mutex variable. This ensures that, at most, one thread is executing any
critical section protected by the given mutex.

Ensuring that all threads acting on the same resource or shared data obey
this rule is a very good practice to avoid trouble when programming with
threads. The following program shows a very simple example that complies
with this rule:

#include <pthread.h> /* include file for pthreads */
#include <stdio.h> /* include file for printf() */
#define num_threads 10; /* define the number of threads */
main() /* the main thread */
{

pthread_t th[num_threads]; /* creates an array for threads */
pthread_mutex_t mutex; /* defines a mutex variable */
int i;
... /* do other stuff */
pthread_mutex_init(&mutex, NULL); /* creates the mutex */
for (i = 0; i < num_thrads; i++) /* loop to create threads */

pthread_create(&th[i], NULL, thread_func, NULL);
... /* do other stuff */
pthread_mutex_destroy(&mutex); /* destroys the mutex */

The file descriptors in a process are shared by all of its threads. This can
potentially generate data inconsistency when two or more threads are
accessing the same file. In this kind of application, a lock mechanism must
be implemented, and the file pointer should be tracked by each thread.

Note
Chapter 10. POSIX threads 347

}

void * thread_func(void *) /* the request handling thread */
{

pthread_mutex_lock(&mutex); /* locks the mutex */
... /* do all the work */
pthread_mutex_unlock(&mutex); /* unlocks the mutex */
pthread_exit(NULL); /* finishes the thread */

}

In AIX 5L, mutexes cannot be re-locked by the same thread. This may not be
the case on other systems. To enhance portability of your programs, assume
that the following code fragment will result in a deadlock situation:

pthread_mutex_lock(&mutex);
pthread_mutex_lock(&mutex);

This kind of deadlock may occur when locking a mutex and then calling a
routine that will itself attempt to lock the same mutex. For example:

pthread_mutex_t mutex;
struct {

int a;
int b;
int c;

}A;
f()
{

pthread_mutex_lock(&mutex); /* call 1 */
A.a++;
g();
A.c =0;
pthread_mutex_unlock(&mutex);

}
g()
{

pthread_mutex_lock(&mutex); /* call 2 */
A.b += A.a;
pthread_mutex_unlock(&mutex);

}

To avoid this kind of deadlock or data inconsistency, you should use either
one of the following locking schemes:

Fine granularity locking Each data atom should be protected by a mutex,
locked only by low-level functions. For example,
this would result in locking each record of a
database. Benefits: High-level functions do not
348 AIX 5L Porting Guide

need to care about locking data. Drawbacks: It
increases the number of mutexes and great care
should be taken to avoid deadlocks.

High-level locking Data should be organized into areas, with each
area protected by a mutex; low-level functions
do not need to care about locking. For example,
this would result in locking a whole database
before accessing it. Benefits: There are few
mutexes, and thus few risks of deadlocks.
Drawbacks: Performance may be degraded,
especially if many threads want access to the
same data.

Just as thread attributes objects can be used to create threads with
non-default attribute values, mutex attributes objects can be used to create
mutexes with non-default attribute values. Mutex attributes are part of the
POSIX thread options and are not implemented under AIX 5L.

10.4.3 Condition variables
While mutexes can be used to provide a higher level of atomic actions
(critical sections), a mechanism for letting a thread go to sleep until a certain
condition occurs is often very useful. It could help avoid wasting CPU time
when continuously checking if a condition has occurred (polling).

10.4.3.1 Condition variables
A condition variable synchronization primitive is provided through POSIX
threads. Basically, it permits a thread to suspend its execution waiting for a
condition or event to be satisfied by the actions of another thread. Once the
condition has been met, the thread will be notified and then resume
execution.

A condition variable is also associated with a shared variable (condition
predicate) protected by a mutex. Normally, there will be three variables:

A condition variable Think of this variable as the part that is used for the
suspending and resuming of a thread.

A shared variable Think of this variable’s value as the information that
needs to be shared among the threads. This value is
often interpreted as a certain predicate being true
(hence the common name condition predicate).

A mutex A mutex is needed to protect the shared variable while
it is being manipulated.
Chapter 10. POSIX threads 349

The same mutex must be used for the same condition variable, even for
different threads. It is possible to bundle the condition variable, the condition
(predicate), and the mutex in a structure, as shown in the following code
fragment:

struct condition_bundle_t {
pthread_cond_t condition_variable;
int condition_predicate;
pthread_mutex_t condition_mutexlock;
};

Condition variables can be initialized using condition attributes objects. The
attribute which can be set specifies whether or not the condition variable can
be used by any thread that has access to the memory where it is allocated,
even if these threads belong to different processes. The subroutines are
pthread_condattr_setpshared and pthread_condattr_getpshared.

10.4.3.2 Waiting for a condition
When waiting for a condition, the subroutine pthread_cond_wait provided by
the POSIX threads atomically unlocks the mutex and blocks the calling
thread. When the condition is signaled, the mutex is relocked, and the
pthread_cond_wait subroutine returns.

It is possible, through pthread_cond_timedwait, to define a period of time that
the thread is blocked waiting for the condition, and it can resume either by the
condition becoming TRUE or by the expiration of the time-out value.

The pthread_cond_wait and phtread_cond_timedwait subroutines are
referred to as condition wait subroutines.

It is important to note that when a condition wait subroutine returns without
error, the condition may still be false. The reason is that more than one
thread may be awoken. The first thread locking the mutex will block all other
awoken threads in the condition wait subroutine until the mutex is unlocked.
Thus, the predicate may have changed when the second thread gets the
mutex and returns from the condition wait subroutine.

It follows that a thread must always start by locking the mutex before
calling a condition wait routine. Also, if a thread holds the mutex, no locked
condition wait subroutine calls can return, even the
pthread_cond_timedwait, because the semantics of the condition wait
subroutines requires that the mutex be relocked at the time of return.

Note
350 AIX 5L Porting Guide

In general, whenever a condition wait returns, the thread should re-evaluate
the condition to determine whether it can safely proceed, should wait again,
or should declare a timeout. A return from the condition wait subroutine does
not imply that the predicate is either true or false.

It is recommended that a condition wait be enclosed in a while-loop that
checks the predicate. The following code fragment provides a basic
implementation of a condition wait:

pthread_mutex_lock(&condition_mutexlock);

while (condition_predicate == 0)
pthread_cond_wait(&condition_variable, &condition_mutexlock);

...
pthread_mutex_unlock(&condition_mutexlock);

In the case where the thread locking the mutex never unlocks it, the threads
suspended in a condition wait subroutine can be cancelled (pthread_cancel),
if their cancelability is enabled. This is because the condition wait subroutines
provide cancellation points (see Table 93 on page 339).

10.4.3.3 Signaling a condition
The pthread_cond_signal subroutine wakes up at least one thread that is
currently blocked on the specified condition. The awoken thread is chosen
according to the scheduling policy; it is the thread with the most-favored
scheduling priority. It may happen on multiprocessor systems, or some
non-AIX systems, that more than one thread is woken up. Do not assume that
this subroutine wakes up exactly one thread.

The pthread_cond_broadcast subroutine wakes up every thread that is
currently blocked on the specified condition. However, a thread can start
waiting on the same condition just after the call to the subroutine returns.

10.4.4 Semaphore
The main idea behind semaphores is to control access to a set of resources
in the same way a rental car company controls its allocation system. They
have a set of cars available and a kind of counter, or semaphore, that shows
how many cars are ready in the parking lot. Each time a car is rented, the
counter is decremented. Every returned car increases the counter. If a
customer requires a car, but the counter is zero, which means no car is
available, it must wait until one car becomes available.

This concept is applied on semaphores as a synchronization primitive in
traditional UNIX-based interprocess synchronization facilities. If a semaphore
Chapter 10. POSIX threads 351

is configured to hold the values 0 or 1, it is called a binary semaphore and
works in the same way as a mutex. But, if it can reach values greater than 1,
they can control a set of resources and are called counting semaphores.

The decrement and increment operations on semaphores have historically
been referred to as P (lock, down) and V (unlock, up).

Semaphores differ from the mutexes and condition variables described in
Section 10.4.2, “Mutex” on page 347 and Section 10.4.3, “Condition
variables” on page 349 in the following ways:

 • A mutex can only be unlocked by the thread which locked it. A semaphore
need not be incremented by the same process or thread that decrements
it.

 • A mutex only has two states: locked or unlocked.

10.4.4.1 An example of interthread semaphores
It is possible to implement interthread semaphores for specific usage.
Consider the case where the source system does not support multithreading.
Applications using semaphores to control shared data between processes
cannot, in general, be meaningfully converted to a single multithreaded
process on a system AIX 5L. However, there may be an application which “by
nature” could gain from such a conversion. Simulating semaphores using
mutexes and condition variables provides a way to test this.

The following implementation is very basic. Error handling is not performed,
but cancellations are properly handled with cleanup handlers whenever
required.

A semaphore has the sema_t data type. It must be initialized by the sema_init
routine and destroyed with the sema_destroy routine. The semaphore
request to lock and unlock operations are respectively performed by the
sema_p and sema_v routines:

typedef struct {
pthread_mutex_t lock;
pthread_cond_t cond;
int count;

} sema_t;
void sema_init(sema_t *sem)
{

pthread_mutex_init(&sem->lock, NULL);
pthread_cond_init(&sem->cond, NULL);
sem->count = 1;

}

352 AIX 5L Porting Guide

void sema_destroy(sema_t *sem)
{

pthread_mutex_destroy(&sem->lock);
pthread_cond_destroy(&sem->cond);

}
void p_operation_cleanup(void *arg)
{

sema_t *sem;
sem = (sema_t *)arg;
pthread_mutex_unlock(&sem->lock);

}
void sema_p(sema_t *sem)
{

pthread_mutex_lock(&sem->lock);
pthread_cleanup_push(p_operation_cleanup, sem);
while (sem->count <= 0)

pthread_cond_wait(&sem->cond, &sem->lock);
sem->count--;
/*
* Note that the pthread_cleanup_pop subroutine will
* execute the p_operation_cleanup routine
*/
pthread_cleanup_pop(1);

}
void sema_v(sema_t *sem)
{

pthread_mutex_lock(&sem->lock);
sem->count++;
if (sem->count <= 0)

pthread_cond_signal(&sem->cond);
pthread_mutex_unlock(&sem->lock);

}

10.4.5 Porting issues
In AIX 5L, mutexes cannot be relocked by the same thread. This may not be
the case on other systems. To enhance portability of your programs, assume
that the following code fragment may produce a deadlock:

pthread_mutex_lock(&mutex);
pthread_mutex_lock(&mutex);

Another point to be aware of when using mutexes to control the access of
shared variables is how these variables are aligned in memory and how
memory is accessed by the underlying processor architecture. Using mutexes
to avoid a situation similar to that described in Section 10.4.1,
“Synchronization” on page 345 may not guarantee consistent updating.
Chapter 10. POSIX threads 353

If the underlying architecture only accesses memory in units of for example,
four bytes, it is possible for the following situation to occur: Several variables,
for example, of type char (one byte), are adjacent in memory. Each variable is
updated only by a specific thread. However, since the memory access is 4
bytes, and not 1 byte, a thread could effectively overwrite the variable values
adjacent to its own variable value in memory (consider again the example in
Section 10.4.1, “Synchronization” on page 345).

Clearly, the situation will not change even if the updating of the variables is
controlled using a mutex for each variable. The use of mutexes will not
guarantee consistent updating of variables, due to the underlying memory
access architecture.

The Itanium and Power processors can access the memory in units of 1 byte.
As an example, the Alpha processors prior to EV56 (EV4 and EV5) can only
access memory in units of at least 4 bytes. This fact may be reflected in the
source application’s code (for example, the ordering of a structure’s
members) or in the explicit use of compiler options to ensure correct memory
alignment.

For the platforms running AIX 5L, the situation described will not occur. There
may still be reasons to consider careful memory alignment, such as
performance.

Mutex attributes objects cannot be manipulated under AIX 5L. Mutex
attributes like protocol, prioceiling, and processshared may be defined on
other systems.

10.5 Threads and signals

The signal mechanics is part of UNIX-based systems. It provides a way to
handle asynchronous events. Basically, when a process receives a signal,
the kernel stops it. Then a piece of code defined as a handler is executed,
and after its completion, the process resumes at the exact point where it was
before being stopped by the kernel. Each handler is assigned to a specific
signal through the signal handler table. Another table called the signal mask
defines which signals the process will receive and which it will ignore. Every
time a process receives a signal, the kernel checks out its signal mask to
determine if it is allowed, and then looks in the signal handler table to execute
the proper handler.
354 AIX 5L Porting Guide

10.5.1 Signals
Signal management in multithreaded processes has resulted from a
compromise among many and sometimes conflicting goals. The goal of
compatibility is assured: signals in multithreaded processes are an extension
of signals in traditional single-threaded programs. Programs handling signals
and written for single-threaded systems will behave as expected in AIX 5L.

Signal management in multithreaded processes is shared by the process and
thread levels, and consists of:

 • Per-process signal handlers

 • Per-thread signal masks

 • Single delivery of each signal

The POSIX threads library also provides a new subroutine and introduces
new programming practices for waiting for asynchronously generated signals.

10.5.2 Signal handlers and signal masks
Signal handlers are maintained at process level. It is strongly recommended
you only use the sigaction subroutine to get and set signal handlers. Other
subroutines may not be supported in the future.

Because the list of signal handlers is maintained at process level, any thread
within the process may change it. If two threads set a signal handler on the
same signal, the last thread that called the sigaction subroutine will override
the setting of the previous thread call; in most cases, it will be impossible to
predict the order in which threads are scheduled.

Signal masks are maintained at the thread level. Each thread can have its
own set of signals that will be blocked from delivery. The sigthreadmask
subroutine must be used to get and set the calling thread's signal mask. The
sigprocmask subroutine must not be used in multithreaded programs;
otherwise, unexpected behavior may result.

The sigthreadmask subroutine is very similar to sigprocmask. The
parameters and usage of both subroutines are exactly the same. When
porting existing code to support the threads library, you may simply replace
sigprocmask with sigthreadmask.

10.5.3 Signal generation
Signals generated by some action attributable to a particular thread, such as
a hardware fault, are sent to the thread that caused the signal to be
Chapter 10. POSIX threads 355

generated. Signals generated in association with a process ID, a process
group ID, or an asynchronous event (such as terminal activity) are sent to the
process.

The pthread_kill subroutine sends a signal to a thread. Because thread IDs
identify threads within a process, this subroutine can only send signals to
threads within the same process. The pthread_kill routine is defined as:

int pthread_kill (pthread_t thread, int sig);

The kill subroutine (and thus the kill command) sends a signal to a process.
A thread can send a signal Signal to its process by executing the following
call:

kill(getpid(), Signal);

The raise subroutine cannot be used to send a signal to the calling thread's
process. The raise subroutine sends a signal to the calling thread, as in the
following call:

pthread_kill(pthread_self(), Signal);

This ensures that the signal is sent to the caller of the raise subroutine. Thus,
library routines written for single-threaded programs may easily be ported to
a multithreaded system, because the raise subroutine is usually intended to
send the signal to the caller.

The alarm subroutine requests that a signal be sent later to the process, and
alarm states are maintained at process level. Thus, the last thread that called
the alarm subroutine overrides the settings of other threads in the process. In
a multithreaded program, the SIGALRM signal is not necessarily delivered to
the thread that called the alarm subroutine. The calling thread may even be
terminated; therefore, it cannot receive the signal.

10.5.4 Handling signals
Signal handlers are called within the thread to which the signal is delivered.
Signal handlers may call the pthread_self subroutine to get their thread ID.
Some limitations to signal handlers are introduced by the threads library:

 • Signal handlers may call the longjmp or siglongjmp subroutine only if the
corresponding call to the setjmp or sigsetjmp subroutine was performed in
the same thread.

Usually, a program that wants to wait for a signal installs a signal handler
that calls the longjmp subroutine to continue execution at the point where
the corresponding setjmp subroutine was called. This cannot be done in a
multithreaded program, because the signal may be delivered to a thread
356 AIX 5L Porting Guide

other than the one that called the setjmp subroutine, thus causing the
handler to be executed by the wrong thread.

 • Signal handlers must not call the pthread_cond_signal or
pthread_cond_broadcast subroutine to signal a condition.

To allow a thread to wait for asynchronously generated signals, the threads
library provides the sigwait subroutine.

The sigwait subroutine blocks the calling thread until one of the awaited
signals is sent to the process or to the thread. There must not be a signal
handler installed for any signal that sigwait is waiting for.

Typically, programs may create a dedicated thread to wait for asynchronously
generated signals. Such a thread just loops on a sigwait subroutine call and
handles the signals. The following code fragment gives an example of such a
signal waiter thread:

sigset_t set;
int sig;

sigemptyset(&set);
sigaddset(&set, SIGINT);
sigaddset(&set, SIGQUIT);
sigaddset(&set, SIGTERM);
sigthreadmask(SIG_BLOCK, &set, NULL);

while (1) {
sigwait(&set, &sig);
switch (sig) {

case SIGINT:
/* handle interrupts */
break;

case SIGQUIT:
/* handle quit */
break;

case SIGTERM:
/* handle termination */
break;

default:
/* unexpected signal */
pthread_exit((void *)-1);

}
}

Chapter 10. POSIX threads 357

If more than one thread called the sigwait subroutine, exactly one call returns
when a matching signal is sent. There is no way to predict which thread will
be awakened. Note that the sigwait subroutine provides a cancellation point.

Because a dedicated thread is not a real signal handler, it may signal a
condition to any other thread. It is possible to implement a sigwait_multiple
routine that would awaken all threads waiting for a specific signal. Each caller
of the sigwait_multiple routine would register a set of signals. The caller then
waits on a condition variable. A single thread calls the sigwait subroutine on
the union of all registered signals. When the call to the sigwait subroutine
returns, the appropriate state is set and condition variables are broadcasted.
New callers to the sigwait_multiple subroutine would cause the pending
sigwait subroutine call to be canceled and reissued to update the set of
signals being waited for.

10.5.5 Signal delivery
A signal is delivered to a thread, unless its action is set to ignore. The
following rules govern signal delivery in a multithreaded process:

 • A signal whose action is set to terminate, stop, or continue the target
thread or process, respectively, terminates, stops, or continues the entire
process (and thus all of its threads). This means that single-threaded
programs may be rewritten as multithreaded programs without changing
their externally visible signal behavior.

Consider, for example, a multithreaded user command, such as the grep
command. A user may start the command in his favorite shell and then
decide to stop it by sending a signal with the kill command. It is obvious
that the signal should stop the entire process running the grep command.

 • Signals generated for a specific thread, using the pthread_kill or the raise
subroutines, are delivered to that thread. If the thread has blocked the
signal from delivery, the signal is set pending on the thread until the signal
is unblocked from delivery. If the thread is terminated before signal
delivery, the signal will be ignored.

 • Signals generated for a process, using the kill subroutine, for example, are
delivered to exactly one thread in the process. If one or more threads
called the sigwait subroutine, the signal is delivered to exactly one of
these threads. Otherwise, the signal is delivered to exactly one thread that
did not block the signal from delivery. If no thread matches these
conditions, the signal is set pending on the process until a thread calls the
sigwait subroutine specifying this signal or a thread unblocks the signal
from delivery.
358 AIX 5L Porting Guide

If the action associated with a pending signal (on a thread or on a process) is
set to ignore, the signal is ignored.

10.5.6 Porting issues
AIX 5L supports the signals defined in Section 7.6, “Signals” on page 194.
The set of supported signals can be found in the systems signal.h header file.
Note that this set may very well be different on the source system.

10.6 Thread specific data

When converting non-threaded applications to threaded, data access will now
possibly be attempted by several threads. As all threads share the same
process address space, they also share the same data space.

Thread-specific data (TSD) is a POSIX functionality that permits creation of
per-thread data. This allows multiple threads to run the same code and
access thread-specific data using the same variable names. This makes the
design of the code easier, because it does not need to be aware of which
thread is running and is a common programming technique when converting
functions into thread versions.

10.6.1 Keys
Thread-specific data may be viewed as a two-dimensional array of values,
with keys serving as the row index and thread IDs as the column index, as
shown in Figure 66 on page 360.
Chapter 10. POSIX threads 359

Figure 66. Thread specific data, simplified view

A thread-specific data key is an opaque object of type pthread_key_t. The
same key can be used by all threads in a process. Although all threads use
the same key, they set and access different thread-specific data values
associated with that key. Thread-specific data are void pointers. This allows
referencing any kind of data, such as dynamically allocated strings or
structures.

The pthread_key_create subroutine creates a thread-specific data key:

int pthread_key_create (pthread_key_t * key, void (*destructor) (void *));

The key is shared among all threads within the process, but each thread has
its own data associated with the key. The thread-specific data is initially set to
NULL.

The application is responsible for ensuring that this subroutine is called only
once for each requested key. This can be done, for example, by calling the
subroutine before creating other threads or by using the one-time initialization
facility.

At the key creation time, an optional destructor routine can be specified. If the
key specific value is not NULL, that destructor will be called for each thread

T1 T2 T3 T4 T5 T6

K1

K2

K3

K4

Destructor 1

Destructor 2

Destructor 3

Destructor 4

Keys

Threads

ab f kt

3 45

X9X2

29

X7

23

qr st

Thread specific data value for
thread T2 and key K2 is: 45
360 AIX 5L Porting Guide

terminated and detached. Typically, the destructor routine will release the
storage thread-specific data. It will receive the thread-specific data as a
parameter.

To summarize, for each key there is associated (at most) one destructor
routine, which will be called for all threads, but an individual value for each
pair of key and thread. See Figure 66 on page 360 for reference.

For example, a thread-specific data key may be used for dynamically
allocated buffers. A destructor routine should be provided to ensure that the
buffer is freed when the thread terminates. The free subroutine can be used:

pthread_key_create(&key, free);

More complex destructors may be used as shown in the following:

typedef struct {
FILE *stream;
char *buffer;

} data_t;
...
void destructor(void *data)
{

fclose(((data_t *)data)->stream);
free(((data_t *)data)->buffer);
free(data);
*data = NULL;

}

Thread-specific data is accessed using the pthread_getspecific and
pthread_setspecific subroutines.

void *pthread_getspecific (pthread_key_t key);
void *pthread_setspecific (pthread_key_t key, const void *value);

The first one reads the value bound to the specified key and specific to the
calling thread; the second one sets the value, as shown in the following code
example:

pthread_key_create(&key, free);
...
private_data = malloc(...);
pthread_setspecific(key, private_data);
...
pthread_getspecific(key, &data);
...
Chapter 10. POSIX threads 361

10.6.2 Porting issues
Although some implementations of the threads library may repeat destructor
calls, the destructor routine is called only once in AIX 5L. Take care when
porting code from other systems where a destructor routine can be called
several times.

It is possible to store values that are not pointers, such as integers. It is not
recommended to do this for at least two reasons:

 • Casting a pointer into a scalar type may not be portable.

 • The NULL pointer value is implementation-dependent; several systems
assign the NULL pointer a non-zero value.

If you are sure that your program will never be ported to another system, you
may use integer values for thread-specific data.

10.7 Compiling and linking

When compiling and linking threaded applications, it is important to use the
correct libraries. The notions of reentrant functions and thread safe functions
will be explained with an overview of compiler invocations.

10.7.1 Reentrant functions and thread safe functions
One very important point to take care of when building multithreaded
programs is the resource handling. To avoid getting in trouble, be sure to
create only thread-safe and reentrant functions as much as possible.
Re-entrance and thread-safety are separate concepts; a function can be
either reentrant, thread-safe, both, or neither.

Reentrant A reentrant function does not hold static data over successive
calls, nor does it return a pointer to static data. All data is
provided by the caller of the function. A reentrant function
must not call non-reentrant functions.

Thread-safe A thread-safe function protects shared resources from
concurrent access by locks. Thread-safety concerns only the
implementation of a function and does not affect its external
interface. The use of global data is thread-unsafe. It should be
maintained per thread or encapsulated so that its access can
be serialized.

Reentrant and thread-safe libraries are useful in a wide range of parallel (and
asynchronous) programming environments, not just within threads. Thus, it is
362 AIX 5L Porting Guide

good programming practice to always use and write reentrant and
thread-safe functions.

Several libraries shipped with the AIX Base Operating System are
thread-safe. In AIX 5L, the libraries are thread-safe, except for the routines
explicitly listed in Table 96.

Table 96. List of AIX interfaces that are not thread-safe.

Some of the standard C subroutines are non-reentrant, such as the ctime and
strtok subroutines. The reentrant version of the subroutines have the name of
the original subroutine with a suffix _r (underscore r).

10.7.2 Compiling and linking
The POSIX standard for the threads library specifies the implementation of
some parts as optional. All subroutines defined by the threads library API are

Library name Not thread-safe

libc.a Standard functions:
advance, asctime, brk, catgets, chroot, compile, ctime,
cuserid, dbm_clearerr, dbm_close, dbm_delete, dbm_error,
dbm_fetch, dbm_firstkey, dbm_nextkey, dbm_open,
dbm_store, dirname, drand48, ecvt, encrypt, endgrent,
endpwent, endutxent, fcvt, gamma, gcvt, getc_unlocked,
getchar_unlocked, getdate, getdtablesize, getenv, getgrent
getgrgid, getgrnam, getlogin, getopt, getpagesize, getpass,
getpwent, getpwnam, getpwuid, getutxent, getutxid
getutxline, getw, getw, gmtime, l64a, lgamma, localtime,
lrand48, mrand48, nl_langinfo, ptsname, putc_unlocked,
putchar_unlocked, putenv, pututxline, putw, rand, random,
readdir, re_comp, re_exec, regcmp, regex, sbrk, setgrent,
setkey, setlocale, setpwent, setutxent, sigstack, srand48,
srandom, step, strerror, strtok, ttyname, ttyslot, wait3

AIX specific functions:
endfsent, endttyent, endutent, getfsent, getfsfile, getfsspec,
getfstype, getttyent, getttynam, getutent, getutid, getutline,
pututline, setfsent, setttyent, setutent, utmpname

libbsd.a timezone

libm.a and libmsaa.a gamma, lgamma

libPW.a, libblas.a,
libcur.a, libcurses.a,
libplot.a, libprint.a

All functions
Chapter 10. POSIX threads 363

always available. Depending on the available options, some subroutines may
not be implemented.

Unimplemented subroutines can be called by applications, but they always
return the ENOSYS error code.

Symbolic constants (symbols) can be used to get the availability of options on
the system where the program is compiled. The symbols are defined in the
pthread.h header file by the #define pre-processor command. For
unimplemented options, the corresponding symbol is undefined by the #undef
pre-processor command. Checking option symbols should be done in each
program that may be ported to another system.

The following list indicates the symbol associated with each option (see also
Section 10.10.4, “POSIX options” on page 378):

Stack address _POSIX_THREAD_ATTR_STACKADDR

Stack size _POSIX_THREAD_ATTR_STACKSIZE

Priority scheduling _POSIX_THREAD_PRIORITY_SCHEDULING

Priority inheritance _POSIX_THREAD_PRIO_INHERIT

Priority protection _POSIX_THREAD_PRIO_PROTECT

Process sharing _POSIX_THREAD_PROCESS_SHARED

The simplest action to take when an option is not available is to stop the
compilation, as in the following example:

#ifndef _POSIX_THREAD_ATTR_STACKSIZE
#error "The stack size POSIX option is required"
#endif

The pthread.h header file also defines the following symbols that can be used
by other header files or by programs:

 _POSIX_REENTRANT_FUNCTIONS Denotes that reentrant functions are
required.

 _POSIX_THREADS Denotes the implementation of the
threads library.

It is also possible to use the sysconf routine to get the availability of options
on the system where the program is executed. The symbolic constant passed
as the Name parameter for the sysconf routine is obtained by substituting
_SC for _POSIX in the symbolic constants listed above. For example,
_POSIX_THREAD_PRIO_INHERIT will become
_SC_THREAD_PRIO_INHERIT.
364 AIX 5L Porting Guide

In AIX 5L, compiling and linking a multithreaded application is as simple as
compiling a non-threaded application.

Table 97 shows all important information about the compiler mode,
specifically the compiler driver program to use, depending on the required
pthreads standard.

Table 97. AIX 5L C driver programs

The xlc driver compiles C source code with a default language level as ANSI,
and cc compiles C sources with default language level as extended. The
extended level is suitable for code that does not require full compliance with
the ANSI C standard, for example, legacy code. The xlC driver is for C++
code.

In the following example, a very simple makefile is suggested to compile and
link a multithreaded C program called ex1.c:

CC = /usr/vac/bin/xlc_r
CFLAGS = -g
BIN = ex1

C driver program Description

xlc_r
cc_r
xlC_r

All _r-suffixed invocations are functionally similar to their
corresponding base compiler invocation, but set the macro
name -D_THREAD_SAFE and invoke the added compiler
options:

 • L/usr/lib/threads

 • L/usr/lib/dce

 • lpthreads

 • qthreaded

Use the _r-suffixed invocations when compiling with the -qsmp
compiler option or if you want to create POSIX threaded
applications.

xlc_r4
cc_r4
xlC_r4

Use _r4-suffixed invocations to provide compatibility between
DCE applications written for AIX Version 3.2.5 and AIX Version
4. They link your application to the correct AIX Version 4 DCE
libraries, providing compatibility between the latest version of
the pthreads library and the earlier versions supported on AIX
Version 3.2.5.

xlc_r7
cc_r7
xlC_r7

Use the _r7-suffixed invocations to compile and link
applications conforming to the POSIX Draft 7 standard.
Otherwise, the compiler will, by default, compile and link
applications conforming to the current POSIX threads
standards.
Chapter 10. POSIX threads 365

all: $(BIN)
clean:
rm -f $(BIN)
rm -f *.o

Notice that the default path for the C compiler is /usr/vac/bin.

10.7.3 Porting issues
When writing multithreaded programs, the reentrant versions of subroutines
should be used instead of the original version.

When including the header file pthread.h, this file must be the first included
(see the example in Section 10.1.1.3, “Example of a POSIX threaded
program” on page 310).

For multithreaded applications, you must use one of the _r-suffixed C driver
programs.

The C for AIX compiler offers you two methods of implementing shared
memory program parallelization. These are:

 • Automatic and explicit parallelization of countable loops using IBM pragma
directives.

 • Program parallelization using pragma directives compliant to the OpenMP
Application Program Interface specification.

All methods of program parallelization are enabled when the -qsmp compiler
option is in effect without the omp suboption. You can enable strict OpenMP
compliance with the -qsmp=omp compiler option, but doing so will disable
automatic parallelization.

Parallel regions of program code are executed by multiple threads, possibly
running on multiple processors. The number of threads created is determined
by run-time options and calls to library functions.

Work is distributed among available threads according to the directives
specified in the source.

When programming C++, you have the choice of using the IBM Open Class.
The classes support multithreading and all functions are thread-safe, unless
documented otherwise. For more information, see:

http://www.ibm.com/software/ad/vacpp/library.html
366 AIX 5L Porting Guide

10.8 Tuning

AIX Version 4.3.1 replaced the previous 1:1 threads implementation model
with an M:N version. The M:N model complies with the UNIX 98 pthreads
standard, which includes the POSIX threads standard. Previous releases of
AIX Version 4 complied with Draft 7 of the POSIX pthreads standard. AIX 5L
is binary compatible with previous releases. The UNIX 98 implementation is
the default for application development, but you can use specific compiler
drivers, as shown in Table 97 on page 365, to develop new applications using
Draft 7 pthreads.

The M:N pthreads implementation provides several environment variables
that can be used to affect application performance. If possible, the application
developer should provide a front-end shell script to invoke the binary
executable in which the user may specify new values to override the system
defaults. The following environment variables can be set by end users and
are examined at process initialization time:

AIXTHREAD_SCOPE This variable can be used to set the
contention scope of pthreads created using
the default pthread attribute object. It is
represented by the following syntax:

AIXTHREAD_SCOPE=[P|S]

The value P indicates process scope, while
a value of S indicates system scope. If no
value is specified, the default pthread
attribute object will use process scope
contention, which implies the M:N model.

SPINLOOPTIME This variable controls the number of times
the system will try to get a busy lock without
taking a secondary action, such as calling
the kernel to yield the processor. This
control is really intended for SMP systems,
where it is hoped that the lock is held by
another actively running pthread and will
soon be released. On uniprocessor systems,
this value is ignored.

YIELDLOOPTIME This variable controls the number of times
that the system yields the processor when
trying to acquire a busy mutex or spin lock
before actually going to sleep on the lock.
This variable has been shown to be effective
Chapter 10. POSIX threads 367

in complex applications where multiple locks
are in use.

The following environment variables impact the scheduling of pthreads
created with process-based contention scope:

AIXTHREAD_MNRATIO This variable allows the user to specify the
ratio of pthreads to kernel threads. It is
examined when creating a pthread to
determine if a kernel thread should also be
created to maintain the correct ratio. It is
represented with the following syntax:

AIXTHREAD_MNRATIO=p:k

where k is the number of kernel threads to
use to handle p pthreads. Any positive
integer value may be specified for p and k.

These values are used in a formula that
employs integer arithmetic, which can result
in the loss of some precision when big
numbers are specified. If k is greater than p,
the ratio is treated as 1:1. If no value is
specified, the default ratio depends on the
default contention scope. If system scope
contention is the default, the ratio is 1:1. If
process scope contention is set as the
default, the ratio is 8:1.

AIXTHREAD_SLPRATIO This variable is used to determine the
number of kernel threads used to support
local pthreads sleeping in the library code

When migrating threaded applications to AIX from other platforms or
previous versions of AIX, the default 8:1 ratio used with the M:N threads
model may reduce application performance.

If this is the case, you can either change the source code of the application
so that threads are created with the contention scope attribute set to
PTHREAD_SCOPE_SYSTEM, set the AIXTHREAD_SCOPE environment
variable to the value S, or change the ratio of kernel threads to user
threads with the AIXTHREAD_MNRATIO environment variable.

Note
368 AIX 5L Porting Guide

on a pthread event, for example, attempting
to obtain a mutex. It is represented by the
following syntax:

AIXTHREAD_SLPRATIO=k:p

where k is the number of kernel threads to
reserve for every p sleeping pthreads.
Notice that the relative positions of the
numbers indicating kernel threads and user
pthreads are reversed when compared with
AIXTHREAD_MNRATIO. Any positive
integer value may be specified for p and k.
These values are used in a formula that
employs integer arithmetic, which can result
in the loss of some precision when large
numbers are specified. If k is greater than p,
the ratio is treated as 1:1. If the variable is
not set, a ratio of 1:12 is used. The reason
for maintaining kernel threads for sleeping
pthreads is that, when the pthread event
occurs, the pthread will immediately require
a kernel thread to run on. It is more efficient
to use a kernel thread that is already
available than it is to create a new kernel
thread once the event has taken place.

AIXTHREAD_MINKTHREADS This variable is a manual override to the
AIXTHREAD_MNRATIO. It allows you to
stipulate the minimum number of active
kernel threads. The library scheduler will not
reclaim kernel threads below this number.

10.9 Multiheap malloc

By default, the malloc subsystem uses a single heap or free memory pool.
Starting with AIX Version 4.3.3, the malloc routine supports an optional
multiheap capability to allow applications to enable the use of multiple heaps
of free memory, rather than just one.

The purpose of providing multiple heap capability in the malloc subsystem is
to improve the performance of threaded applications running on
multiprocessor systems. When the malloc subsystem is limited to using a
single heap, simultaneous memory allocation requests received from threads
running on separate processors are serialized, meaning that the malloc
Chapter 10. POSIX threads 369

subsystem can only service one thread at a time. This can have a serious
impact on application performance.

With the multiheap capability enabled, the malloc subsystem creates a fixed
number of heaps for its use. Each memory allocation request is serviced
using one of the available heaps. The malloc subsystem can then process
memory allocation requests in parallel as long as the number of threads
simultaneously requesting service is less than or equal to the number of
heaps.

10.9.1 Using multiheap malloc
The simplest way of using the malloc multiheap feature is to set the following
environment variable:

MALLOCMULTIHEAP=true

This enables the feature with the default configuration of 32 memory pools.

Multithreaded C++ programs will potentially also have a large benefit from
using the malloc multiheap feature, because each heap must be accessed
each time a constructor or destructor is called.

10.9.2 Parameters of malloc multiheap
The malloc multiheap feature also offers tuning parameters to alter the
number of heaps from the default of 32 and alter the algorithm to select the
heap to be used.

10.9.2.1 The number of heaps
If it is enabled, the malloc multiheap feature uses 32 heaps by default. If you
know you will not use as many processors, or for any other reason, you can
ask for any lower number of heaps. Instead of setting the environment
variable MALLOCMULTIHEAP to a value of true, it is set to a value of heaps:
n, where n is the number of heaps that are desired.

Heaps are allocated in a round-robin way. This means all heaps are used,
whether they are needed or not. A more subtle (though more
time-consuming) way to allocate space would be to use the first available
heap instead of the next one. The considersize option allows this.

10.9.2.2 The considersize option
By default, malloc multiheap selects a new, available heap every time a
request is made, essentially using round-robin selection. The considersize
option will select, instead, the first available heap that has enough free space
370 AIX 5L Porting Guide

to handle the request. While somewhat slower in computation time, this
option can help reduce both the working set size and the number of sbrk()
calls. The considersize option is specified when setting the
MALLOCMULTIHEAP environment variable, along with the number of
required heaps as follows:

MALLOCMULTIHEAP=heaps:4,considersize

10.10 Quick reference

This section is intended as a quick reference to the POSIX threads
implementation under AIX 5L.

10.10.1 AIX implementations of threads
The AIX files shown in Table 98 provide the AIX implementation of pthreads.

Table 98. AIX implementation of threads

File Description

/usr/include/pthread.h Header file with most pthread definitions

/usr/include/sched.h Header file with some scheduling definitions

/usr/include/unistd.h Header file with pthread_atfork() definition

/usr/include/sys/limits.h Header file with some pthread definitions

/usr/include/sys/pthdebug.h Header file with most pthread debug
definitions

/usr/include/sys/sched.h Header file with some scheduling definitions

/usr/include/sys/signal.h Header file with pthread_kill() and
pthread_sigmask() definitions

/usr/include/sys/types.h Header file with some pthread definitions

/usr/lib/libpthreads.a 32-bit/64-bit library providing UNIX 98 and
POSIX 1003.1c pthreads (Power)

/usr/lib/libpthreads_compat.a 32-bit only library providing POSIX 1003.1c
Draft 7 pthreads

/usr/lib/profiled/libpthreads.a Profiled 32-bit/64-bit library providing UNIX 98
and POSIX 1003.1c pthreads

/usr/lib/profiled/libpthreads_compat.a Profiled 32-bit only library providing POSIX
1003.1c 7 pthreads
Chapter 10. POSIX threads 371

10.10.2 POSIX interfaces
Table 99 shows which POSIX thread routines are implemented for various
major platforms. A yes in the column means that the routine is implemented
and not merely declared to return ENOSYS.

Table 99. POSIX threads

Routine AIX 5L Solaris
8

Tru64 HP-UX
11i

int pthread_atfork
(void (*prepare)(void), void
(*parent)(void) void (*child)(void))

yes yes yes yes

int pthread_attr_destroy
(pthread_attr_t *attr)

yes yes yes yes

int pthread_attr_getdetachstate
(const pthread_attr_t *attr, int *
detachstate)

yes yes yes yes

int pthread_attr_getinheritsched
(const pthread_attr_t *attr, int
*inheritsched)

yes yes yes yes

int pthread_attr_getschedparam
(const pthread_attr_t *attr, struct
sched_param *schedparam)

yes yes yes yes

int pthread_attr_getschedpolicy
(const pthread_attr_t *attr, int
*policy)

yes yes yes yes

int pthread_attr_getscope
(const pthread_attr_t *attr, int
*contentionscope)

yes yes yes yes

int pthread_attr_getstackaddr
(const pthread_attr_t *attr, void
**stackaddr)

yes yes yes yes

int pthread_attr_getstacksize
(const pthread_attr_t *attr, size_t
*stacksize)

yes yes yes yes

int pthread_attr_init
(pthread_attr_t *attr)

yes yes yes yes

int pthread_attr_setdetachstate
(pthread_attr_t *attr, int
detachstate)

yes yes yes yes
372 AIX 5L Porting Guide

int pthread_attr_setinheritsched
(pthread_attr_t *, int inhertisched)

yes yes yes yes

int pthread_attr_setschedparam
(pthread_attr_t *attr, const struct
sched_param *schedparam)

yes yes yes yes

int pthread_attr_setschedpolicy
(pthread_attr_t *attr, int policy)

yes yes yes yes

int pthread_attr_setscope
(pthread_attr_t *attr, int
contentionscope)

yes yes yes yes

int pthread_attr_setstackaddr
(pthread_attr_t *attr, void
*stackaddr)

yes yes yes yes

int pthread_attr_setstacksize
(pthread_attr_t *attr, size_t
stacksize)

yes yes yes yes

int pthread_cancel
(pthread_t thread)

yes yes yes yes

void pthread_cleanup_pop
(int execute)

yes yes yes yes

void pthread_cleanup_push
(void (*routine)(void *), void *arg)

yes yes yes yes

int pthread_cond_broadcast
(pthread_cond_t *condition)

yes yes yes yes

int pthread_cond_destroy
(pthread_cond_t *cond)

yes yes yes yes

int pthread_cond_init
(pthread_cond_t *cond, const
pthread_condattr_t *attr)

yes yes yes yes

int pthread_cond_signal
(pthread_cond_t *condition)

yes yes yes yes

int pthread_cond_timedwait
(pthread_cond_t *cond, pthread_mutex_t
*mutex, const struct timespec
*abstime)

yes yes yes yes

Routine AIX 5L Solaris
8

Tru64 HP-UX
11i
Chapter 10. POSIX threads 373

int pthread_cond_wait
(pthread_cond_t *, pthread_mutex_t *)

yes yes yes yes

int pthread_condattr_destroy
(pthread_condattr_t *attr)

yes yes yes yes

int pthread_condattr_getpshared
(const pthread_condattr_t *attr, int
*pshared)

yes yes yes yes

int pthread_condattr_init
(pthread_condattr_t *attr)

yes yes yes yes

int pthread_condattr_setpshared
(pthread_condattr_t *attr, int
pshared)

yes yes yes yes

int pthread_create
(pthread_t *thread, const
pthread_attr_t *attr, void
*(*start_routine) (void), void *arg)

yes yes yes yes

int pthread_detach
(pthread_t thread)

yes yes yes yes

int pthread_equal
(pthread_t t1, pthread_t t2)

yes yes yes yes

void pthread_exit
(void *value_ptr)

yes yes yes yes

int pthread_getschedparam
(pthread_t thread, int *schedpolicy,
struct sched_param *schedparam)

yes yes yes yes

void *pthread_getspecific
(pthread_key_t key)

yes yes yes yes

int pthread_join
(pthread_t thread, void **value_ptr)

yes yes yes yes

int pthread_key_create
(pthread_key_t * key, void
(*destructor) (void *))

yes yes yes yes

int pthread_key_delete
(pthread_key_t key)

yes yes yes yes

Routine AIX 5L Solaris
8

Tru64 HP-UX
11i
374 AIX 5L Porting Guide

int pthread_kill
(pthread_t thread, int sig)

yes yes yes yes

int pthread_mutex_destroy
(pthread_mutex_t *mutex)

yes yes yes yes

int pthread_mutex_getprioceiling
(const pthread_mutexattr_t *attr, int
*prioceiling)

no yes no yes

int pthread_mutex_init
(pthread_mutex_t *mutex, const
pthread_mutexattr_t *attr)

yes yes yes yes

int pthread_mutex_lock
(pthread_mutex_t *mutex)

yes yes yes yes

int pthread_mutex_setprioceiling
(pthread_mutexattr_t *attr, int
prioceiling int *oldceiling)

no yes no yes

int pthread_mutex_trylock
(pthread_mutex_t *mutex)

yes yes yes yes

int pthread_mutex_unlock
(pthread_mutex_t *mutex)

yes yes yes yes

int pthread_mutexattr_destroy
(pthread_mutexattr_t *attr)

yes yes yes yes

int pthread_mutexattr_getprioceiling
(const pthread_mutexattr_t *attr, int
*prioceiling)

no yes no yes

int pthread_mutexattr_getprotocol
(const pthread_mutexattr_t *attr, int
*protocol)

no yes no yes

int pthread_mutexattr_getpshared
(const pthread_mutexattr_t *attr, int
*pshared)

yes yes yes yes

int pthread_mutexattr_init
(pthread_mutexattr_t *attr)

yes yes yes yes

int pthread_mutexattr_setprioceiling
(pthread_mutexattr_t *attr, int
prioceiling int *oldceiling)

no yes no yes

Routine AIX 5L Solaris
8

Tru64 HP-UX
11i
Chapter 10. POSIX threads 375

10.10.3 X/Open UNIX 98 thread interfaces
Table 100 lists the X/Open UNIX 98 thread routines implemented for AIX 5L
and other major implementations.

Table 100. X/Open UNIX 98

int pthread_mutexattr_setprotocol
(pthread_mutexattr_t *attr, int
protocol)

no yes no yes

int pthread_mutexattr_setpshared
(pthread_mutexattr_t *attr, int
pshared)

yes yes yes yes

int pthread_once
(pthread_once_t *once_control, void
(*init_routine)(void))

yes yes yes yes

pthread_t pthread_self
(void)

yes yes yes yes

int pthread_setcancelstate
(int state, int *oldstate)

yes yes yes yes

int pthread_setcanceltype
(int type, int *oldstype)

yes yes yes yes

int pthread_setschedparam
(pthread_t thread, int schedpolicy,
const struct sched_param *schedparam)

yes yes yes yes

int pthread_setspecific
(pthread_key_t key, const void *value)

yes yes yes yes

int pthread_sigmask
(int how, const sigset_t *set,
sigset_t *oset)

yes yes yes yes

void pthread_testcancel
(void)

yes yes yes yes

Routine AIX 5L Solaris
8

Tru64 HP-UX
11i

int pthread_attr_getguardsize
(const pthread_attr_t *attr, size_t
*guardsize)

yes yes yes yes

Routine AIX 5L Solaris
8

Tru64 HP-UX
11i
376 AIX 5L Porting Guide

int pthread_attr_setguardsize
(pthread_attr_t *attr, size_t
guardsize)

yes yes yes yes

int pthread_continue
(pthread_t thread)

yes no no yes

int pthread_getconcurrency
(void)

yes yes yes yes

int pthread_mutexattr_gettype
(pthread_mutexattr_t *attr, int
*type)

yes yes yes yes

int pthread_mutexattr_settype
(pthread_mutexattr_t *attr, int
type)

yes yes yes yes

int pthread_rwlock_destroy
(pthread_rwlock_t *rwlock)

yes yes yes yes

int pthread_rwlock_init
(pthread_rwlock_t *rwlock, const
pthread_rwlock attr_t *attr)

yes yes yes yes

int pthread_rwlock_rdlock
(pthread_rwlock_t *rwlock)

yes yes yes yes

int pthread_rwlock_tryrdlock
(pthread_rwlock_t *rwlock)

yes yes yes yes

int pthread_rwlock_trywrlock
(pthread_rwlock_t *rwlock)

yes yes yes yes

int pthread_rwlock_unlock
(pthread_rwlock_t *rwlock)

yes yes yes yes

int pthread_rwlock_wrlock
(pthread_rwlock_t *rwlock)

yes yes yes yes

int pthread_rwlockattr_destroy
(pthread_rwlockattr_t *attr)

yes yes yes yes

int pthread_rwlockattr_getpshared
(const pthread_rwlockattr_t *attr,
int *pshared)

yes yes yes yes

int pthread_rwlockattr_init
(pthread_rwlockattr_t *attr)

yes yes yes yes

Routine AIX 5L Solaris
8

Tru64 HP-UX
11i
Chapter 10. POSIX threads 377

10.10.4 POSIX options
Table 101 lists the POSIX thread options supported by AIX 5L. In
Section 10.10.7, “Limits and default values” on page 386, a program is listed,
which extracts relevant values for a given system.

Table 101. Supported POSIX thread options for AIX 5L

POSIX options not supported are shown in Table 102.

Table 102. Not supported POSIX thread options for AIX 5L

int pthread_rwlockattr_setpshared
(pthread_rwlockattr_t *attr, int
pshared)

yes yes yes yes

int pthread_setconcurrency
(int new_level)

yes yes yes yes

int pthread_suspend
(pthread_t thread)

yes no no yes

AIX 5L Description

_POSIX_THREAD_ATTR_
STACKADDR

stackaddr attribute for threads is supported.

_POSIX_THREAD_ATTR_
STACKSIZE

stacksize attribute for threads is supported.

_POSIX_THREAD_PROCESS_
SHARED

Cross-process synchronization is supported.

_POSIX_THREAD_SAFE_
FUNCTIONS

Thread-safe libraries are supported.

_POSIX_THREADS Threads are supported.

AIX 5L Description

_POSIX_THREAD_PRIORITY_
SCHEDULING

Priority scheduling for threads is supported.

_POSIX_THREAD_PRIO_INHERIT Priority inheritance supported.

_POSIX_THREAD_PRIO_PROTECT Priority protection supported.

Routine AIX 5L Solaris
8

Tru64 HP-UX
11i
378 AIX 5L Porting Guide

10.10.5 Supported thread models
Table 103 shows which thread models are supported for major platforms.

Table 103. Supported thread models

10.10.6 Mappings to POSIX/UNIX 98 threads
The following tables contain mappings of common thread libraries to
POSIX/UNIX 98 threads. The mappings are not semantically preserving, but
give an overview of the similarities, not eliminating the need to consult the
manual page for each of the routines for complete details. For example, it
may be the case that routines have the same names, but different prototypes.

The main differences, apart from the obvious syntactical changes include:

 • POSIX threads characteristics are set using configurable attribute objects
for each thread.

 • POSIX thread routines now return error codes and do not set the global
errno.

 • POSIX thread routines enhance thread scheduling and enforce scheduling
algorithms.

 • POSIX specification of cancellation points.

 • POSIX threads implement thread cancellation.

 • POSIX threads does not support suspending and resuming.

 • POSIX threads signal handling.

 • POSIX thread routines enhance thread-specific data handling.

 • POSIX threads allow for clean-up handlers for fork calls.

AIX 5L does have _np routines; see Table 91 on page 322, which could have
been listed in the mapping tables, where the entry is None. However, for the
sake of portability, the use of the _np routines is not encouraged. Also,

Operating System Thread model

AIX 3.2 M:1

AIX 4.1 and 4.2 1:1

AIX 4.3 and AIX 5L M:N

Solaris 7 and 8 M:N

HP-UX 11.0 and 11.i 1:1

Tru64 M:N
Chapter 10. POSIX threads 379

non-pthread routines could also have been used in the mapping. For
example, pthread_delay_np could be mapped to nanosleep.

The mapping of the Solaris threads to the POSIX/UNIX 98 threads is shown
in Table 104.

Table 104. Mapping of Solaris threads to POSIX/UNIX 98 threads

Solaris threads POSIX/UNIX 98

cond_broadcast pthread_cond_broadcast

cond_destroy pthread_cond_destroy

cond_init pthread_cond_init

cond_signal pthread_cond_signal

cond_timedwait pthread_cond_timedwait

cond_wait pthread_cond_wait

mutex_destroy pthread_destroy

mutex_init pthread_mutex_init

mutex_lock pthread_mutex_lock

mutex_trylock pthread_mutex_trylock

mutex_unlock pthread_unlock

rw_rdlock pthread_rwlock_rdlock

rw_tryrdlock pthread_rwlock_tryrdlock

rw_trywrlock pthread_rwlock_trywrlock

rw_unlock pthread_rwlock_unlock

rw_wrlock pthread_rwlock_wrlock

rwlock_destroy pthread_rwlock_destroy

rwlock_init pthread_rwlock_init

thr_continue None

thr_create pthread_create

thr_exit pthread_exit

thr_getconcurrency pthread_getconcurrency

thr_getprio pthread_getschedparam
380 AIX 5L Porting Guide

The CMA (Concert Multithread Architecture) threads are based on the POSIX
Draft 4. CMA threads are also referred to as DCE threads or user-space
threads. The mapping of the CMA threads to the POSIX/UNIX threads is
shown in Table 105.

Table 105. Mapping of Compaq Tru64 CMA threads to POSIX/UNIX 98 threads

thr_getspecific pthread_getspecific

thr_join pthread_join

thr_keycreate pthread_key_create

thr_kill pthread_kill

thr_main None

thr_min_stack None

thr_self pthread_self

thr_setconcurrency pthread_setconcurrency

thr_setprio pthread_setschedparam

thr_setsigmask pthread_sigmask

thr_setspecific pthread_setspecific

thr_suspend None

thr_yield None

Tru64 CMA interface POSIX/UNIX 98

cma_alert_disable_asynch pthread_setcancelstate
pthread_setcanceltype

cma_alert_disable_general pthread_setcancelstate
pthread_setcanceltype

cma_alert_enable_asynch pthread_setcancelstate
pthread_setcanceltype

cma_alert_enable_general pthread_setcancelstate
pthread_setcanceltype

cma_alert_restore pthread_setcancelstate
pthread_setcanceltype

cma_alert_test pthread_testcancel

Solaris threads POSIX/UNIX 98
Chapter 10. POSIX threads 381

cma_attr_create pthread_attr_init

cma_attr_delete pthread_attr_destroy

cma_attr_get_guardsize pthread_attr_getguardsize

cma_attr_get_inherit_sched pthread_attr_getinheritsched

cma_attr_get_mutex_kind pthread_mutexattr_gettype

cma_attr_get_priority pthread_attr_getschedparam

cma_attr_get_sched pthread_attr_getschedpolicy

cma_attr_get_stacksize pthread_attr_getstacksize

cma_attr_set_guardsize pthread_attr_setguardsize

cma_attr_set_inherit_sched pthread_attr_setinheritsched

cma_attr_set_mutex_kind pthread_mutexattr_settype

cma_attr_set_priority pthread_attr_setschedparam

cma_attr_set_sched pthread_attr_setschedpolicy

cma_attr_set_stacksize pthread_attr_setstacksize

cma_cond_broadcast pthread_cond_broadcast

cma_cond_create pthread_cond_init

cma_cond_delete pthread_cond_destroy

cma_cond_signal pthread_cond_signal

cma_cond_signal_int None

cma_cond_timed_wait pthread_cond_timedwait

cma_cond_wait pthread_cond_wait

cma_delay None

cma_handle_assign None

cma_handle_equal pthread_equal

cma_init None

cma_key_create pthread_key_create

cma_key_get_context pthread_getspecific

Tru64 CMA interface POSIX/UNIX 98
382 AIX 5L Porting Guide

The HP DCE package (v 1.7) included in HP-UX supports a threads package
derived from The Open Group's DCE 1.2.1 version (based on POSIX 1003.4).

cma_key_set_context pthread_setspecific

cma_lock_global None

cma_mutex_create pthread_mutex_init

cma_mutex_delete pthread_mutex_destroy

cma_mutex_lock pthread_mutex_lock

cma_mutex_try_lock pthread_mutex_trylock

cma_mutex_unlock pthread_mutex_unlock

cma_once pthread_once

cma_stack_check_limit_np None

cma_thread_alert pthread_cancel

cma_thread_bind_to_cpu None

cma_thread_create pthread_create

cma_thread_detach pthread_detach

cma_thread_exit_error pthread_exit

cma_thread_exit_normal pthread_exit

cma_thread_get_priority pthread_getschedparam

cma_thread_get_sched pthread_getschedparam

cma_thread_get_self pthread_self

cma_thread_join pthread_join

cma_thread_set_priority pthread_setschedparam

cma_thread_set_sched pthread_setschedparam

cma_time_get_expiration None

cma_unlock_global None

cma_yield None

Tru64 CMA interface POSIX/UNIX 98
Chapter 10. POSIX threads 383

The DCE pthreads package does not provide kernel support. It is a purely
user-level threads package, hence the name user-space threads.

The mapping of the HP-UX DCE interface threads to the POSIX/UNIX 98
threads is shown in Table 106.

Table 106. Mapping of HP-UX DCE threads to the POSIX/UNIX 98 threads

HP-UX 10.20 and 11.x POSIX/UNIX 98

atfork pthread_atfork

pthread_cancel_thread pthread_cancel

pthread_attr_create pthread_attr_init

pthread_attr_delete pthread_attr_destroy

pthread_attr_getguardsize_np pthread_attr_getguardsize

pthread_attr_getinheritsched pthread_attr_getinheritsched

pthread_attr_getprio pthread_attr_getschedparam

pthread_attr_getsched pthread_attr_getschedpolicy

pthread_attr_getstacksize pthread_attr_getstacksize

pthread_attr_setguardsize_np pthread_attr_setguardsize

pthread_attr_setinheritsched pthread_attr_setinheritsched

pthread_attr_setprio pthread_attr_setschedparam

pthread_attr_setsched pthread_attr_setschedpolicy

pthread_attr_setstacksize pthread_attr_setstacksize

pthread_cancel pthread_cancel

pthread_cond_broadcast pthread_cond_broadcast

pthread_cond_destroy pthread_cond_destroy

pthread_cond_init pthread_cond_init

pthread_cond_signal pthread_cond_signal

pthread_cond_signal_int_np None

pthread_cond_timedwait pthread_cond_timedwait

pthread_cond_wait pthread_cond_wait

pthread_condattr_create pthread_condattr_init
384 AIX 5L Porting Guide

pthread_condattr_delete pthread_condattr_destroy

pthread_create pthread_create

pthread_ctxcb_hpux None

pthread_delay_np None

pthread_detach pthread_detach

pthread_equal pthread_equal

pthread_exit pthread_exit

pthread_get_expiration_np get_expiration_time()

pthread_getprio pthread_getschedparam

pthread_getscheduler pthread_getschedparam

pthread_getspecific pthread_getspecific

pthread_is_multithreaded_np None

pthread_join pthread_join

pthread_keycreate pthread_key_create

pthread_lock_global_np None

pthread_mutex_destroy pthread_mutex_destroy

pthread_mutex_init pthread_mutex_init

pthread_mutex_lock pthread_mutex_lock

pthread_mutex_trylock pthread_mutex_trylock

pthread_mutex_unlock pthread_mutex_unlock

pthread_mutexattr_create pthread_mutexattr_init

pthread_mutexattr_delete pthread_mutexattr_destroy

pthread_mutexattr_getkind_np None

pthread_mutexattr_setkind_np None

pthread_once pthread_once

pthread_self pthread_self

pthread_setasynccancel pthread_setcanceltype

HP-UX 10.20 and 11.x POSIX/UNIX 98
Chapter 10. POSIX threads 385

10.10.7 Limits and default values
This section shows how different values related to the threads library can be
obtained. Then, default values are given for attributes.

The following program can be used to extract values from the given system.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <limits.h>
#define w(x) printf("%25.25s %9ld\n", #x, sysconf(x));
main()
{

w(_SC_CLK_TCK) /* # of clock ticks/second */
w(_SC_VERSION) /* POSIX version & revision */
w(_SC_CHILD_MAX) /* Max # of children per process */
w(_SC_NPROCESSORS_CONF); /* Number of processors configured. */
w(_SC_NPROCESSORS_ONLN); /* Number of processors online. */
w(_SC_THREADS); /* System supports POSIX threads. */
w(_SC_THREAD_DATAKEYS_MAX); /* Maximum number of data keys that */

/* can be defined in a process. */
w(_SC_THREAD_DESTRUCTOR_ITERATIONS);/* Maximum number attempts made */

/* to destroy a thread's */
/* thread-specific data. */

w(_SC_THREAD_KEYS_MAX); /* Maximum number of data keys per */
/* process. */

w(_SC_THREAD_STACK_MIN); /* Minimum value for the threads */
/* stack size. */

w(_SC_THREAD_THREADS_MAX); /* Maximum number of threads within */

pthread_setcancel pthread_setcancelstate

pthread_setprio pthread_setschedparam

pthread_setscheduler pthread_setschedparam

pthread_setspecific pthread_setspecific

pthread_signal_to_cancel_np None

pthread_testcancel pthread_testcancel

pthread_unlock_global_np None

pthread_yield None

sigprocmask pthread_sigmask

HP-UX 10.20 and 11.x POSIX/UNIX 98
386 AIX 5L Porting Guide

/* a process. */
w(_SC_REENTRANT_FUNCTIONS); /* System suuports reentrant */

/* functions (reentrant */
/* functions must be used in */
/* multi-threaded applications). */

w(_SC_THREAD_SAFE_FUNCTIONS); /* System supports thread safe */
/* functions. */

w(_SC_THREAD_ATTR_STACKADDR); /* System supports the stack */
/* address option for POSIX threads */
/* (stackaddr attribute of threads) */

w(_SC_THREAD_ATTR_STACKSIZE); /* System supports the stack size */
/* option for POSIX threads */
/* (stacksize attribute of threads) */

w(_SC_THREAD_PRIORITY_SCHEDULING); /* System supports the priority */
/* scheduling for POSIX threads. */

w(_SC_THREAD_PRIO_INHERIT); /* System supports the priority */
/* inheritance protocol for POSIX */
/* threads (priority inversion */
/* protocol for mutexes). */

w(_SC_THREAD_PRIO_PROTECT); /* System supports the priority */
/* ceiling protocol for POSIX */
/* threads (priority inversion */
/* protocol for mutexes). */

w(_SC_THREAD_PROCESS_SHARED); /* System supports the process */
/* sharing option for POSIX */
/* threads (pshared attribute of */
/* mutexes and conditions). */

w(_SC_THREAD_FORKALL); /* Replicate threads in child proc */

}

An example output of this program is:

_SC_CLK_TCK 100
_SC_VERSION 199506

_SC_CHILD_MAX 128
_SC_NPROCESSORS_CONF 2
_SC_NPROCESSORS_ONLN 2

_SC_THREADS 1
_SC_THREAD_DATAKEYS_MAX 450

_SC_THREAD_DESTRUCTOR_ITE 4
_SC_THREAD_KEYS_MAX 450
_SC_THREAD_STACK_MIN 8192

_SC_THREAD_THREADS_MAX 32767
_SC_REENTRANT_FUNCTIONS 1

_SC_THREAD_SAFE_FUNCTIONS 1
_SC_THREAD_ATTR_STACKADDR 1
Chapter 10. POSIX threads 387

_SC_THREAD_ATTR_STACKSIZE 1
_SC_THREAD_PRIORITY_SCHED -1
_SC_THREAD_PRIO_INHERIT -1
_SC_THREAD_PRIO_PROTECT -1

_SC_THREAD_PROCESS_SHARED 1
_SC_THREAD_FORKALL -1

AIX supports up to 32768 threads in a single process. Each individual
pthread requires some amount of process address space, so the actual
maximum number of pthreads a process can have depends on the memory
model and the use of process address space for other purposes. The amount
of memory a pthread needs includes the stack size and the guard region size,
plus some amount for internal use.

The user can control the size of the stack with pthread_attr_setstacksize()
and the size of the guard region with pthread_attr_setguardsize().

The process address space for 32-bit programs can be increased using the
argument -bmaxdata:number at compile time. The value of number may be
one of 0x10000000, 0x20000000, ..., or 0x80000000. This will allocate
between one and eight additional segments of 256 MB memory for the
process. Table 107 lists the default values.

Table 107. Default values for pthreads attributes in AIX 5L

Attribute AIX 5L HP-UX 11i Solaris 8 Tru64

scope PTHREAD_SCOPE
_PROCESS

PTHREAD_SCOPE
_SYSTEM

PTHREAD_SCOPE
_PROCESS

PTHREAD_SCOPE
_PROCESS

detachstate PTHREAD_
CREATE_
JOINABLE

PTHREAD_
CREATE_
JOINABLE

PTHREAD_
CREATE_
JOINABLE

PTHREAD_
CREATE_
JOINABLE

stackaddr N/A NULL NULL NULL

stacksize 96 KB
PTHREAD_
STACK_MIN

64 KB NULL (1 MB for 32
bit processes, 2 MB
for 64 bit processes)

priority 1 N/A 0 19

inheritsched PTHREAD_
INHERIT_SCHED

PTHREAD_
INHERIT_SCHED

PTHREAD_
EXPLICIT_SCHED

PTHREAD_
INHERIT_SCHED

schedpolicy SCHED_OTHER SCHED_
TIMESHARE

SCHED_OTHER SCHED_OTHER

guardsize PAGESIZE PAGESIZE PAGESIZE PAGESIZE
388 AIX 5L Porting Guide

10.10.8 Inspecting a process and its kernel threads
AIX provides the ps command for showing the current process status. Setting
the appropriate flags, we can also show the kernel threads information. To
display information about all processes and kernel threads on AIX 5L, enter:

ps -emo THREAD

To display information about a certain user and associated kernel threads,
enter:

ps -mo THREAD -u root

cancelability state PTHREAD_
CANCEL_ENABLE

PTHREAD_
CANCEL_ENABLE

PTHREAD_
CANCEL_ENABLE

PTHREAD_
CANCEL_ENABLE

cancelability type PTHREAD_
CANCEL_
DEFERRED

PTHREAD_
CANCEL_
DEFERRED

PTHREAD_
CANCEL_
DEFERRED

PTHREAD_
CANCEL_
DEFERRED

Attribute AIX 5L HP-UX 11i Solaris 8 Tru64
Chapter 10. POSIX threads 389

The output is similar to:

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 1 0 - A 0 60 1 - 200003 - - /etc/init
- - - 259 S 0 60 1 - 410410 - - -

root 2714 4434 - A 0 60 1 - 240001 - - /usr/sbin/inetd
- - - 4977 S 0 60 1 - 18400 - - -

root 3482 1 - A 0 60 1 1b3234 40401 - - /usr/lib/errdemon
- - - 4015 S 0 60 1 1b3234 10400 - - -

root 3642 1 - A 1 60 1 32dcb298 240001 - - /usr/sbin/syncd 60
- - - 3713 S 1 60 1 32dcb298 10400 - - -

root 3974 4434 - A 0 60 1 70214114 240001 - - /usr/sbin/writesrv
- - - 4525 S 0 60 1 70214114 400 - - -

root 4214 4434 - A 0 60 1 - 240001 - - /usr/sbin/syslogd
- - - 5235 S 0 60 1 - 18400 - - -

daemon 8520 4434 - A 0 60 3 - 240001 - - /usr/sbin/rpc.statd
- - - 8779 Z 0 60 1 - c00001 - - -
- - - 9041 Z 0 60 1 - c00001 - - -
- - - 9295 S 0 60 1 - 418400 - - -

root 8776 4434 - A 0 60 1 c0043100 240001 - - /usr/sbin/qdaemon
- - - 10583 S 0 60 1 c0043100 10400 - - -

The columns are defined as:

USER The login name of the process owner

PID The process ID of the process

PPID The process ID of the parent process

TID The thread ID of the kernel thread

ST The state of the process or kernel thread

CP The CPU utilization of the process or kernel thread

PRI The priority of the process or kernel thread

SC The suspend count of the process or kernel thread

WCHAN The wait channel of the process or kernel thread

F The flags of the process or kernel thread

TT The controlling terminal of the process

BND The CPU to which the process or kernel thread is bound

CMD The command being executed by the process

In the example output shown above, we can see that process 8520 has three
kernel threads, two in CANCLED state and one in SLEEPING state.
390 AIX 5L Porting Guide

10.11 Example: The Mandelbrot set

The Mandelbrot set is named after the mathematician Benoit B. Mandelbrot.
This section uses the computation of a Mandelbrot set as the basis for an
example program using POSIX threads.

The example consists of five small C-programs. Error checking has been kept
to a minimum (see Section 10.1.1.3, “Example of a POSIX threaded program”
on page 310). The source code of the programs is listed in Appendix A,
“Sample programs” on page 451. The descriptions of these example
programs is given in Table 108.

Table 108. Description of example programs

File name Description

mandelbrot1.c Prints Figure 67 on page 392.

mandelbrot2.c Computes set sequentially, one horizontal line at the time, no use
of pthreads.

mandelbrot3.c Computes set using one thread pr. horizontal line.

mandelbrot4.c Computes set using one thread per horizontal line, which may
create more threads for a specific horizontal line, if it detects that
the computation has taken more than three seconds.

mandelbrot5.c Computes set using one thread per horizontal line, which may
create more threads for a specific horizontal line, if it detects that
the computation has taken more than three seconds and a CPU
appears to be more than 20 percent idle.
Chapter 10. POSIX threads 391

Figure 67. Output from mandelbrot1.c, 35 horizontal lines

We see the results of running the programs on an IBM ^ pSeries 680
with 24 CPUs as follows.

All the programs, except mandelbrot1.c, each have several parameters,
which can be altered. The code contains the following #defines:

#define MAX_ITERATION 262144
#define MAX_LENGTH 100
#define X_MIN -2.1
#define Y_MIN -1.1
#define X_MAX 0.7
#define Y_MAX 1.1
#define RESOLUTION 35 /* vertical resolution, horizontal is then derived */

Table 109 shows the results of various runs with the specified values. They
are all run with the defaults settings for the pthread library on AIX 5L, that is,
process contention-scope and an AIXTHREAD_MNRATIO of 8:1.

Table 109. Timing data for mandelbrot programs

Program MAX_ITERATION RESOLUTION Time

mandelbrot2 262144 35 real 0m40.69s
user 0m40.68s
sys 0m0.00s

:::=======================o++===================::::::::::::::
::============================++o++==+=================:::::::::::
:::=================================+++o+o+++===================::::::::
::::::::::::::::::::::::::::::::::::::====================================++++ooo++++=====================::::::
::::::::::::::::::::::::::::::::::=====================================+++xoooo oo+oo+=====================::::
::::::::::::::::::::::::::::::==+++++o o+++======================::
::::::::::::::::::::::::::=====================================+++++++++++oO o++++++=====================:
::::::::::::::::::::::====================================++xooo+++++Ox+OooooO OooooO++oo+++++++o+============
:::::::::::::::::::=======================================++++x OoXox oo+++xoooo++==========
::::::::::::::::==++++++O o @o++===========
:::::::::::::===++xooooX o++++===========
:::::::::::=====================++++=======++======+++++++x o+++o=========
::::::::========================++o++++++++++++++++++++xX Oo+========
::::::==========================+++++oxx+oox oooo++++++X x+++=========
:::===========================+++++++o oo++oo : o+=========
::========================++++++++oxX Ooo O++==========
========================+++++o+oooo x O+===========
============++++++++++++++++oo @ O +++============
============++++++++++++++++oo @ O +++============
========================+++++o+oooo x O+===========
::========================++++++++oxX Ooo O++==========
:::===========================+++++++o oo++oo : o+=========
::::::==========================+++++oxx+oox oooo++++++X x+++=========
::::::::========================++o++++++++++++++++++++xX Oo+========
:::::::::::=====================++++=======++======+++++++x o+++o=========
:::::::::::::===++xooooX o++++===========
::::::::::::::::==++++++O o @o++===========
:::::::::::::::::::=======================================++++x OoOox oo+++xoooo++==========
::::::::::::::::::::::====================================++xooo+++++Ox+OooooO OooooO++oo+++++++o+============
::::::::::::::::::::::::::=====================================+++++++++++oO o++++++=====================:
::::::::::::::::::::::::::::::==+++++o o+++======================::
::::::::::::::::::::::::::::::::::=====================================+++xoooo oo+oo+=====================::::
::::::::::::::::::::::::::::::::::::::====================================++++ooo++++=====================::::::
:::=================================+++o+o+++===================::::::::
::============================++o++==+=================:::::::::::
392 AIX 5L Porting Guide

The command ps -emo THREAD can be run while the programs run in order to
see the kernel threads.

The main difference between mandelbrot4 and mandelbrot5 is that the latter
tries to avoid starting threads uncritically. The running times are similar, but

mandelbrot3 262144 35 real 0m8.45s
user 0m41.62s
sys 0m0.02s

mandelbrot4 262144 35 real 0m7.27s
user 0m43.30s
sys 0m0.02s

mandelbrot5 262144 35 real 0m6.87s
user 0m43.46s
sys 0m0.07s

mandelbrot2 524288 50 real 2m46.38s
user 2m46.36s
sys 0m0.01s

mandelbrot3 524288 50 real 0m25.00s
user 2m49.71s
sys 0m0.01s

mandelbrot4 524288 50 real 0m13.77s
user 3m5.13s
sys 0m0.04s

mandelbrot5 524288 50 real 0m13.24s
user 3m8.59s
sys 0m0.23s

mandelbrot2 1048576 100 real 22m13.66s
user 22m13.51s
sys 0m0.01s

mandelbrot3 1048576 100 real 2m43.85s
user 22m42.24s
sys 0m0.00s

mandelbrot4 1048576 100 real 1m2.72s
user 38m45.70s
sys 0m0.17s

mandelbrot5 1048576 100 real 1m6.22s
user 39m13.00s
sys 0m2.58s

Program MAX_ITERATION RESOLUTION Time
Chapter 10. POSIX threads 393

fewer threads are started, relieving pressure from the library scheduler. In
this example, it imposes a minor additional amount of computation time.

Figure 68 shows how the real time is lower for mandelbrot4 and mandelbrot5,
due to the fact that idle processor time is exploited. However, we also see that
the extra layer of scheduling has an impact on the user time.

Figure 68. Charts of execution time

The previous example shows that the use of threads should be carefully
considered. For example, the computation of the Mandelbrot set, as
presented here, has the property that the computation can be subdivide into
independent computations, requiring no synchronization, expect for printing
out the result. Other problems might be characterized as interdependencies
between intermediate results and the impossibility to subdivide the
computation beyond a certain level of granularity.

The example showed, that threading does impose an overhead in user time
but allows the exploitation of idle processors.

Other tests could be performed, for example, altering some of the
environment variables mentioned in Section 10.8, “Tuning” on page 367.

mandelbrot2
mandelbrot3

mandelbrot4
mandelbrot5

(MAX_ITERATIONS=1048576, RESOLUTION=100)

0

500

1000

1500

2000

2500

3000

S
ec

on
ds sys

user
real

mandelbrot2
mandelbrot3

mandelbrot4
mandelbrot5

(MAX_ITERATIONS=524288, RESOLUTION=50)

0

50

100

150

200

250

300

350

S
ec

on
ds sys

user
real

mandelbrot2
mandelbrot3

mandelbrot4
mandelbrot5

(MAX_ITERATIONS=262144, RESOLUTION=35)

0

10

20

30

40

50

60

70

80

90

S
ec

on
ds sys

user
real
394 AIX 5L Porting Guide

Also, the optimization options of the compiler have not been used. For this
example, they will yield impressive results, due to the nature of the problem.

10.11.1 References
The following references contain additional information on threads:

 • IEEE Standards Online Subscriptions, found at:

http://standards.ieee.org/catalog/olis/index.html

This Web site requires registration, which can be done online. Use search
criteria like 9945-1 or 1003.1.

 • The Single UNIX Specification, Version 2, found at:

http://www.opengroup.org/onlinepubs/7908799/toc.htm

 • POSIX Programmer's Guide: Writing Portable Unix Programs With the
POSIX, by Lewine, et al.
Chapter 10. POSIX threads 395

396 AIX 5L Porting Guide

Chapter 11. C++ templates

Templates are an area of the C++ language that provide a great deal of
flexibility for developers. The recent ANSI C++ standard defines the language
facilities and features for templates. Unfortunately, the standard does not
specify how a compiler should implement templates. This means that there
are sometimes significant differences between the methods used to
implement templates in compiler products from different vendors.

11.1 Using C++ templates

Developers porting C++ code that uses templates to the AIX 5L platform
sometimes have problems with the implementation model. The main
problems experienced are:

 • Long compile and link times

 • Linker warnings of duplicate symbols

 • Increase in code and executable size

All of these above problems are generally caused by the inefficient use of the
AIX 5L implementation of templates. The number of problems experienced
will depend on the platform the code is being ported from and the template
implementation method used on that platform. Sometimes the problems can
be fixed on AIX 5L by simply adding a few compiler options. In other
instances, the code layout needs to be changed in order to utilize the most
efficient implementation method on AIX 5L. In most of these rare cases, the
code changes are backwards compatible with the original platform the code is
being ported from. This is very important for developers who maintain a
single source tree that must compile correctly on multiple platforms.

11.2 AIX 5L template implementations

The template mechanism provides a way of defining general container types,
such as list, vector, and stack, where the specific type of the elements is left
as a parameter. Two types of templates can be defined:

Class templates Specify how individual classes can be constructed.

Function templates Specify how individual functions can be constructed.

Regardless of the type of template being used, the code is essentially split
into three parts:
© Copyright IBM Corp. 2001 397

Template declaration This is the part of the source code that declares the
template class or function. It does not necessarily
contain the definition of the class or function,
although it may optionally do so. For example, a
template declaration may describe a Stack template
class, as shown in Figure 69.

Template definition This portion of code is the definition of the template
function itself or the template class member
functions. For example, using the Stack class
template, this portion of code would define the
member functions used to manipulate the stack, as
shown in Figure 70 on page 399.

Template instance The template instance code is generated by the
compiler for each instance of the template. For
example, this would be the code to handle a specific
instance of the stack template class, such as a stack
of integer values.

The difference between the components is that the template declaration must
be visible in every compilation unit that uses the template. The template
definition and code for each instance of the template need only be visible
once in each group of compilation units that are linked together to make a
single executable.

Figure 69. Stack template declaration

template <class T> class stack
{
private:

T* v;
T* p;
int sz;

public:
stack(int);
~stack();
void push(T);
T pop();

};
398 AIX 5L Porting Guide

Figure 70. Stack template member function definition

11.2.1 Generated function bodies
When you use class templates and function templates in your program, the
compiler automatically generates function bodies for all template functions
that are instantiated. The compiler follows four basic rules to determine when
to generate template functions. The compiler applies the rules in the following
order:

1. If a template declares a function to have internal linkage, the function must
be defined within the same compilation unit. The compiler generates the
function with internal linkage, and it is not shared with other compilation
units. This is the case if the template class has in-line member functions.

2. If a template function is instantiated in a compilation unit, but it is not
declared to have internal linkage, the compiler looks for a definition of the
function in the same compilation unit. If a definition is found, the compiler
generates a function body in the same compilation unit.

3. If a template function is instantiated in a compilation unit, and the function
is not defined in the same compilation unit, but certain other conditions are
met, the compiler generates the necessary function definitions during a

template <class T> stack<T>::stack(int s)
{

v = p = new T[sz=s];
}

template <class T> stack<T>::~stack()
{

delete [] v;
}

template <class T> void stack<T>::push(T a)
{

*p++ = a;
}

template <class T> T stack<T>::pop()
{

T ret = *p;
p--;
return ret;

}

Chapter 11. C++ templates 399

special pre-link phase of the compilation. This is the case when the
-qtempinc option is in use.

4. If none of the preceding rules applies, the compiler does not generate the
definition of the template function. It must be defined in another
compilation unit.

11.3 Simple code layout method

The simplest method of using template code is to include both the declaration
and definition of the template in every compilation unit that uses instances of
the template. From a code layout point of view, this is very easy, because the
template declaration and definition can be kept in a single header file. Using
the stack example, the code in Figure 69 on page 398 and Figure 70 on
page 399 would be combined into a single header file, for example, stack.h,
which is then included by every compilation unit that wishes to use the
template. Alternatively, the header file for a template declaration can include
the source file that contains the template definition. Using the stack template
example, the header file, stack.h, would #include the source file, stack.C.

There are a number of disadvantages to using this method. Some of them
can be overcome; others cannot.

11.3.1 Disadvantages of the simple method
The first disadvantage of the simple method is that using the header files can
become complicated, particularly when other header files need to declare an
instance of the template. In order to do this, they must #include the stack.h
file, which potentially leads to multiple #includes of the file, resulting in
multiple definitions of the member functions. This problem can be fixed with
the addition of preprocessor macros in the header file to protect against
multiple #include operations. For example:

#ifndef stack_h
#define stack_h
....
....declaration and definition of stack template
....
#endif

Using the macros shown above, the contents of the header file will only
appear once in the compilation unit, regardless of the number of times the file
is included. This resolves the problems of multiple definitions within a
compilation unit.
400 AIX 5L Porting Guide

11.3.1.1 Template code bloat
The second disadvantage is that the code for each template instance will
potentially appear multiple times in the final executable, resulting in the twin
problems of large executable size and multiple symbol definition warnings
from the linker.

As an example, consider an executable made up of two compilation units,
main.C and functions.C. If both compilation units include the stack.h header
file declare variables of the type stack<int>, then after the first stage of
compilation, both object files, main.o and functions.o, will contain the code for
the member functions of the stack<int> class. When the system linker parses
the object files to create the final executable, it cannot remove the duplicate
symbols because, by default, each compilation unit is treated as an atomic
object by the linker. This results in duplicate symbol linker warnings and a
final executable that contains redundant code.

The size of the final executable can be reduced by using the compiler option
-qfuncsect, when compiling all of the source code modules. This option
causes the compiler to slightly change the format of the output object files.
Instead of creating an object file, which contains a single code section
(CSECT), which must be treated by the system linker as an atomic unit, the
compiler creates an object file, where each function is contained in its own
CSECT. This means that the object files created are slightly larger than their
default counterparts, because they contain extra format information, in
addition to the executable code. This option does not remove the linker
warnings because at link time, there are still multiple symbol definitions. The
benefit of this option is that the linker can discard multiple, identical function
definitions by discarding the redundant CSECTs, resulting in a smaller final
executable. When the -qfuncsect option is not used, the compiler cannot
discard the redundant function definitions if there are other symbols in the
same CSECT that are required in the final executable.

Refer to Section 11.6, “Virtual functions” on page 409 for information on
another potential cause of C++ code bloat.

11.3.1.2 Template compile time
The use of the -qfuncsect option reduces the code size of the final
executable. It does not resolve the other disadvantage of using this method
(of longer than required compile times). The reason for this is that each
compilation unit contains the member functions for the templates that it
instantiates. Using an extreme example with the stack class, consider the
situation where an application is built from 50 source files, and each source
file instantiates a stack<int> template. This means the member functions for
Chapter 11. C++ templates 401

the class are generated and compiled 50 times, yet the result of 49 of those
compiles are discarded by the linker because they are not needed. In the
example used here, the code for the stack class is trivial, so in absolute
terms, the time saved would be minimal. In real life situations, where the
template code is complex, the time that can be saved when compiling a large
application is considerable.

Because not all of the disadvantages of the simple template method can be
overcome, it is only recommended for use when experimenting with
templates. An alternative method can be used, which solves all of the
problems of the simple method and scales very well for large applications.

11.4 Preferred template method

The preferred method of template instantiation on AIX 5L basically means
letting the compiler decide which template code to instantiate as a final step
in the compile and link process. This solves the long compile time
disadvantage of the simple template method, because the compiler only
needs to compile each template instance once.

This method requires that the declaration and definition of the template are
kept in separate files. This is because only the template declaration must be
included in every compilation unit that uses the template. If the definition of
the template were also in the header file, it would also be included in the
source file and thus compiled, resulting in a situation similar to that in the
simple method.

The preferred template model can also benefit from the use of the -qfuncsect
compiler option, because it means the linker can discard code sections that
are not referenced in the final executable.

The template declaration should be left in the header file, as in the simple
template method. The definition of the template member functions needs to
be in a file with the same base name as the header file, but with a .c (lower
case C) file name extension.
402 AIX 5L Porting Guide

Using the stack template example introduced earlier, the template declaration
shown in Figure 69 on page 398 would be in the file stack.h, while the
template definition code shown in Figure 70 on page 399 would be in the file
stack.c in the same directory. If the template definition code file was named
stack.cxx or stack_code.c, then the compiler will not associate the file with
the template declaration in the stack.h header file.

The name of the template definition file can be changed, if desired, using the
implementation pragma directive as follows:

#pragma implementation(string-literal)

where string-literal is the path name for the template definition file enclosed in
double quotes. For example, if the stack template definition code were to be
stored in the file stack_code.cxx, then the stack.h header file would have the
following directive:

#pragma implementation(“stack_code.cxx”)

Once the structure of the source code has been altered to conform to the
required layout, the templates can be used in the preferred way.

11.4.1 The -qtempinc option
The -qtempinc option is used when compiling source code that instantiates
templates. When no directory is specified with the option, the compiler will
create a directory called tempinc in the current directory. For example:

xlC main.C -qtempinc

The user may optionally specify the name of a directory to use for storing the
information on the templates to be generated. This allows the same tempinc
directory to be used when creating an executable that consists of object files
that are compiled in different directories. For example:

By default, the file containing the template definition code must have the
same name as the template declaration header file, but with a file name
extension of .c (lowercase c), even though this extension normally
indicates a C language source file. It must also exist in the same directory
as the template declaration header file. If the template definition file is not
in the same directory, has a different base name, or has a different file
name extension (such as .C, .cxx, or .cpp, which are normally used for C++
source files), then the compiler will not detect the presence of the template
code to be used with the template declaration header file.

Note
Chapter 11. C++ templates 403

xlC -c file1.C file2.C -qtempinc=../app1/templates
cd ../app1
xlC -o app1 main.C ../src/file1.o ../src/file2.o -qtempinc=./templates

The tempinc directory is used to store information about the templates that
are required to be generated. When invoked with the -qtempinc option, the
compiler collects information about template instantiations and stores the
information in the tempinc directory. As the last step of the compilation before
linking, the compiler generates the code for the required template
instantiations. It then compiles the code and includes it with the other object
files and libraries that are passed to the linker to create the final executable.

If the compiler detects a code layout structure that enables the preferred
template method to be used, it will automatically enable the -qtempinc option,
even if it was not specified on the command line. This causes the template
instantiation information to be stored in the tempinc directory. If you want to
specify a different directory, you should explicitly use the -qtempinc=dirname
option on the command line. If you want to prevent the compiler from
automatically generating the template information, which may be the case
when creating a shared object, then use the -qnotempinc option. Refer to
Section 11.5, “Shared objects with templates” on page 406 for more
information on the use of the -qnotempinc option when creating shared
objects.

One important point to note about the -qtempinc option is that you should use
the same value when compiling all compilation units that will be linked
together. In other words, do not compile half of the application with
-qtempinc, and the other half with -qtempinc=dirname. Only one tempinc
directory can be specified on the final C++ compile line that is used to link the
application, which means that half of the template instance information will be
missing. If more than one tempinc option is specified on the command line,
the last one encountered will prevail.

11.4.2 Contents of the tempinc directory
The compiler generates a file in the tempinc directory for each template
header file that has templates instantiated. The file has the same name as the
header file, but with a .C (uppercase C) file name extension. The compiler
generates the file when it detects the first instantiation of a template that is
declared in the header file with the same name. Information on the
subsequent instances of the template is added to the file.
404 AIX 5L Porting Guide

As the final step of the compilation before linking, the compiler compiles all of
the files in the tempinc directory and passes the object files to the linker along
with the user specified files.

The contents of a template information file are as follows:

/*0965095125*/#include "/redbooks/examples/C++/stack.h" 1
/*0000000000*/#include "/redbooks/examples/C++/stack_code.cxx" 2
template stack<int>::stack(int); 3
template stack<int>::~stack(); 4
template void stack<int>::push(int); 5
template int stack<int>::pop(); 6

The line numbers at the end of each line have been added for reference
purposes. The code on line 1 includes the header file that declares the
template. The comment at the start of the line is a time stamp and is used by
the compiler to determine if the header file has changed, which would require
the template instance information file to be recompiled.

The code on line 2 includes the template implementation file that corresponds
to the header file in line 1. A time stamp consisting of all zeros indicates that
the compiler should ignore the time stamp. The file may include other header
files that define the classes that are used in template instantiations. For
example, if there was a user defined class Box, and the compiler detected an
instantiation of stack<Box>, then the header file that defines the class Box
would be included in the instance information file.

The subsequent lines in the example shown above cause the individual
member functions to be instantiated.

11.4.3 Forcing template instantiation
You can, if you wish, structure your program so that it does not use automatic
template instantiation. In order to do this, you must know which template
classes and functions need to be instantiated.

The #pragma define directive is used to force the instantiation of a template,
even if no reference is made to an instance of the generated template. For
example:

#pragma define(stack<double>);

This, however, means that the template implementation file needs to be
included in the compilation units that have the #pragma define directives,
which results in the same disadvantages of the simple template method
described in Section 11.3, “Simple code layout method” on page 400.
Chapter 11. C++ templates 405

An alternative to this is to manually emulate the process used by the compiler
to automatically create the appropriate template instances. Using the stack
class as an example, the following compilation unit could be used to force the
creation of the desired stack template classes, even though no objects of
those types are referenced in the source code:

#include "/redbooks/examples/C++/stack.h" 1
#include "/redbooks/examples/C++/stack_code.cxx" 2
#include “/redbooks/examples/C++/Box.h” // definition of class Box 3
#pragma define(stack<int>); 4
#pragma define(stack<Box>); 5
#pragma define(stack<char>); 6
#pragma define(stack<short>); 7

This type of method will be useful when creating shared objects with the
makeC++SharedLib command. Users of the VisualAge C++ Professional for AIX
5L Version 5 compiler should use the -qmkshrobj option instead. Refer to
Section 11.5, “Shared objects with templates” on page 406 for more
information.

11.5 Shared objects with templates

Templates are usually declared in a header file. Each time a template is used,
code is generated to instantiate the template with the desired parameters.
Most C++ compilers work with a template repository. No template code is
generated at compile time; the compiler just remembers where the template
code came from. Then, at link time, as the compiler/linker puts all parts
together, it notices which templates actually need to be generated. The code
is then produced, compiled, and linked into the application.

This becomes a problem when using templates with shared libraries, where
no actual linking takes place. So, one must make sure that the template code
is generated when producing the shared library.

Therefore, one should keep track of compilation and inclusion of template
instantiations. This would mean that one has to manually keep track of all the
template instantiation and address them during the linking phase.

It is here that the VisualAge C++ Professional for AIX Version 5 compiler has
a noticeable improvement over previous versions of C++ compilers for AIX.
The compiler, like the makeC++SharedLib command, can be used to create a
shared object from object files using the -qmkshrobj option.

This option, together with the -qtempinc option, should be used in preference
to the makeC++SharedLib command when creating a shared object that uses
406 AIX 5L Porting Guide

templates. The advantage of using these options instead of makeC++SharedLib
is that the compiler will automatically include and compile the template
instantiations in the tempinc directory.

11.5.1 Templates and makeC++SharedLib
The makeC++SharedLib command is supplied with the IBM C++ command line
compilers for the AIX 5L platform. The command is a shell script that gathers
the supplied input and then calls the linker to create the shared object. While
this script is available on AIX 5L, the suggested method of building a shared
library that uses template code is described in Section 11.5.2, “Templates
and -qmkshrobj” on page 408.

When creating a shared object that uses templates, the makeC++SharedLib
command needs to somehow find information on the templates that are to be
instantiated. Because the script calls the linker, and not the compiler, it does
not look at the contents of the tempinc directory. This means the method of
creating a shared object that uses templates relies on either using the simple
template method code layout, as described in Section 11.3, “Simple code
layout method” on page 400, or forcing templates to be instantiated, as
described in Section 11.4.3, “Forcing template instantiation” on page 405.

The best method to use will depend on the circumstances. Using the simple
code layout method means that all the required templates are automatically
generated. However, it also comes with the disadvantages of slower compile
times and larger code size. Forcing the templates to be instantiated is better
from both the code size and compile time aspect, but it does mean that the
user needs to maintain files that instantiate the required templates.

Suppose you want to create a shared object from the following two source
files, which use the preferred code layout method.

The file source1.C contains the following code:

#include “stack.h”
stack<int> counter1;
void function1(int a)
{

counter1.push(a);
}

The file source2.C contains the following code:

include “stack.h”
stack<int> counter2;
void function2(int a)
Chapter 11. C++ templates 407

{
counter2.push(a);

}

Using the makeC++SharedLib command, an attempt is made to create a shared
object, as follows:

xlC -c source1.C source2.C
/usr/vacpp/bin/makeC++SharedLib -o shr1.o -p0 source1.o source2.o
ld: 0711-317 ERROR: Undefined symbol: .stack<int>::stack(int)
ld: 0711-317 ERROR: Undefined symbol: .stack<int>::~stack()
ld: 0711-317 ERROR: Undefined symbol: .stack<int>::push(int)
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more
information.

The command failed, and based on the output, it is easy to see that the
required template functions have not been instantiated. At this point, note that
because the code uses the preferred code layout method, the compiler has,
in fact, automatically created the file tempinc/stack.C, which, if compiled,
would supply the required template definitions. You can, if you wish, copy this
file and make it an explicit compilation unit as part of your source code. In this
case, that would mean adding the following command to the sequence:

xlC -c tempinc/stack.C -o stack.o

The object, file stack.o, would then be passed to the makeC++SharedLib
command along with source1.o and source2.o.

11.5.2 Templates and -qmkshrobj
Users of the VisualAge C++ Professional for AIX Version 5 compiler should
use the -qmkshrobj option in preference to the makeC++SharedLib command
when creating a shared object. Because the option is a compiler option, it will
automatically look in the tempinc directory (or the directory specified with the
-qtempinc=<dirname>. option) for the automatically generated template
instance information. Using the same source files described in
Section 11.5.1, “Templates and makeC++SharedLib” on page 407, the
following commands can be used to create the shared object:

xlC -c source1.C source2.C
xlC -qmkshrobj -o shr1.o source1.o source2.o

This time the command works correctly, because the compiler looks in the
tempinc directory. Remember to use the same -qtempinc option (if any) that
was used when compiling the modules being used to create the shared
object.
408 AIX 5L Porting Guide

This option solves the problems associated with creating shared objects that
use template classes and functions. If you want to create a shared object that
contains pre-instantiated template classes and functions for use by other
developers, then you can create an additional compilation unit that explicitly
defines the required templates using the #pragma define directive.

11.6 Virtual functions

In general, when writing C++ code, you should try and avoid the use of virtual
functions. They are normally encoded as indirect function calls, which are
slower than direct function calls.

Usually, you should not declare virtual functions in-line. If all virtual functions
in a class are in-line, the virtual function table and all the virtual function
bodies will be replicated in each compilation unit that uses the class. The
disadvantage to this is that the virtual function table and function bodies are
created with internal linkage in each compilation unit. This means that even if
the -qfuncsect option is used, the linker cannot remove the duplicated table
and function bodies from the final executable. This can result in very bloated
executable size.
Chapter 11. C++ templates 409

410 AIX 5L Porting Guide

Chapter 12. Test and debug

This chapter presents two debugging tools. For details on all the functions
and features of these tools, please consult the online documentation. In the
following sections, we will walk the reader through some examples,
illustrating the use of these tools.

12.1 dbx

In this section we will use dbx to debug two pieces of code. The dbx command
is the tty-based symbolic debugger supplied with AIX 5L on Power platforms.
For more information on dbx, please see General Programming Concepts:
Writing and Debugging Programs, which can be found in the AIX 5L online
documentation.

12.1.1 Small example
Consider the following code:

The code is compiled using and run with both -q32 and -q64 options:

$ cat debugstrings.c
int main(int argc, char **argv)
{

char mystring1[10] = "foo";
char *mystring2;

mystring2 = (char *)malloc(sizeof(char)*(long)10);

strcpy(mystring2, "bar\n\0");

printf("%s%s", mystring1, mystring2);

}
$

$ cc -q32 -o debugstrings debugstrings.c
$ debugstrings
foobar
$ cc -q64 -o debugstrings debugstrings.c
$ debugstrings
Segmentation fault(coredump)
$

© Copyright IBM Corp. 2001 411

We then recompile (using the debug option), re-run the program, and find the
core file:

Note that on AIX 5L, a core file is not just called core. The format is:

core.pid.ddhhmmss

where:

 • pid is the process ID of the process that caused the core.
 • dd indicates the day of the month.
 • hhmmss is a time stamp indicating the hours, minutes and seconds.

We then start the debugger, contemplate the error message, and quit. The
debugger’s prompt is (dbx):

It seems to be a problem in strcpy. We then step through the program and
use the whatis and print commands, we see:

T$ cc -g -q64 -o debugstrings debugstrings.c
$ debugstrings
Segmentation fault(coredump)
$ ls -rt core* | tail -1
core.21184.24174837
$

$ dbx debugstrings core.21184.24174837
Type 'help' for help.
reading symbolic information ...
[using memory image in core.21184.24174837]

Segmentation fault in strcpy.strcpy [debugstrings] at 0x1000005d8
0x1000005d8 (strcpy+0xb8) 9ce50001 stbu r7,0x1(r5)
(dbx) q
412 AIX 5L Porting Guide

It appears that mystring2 points to an invalid address. Let us rerun the string
and see, using the print command, how it gets this value in the first place:

$ dbx debugstrings
Type 'help' for help.
reading symbolic information ...
(dbx) step
stopped in main at line 4

4 char mystring1[10] = "foo";
(dbx) step
stopped in main at line 7

7 mystring2 = (char *)malloc(sizeof(char)*(long)10);
(dbx) step
stopped in main at line 9

9 strcpy(mystring2, "bar\n\0");
(dbx) step

Segmentation fault in strcpy.strcpy [debugstrings] at 0x1000005d8
0x1000005d8 (strcpy+0xb8) 9ce50001 stbu r7,0x1(r5)
(dbx) whatis mystring2
unsigned char *mystring2;
(dbx) print mystring2
(invalid char ptr (0x00000000100007d0))
(dbx)

$ dbx debugstrings
Type 'help' for help.
reading symbolic information ...
(dbx) step
stopped in main at line 4

4 char mystring1[10] = "foo";
(dbx) print mystring1
""
(dbx) print mystring2
(invalid char ptr (0xbadc0ffee0ddf00d))
(dbx) step
stopped in main at line 7

7 mystring2 = (char *)malloc(sizeof(char)*(long)10);
(dbx) print mystring1
"foo"
(dbx) print mystring2
(invalid char ptr (0xbadc0ffee0ddf00d))
(dbx) step
stopped in main at line 9

9 strcpy(mystring2, "bar\n\0");
(dbx) print mystring2
(invalid char ptr (0x00000000100007d0))
(dbx) print &mystring1[0]
0x0fffffffffffff50
Chapter 12. Test and debug 413

It seems that the malloc routines assigns it an address in segment 1. This is
the main program text segment and is not writable by the program.

Let us run the 32-bit version and print the address values:

We see that the strings are allocated in segment 2.

Section 3.8, “Pointer assignment and arithmetic” on page 48 leads us to
suspect that the address malloc should return is being truncated. Our
suspicion is confirmed by the following:

It looks like a missing function prototype for the malloc routine. After including
the header file stdlib.h, the code runs without problems:

$ cc -g -q32 -o debugstrings debugstrings.c
$ dbx debugstrings
Type 'help' for help.
reading symbolic information ...
(dbx) step
stopped in main at line 4

4 char mystring1[10] = "foo";
(dbx) step
stopped in main at line 7

7 mystring2 = (char *)malloc(sizeof(char)*(long)10);
(dbx) step
stopped in main at line 9

9 strcpy(mystring2, "bar\n\0");
(dbx) print &mystring1[0]
0x2ff22bb0
(dbx) print &mystring2[0]
0x20000928
(dbx)

$ cc -qwarn64 -o debugstrings debugstrings.c
"debugstrings.c", line 7.21: 1506-745 (I) 64-bit portability: possible incorrect pointer
through conversion of int type into pointer.
414 AIX 5L Porting Guide

12.2 debug_message.c and dbx

In this section, we will use dbx to debug the code debug_message.c:

/*
* Program debug_message
*
* This program has been modified to exhibit a few bugs that can be
* investigated with the debugger.
*
* The program generates a number of child processes using fork and
* communicates between them using messages.
*
*/
#include <stdio.h> /* Needed for printf */
#include <sys/shm.h> /* Needed for shmget */
#include <sys/types.h> /* Needed for fork */
#include <unistd.h> /* Needed for fork */
#include <sys/msg.h> /* Needed for msgget... */
#include <string.h> /* Needed for strncmp */

/* maximum message size */
#define MAX_MSG_SIZE 64

#define NKIDS 3 /* How many children? */
#define NUM_OF_MSGS 2 /* How many predefined messages are there? */

struct mess {
mtyp_t mtype;
char mtext[MAX_MSG_SIZE];

} the_word;

char *msgs[NUM_OF_MSGS] = {"cd /pub","more beer"};

int identity = -1; /* Define and initialize */

$ cat debugstrings.c
#include <stdlib.h>

int main(int argc, char **argv)
{

char mystring1[10] = "foo";
char *mystring2;

mystring2 = (char *)malloc(sizeof(char)*(long)10);

strcpy(mystring2, "bar\n\0");

printf("%s%s", mystring1, mystring2);

}
$ cc -g -q64 -qwarn64 -o debugstrings debugstrings.c
$ debugstrings
foobar
$

Chapter 12. Test and debug 415

int ix = -1; /* Define and initialize */

main()
{

pid_t pid = -1; /* Define and initialize */
int nkids = -1; /* Define and initialize */
int child = 0; /* Set child to false */
int parent = 0; /* Set parent to false */
key_t mkey = 0xf00; /* Define and initialize */
const int shmsize = 8192; /* Define and initialize */
int shmid = -1; /* Define and initialize */
int itemp = -1;
int msgid = -1;

/* Initialise a message queue */
itemp = IPC_CREAT|S_IRUSR|S_IWUSR;
if((msgid=msgget(IPC_PRIVATE,itemp))==-1) {

perror("msgget #1"); exit(1); }

printf("Parent > Making children\n");

/* Make NKIDS children */
for (ix = 0; ix < NKIDS; ix++) {

/* begat a child */
if ((pid = fork()) == -1) {

printf("fork #1"); exit(1); }

/* Check to see if child or parent */
if (pid == 0) {

/* CHILD */
child = 1; /* Set child true */
parent = 0; /* and parent false -just to make sure */
identity = ix; /* Set 'local' identity */
goto CHILD;

} else {
/* PARENT */
parent = 1; /* I am the parent */
child = 0; /* not the child */

}
}

/* PARENT SECTION */
/* NKIDS children have been created */

/* Make sure that children are alive */
usleep(10000);

for (ix = 0; ix < NKIDS; ix++) {
/* Read the message queue */
if((itemp=msgrcv(msgid,&the_word,MAX_MSG_SIZE,ix+1,0)) == -1) {

perror("Parent > msgrcv #1 > "); exit(1); }

/* Check if the message is from the children */
if(strncmp("Present",the_word.mtext,itemp) == 0) {

printf("Child %d Present\n",ix);
} else {

printf("Parent > unexpected message!\n");
}

}

/* Write a message out to each child */
416 AIX 5L Porting Guide

for (ix = 0; ix < NKIDS; ix++) {

/* Set the message type -Child id in this case */
the_word.mtype = ix+ NKIDS;

/* Set the message text */
strcpy(the_word.mtext,msgs[ix]);

/* Send the message */
if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {

perror("Child > msgsnd #1 > "); exit(1); }

/* Update the message */
strcpy(msgs[ix],"SENT");

/* Wait for child to get the message */
usleep(20000);

}

/* Have spoken to everyone, tell all children to quit */
printf("Parent > Children quit!\n");

/* Setup the quit message */
strcpy(the_word.mtext,"Quit");

for (ix = 0; ix < NKIDS; ix++) {

/* Target each child in turn */
the_word.mtype = ix+ 1+ NKIDS;

/* Send the message */
if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {

perror("Parent > msgsnd #2 > "); exit(1); }
}

/* Wait for children to exit */
usleep(20000);

printf("Parent > All children have quit, completing\n");

/* Remove the message queue */
if(msgctl(msgid,IPC_RMID,NULL) == -1) perror("Parent > msgctl > ");

printf("Parent > Completed\n");
exit(0);

CHILD:
/* CHILD */

/* Tell everyone I am waiting */
/* Setup the message type */
the_word.mtype = identity+ 1;

/* Setup the message text */
strcpy(the_word.mtext,"Present");

/* Send the message */
if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {

perror("Child > msgsnd #3 > "); exit(1); }

printf("Child > #%d waiting\n",identity);

/* Wait for something to do */
ix = 1;
Chapter 12. Test and debug 417

while(ix) {
/* Setup the message type first for this child */
itemp = identity+ 1+ NKIDS;

/* Read the message queue */
if((itemp=msgrcv(msgid,&the_word,MAX_MSG_SIZE,itemp,0)) == -1) {

perror("Child > msgrcv #2 > "); exit(1); }

/* Am I being told to quit? */
if(strncmp("Quit",the_word.mtext,itemp) == 0) {

ix = 0; /* Yes, set ix to a 'false' value */
} else {

printf("Child %d, received message: %s\n",identity,the_word.mtext);
}

}

/* Have found QUIT, bye bye */
printf("Child > #%d quitting\n",identity);

exit(0);
}

The code is compiled and executed in the following way:

We have a segmentation fault. Recompile, using the debug option, re-run the
program, and find the most recent core file:

There is still a problem:

$ make
cc -c debug_message.c
cc -o debug_message debug_message.o

$ debug_message
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child 0 Present
Child 1 Present
Child 2 Present
Child 0, received message: more beer
Child 1, received message:
Segmentation fault (core dumped)

$ make
cc -g -c debug_message.c
cc -g -o debug_message debug_message.o
ld: 0711-851 SEVERE ERROR: Output file: debug_message

The file is in use and cannot be overwritten.
make: *** [debug_message] Error 12
418 AIX 5L Porting Guide

debug_message uses fork to create some children and when the parent
crashes, the children are left waiting with nothing to do. To make things
easier, here is a file script cleanup that uses awk to find and kill any instances
of debug_message:

Almost all the zombie children have gone away. Try again:

$ ps
PID TTY TIME CMD
28660 pts/8 0:00 debug_message
29454 pts/8 0:00 debug_message
29796 pts/8 0:00 ps
31046 pts/8 0:00 sh -is
33904 pts/8 0:00 debug_message

$ cat cleanup
#!/bin/csh -f
#
Setup an environment value
setenv TF /tmp/cleaner
Try to remove the old file -just in case
rm -f $TF
Create a new empty file
touch $TF
OK, do a ps and look for 'debug_message'
ps -e | awk '$4 == "debug_message" {print "kill -9 " $1}' >> $TF
Execute the generated cleaner file
csh $TF
Cleanup the cleaner
rm $TF
Not quite sure what this does ;-)
exit
$ cleanup
$ ps
PID TTY TIME CMD
29806 pts/8 0:00 ps
31046 pts/8 0:00 sh -is
Chapter 12. Test and debug 419

We then start dbx and see what was happening when it crashed:

There seems to be a problem in strcpy at line 108 in the source file. Start up
dbx, run the code until it fails, and investigate:

$ make
cc -g -qcpluscmt -c debug_message.c
cc -g -qcpluscmt -o debug_message debug_message.o

$ debug_message
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child 0 Present
Child 1 Present
Child 2 Present
Child 0, received message: more beer
Child 1, received message:
Segmentation fault (core dumped)
$ ls -l core*
-rw-r--r-- 1 pnutt staff 8191 Mar 24 13:32 core.23418.24193218
-rw-r--r-- 1 pnutt staff 8191 Mar 24 15:29 core.28452.24212941

$ dbx debug_message core.28452.24212941
Type 'help' for help.
reading symbolic information ...
[using memory image in core.28452.24212941]

Segmentation fault in strcpy.strcpy [debug_message] at 0x10000a8c
0x10000a8c (strcpy+0x8c) 94e50004stwu r7,0x4(r5)
(dbx) where
strcpy.strcpy() at 0x10000a8c
main(), line 108 in “debug_message.c”
(dbx) quit
420 AIX 5L Porting Guide

The code is crashing because msgs has been defined with 2 entries and line
108 is trying to update entry number 3 causing SIGSEGV. Update the code so
it uses the minimum of NKIDS and NUM_OF_MSGS to resolve the problem.
This can be done with the magic construct
NKIDS>NUM_OF_MSGS?NUM_OF_MSGS:NKIDS, so line 95 will now read:

for (ix=0; ix<(NKIDS>NUM_OF_MSGS?NUM_OF_MSGS:NKIDS); ix++) {

Recompile and rerun:

$ dbx debug_message
Type 'help' for help.
reading symbolic information ...
(dbx) cont
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child 0 Present
Child 1 Present
Child 2 Present
Child 0, received message: more beer
Child 1, received message:

Segmentation fault in strcpy.strcpy [debug_message] at 0x10000a8c
0x10000a8c (strcpy+0x8c) 94e50004 stwu r7,0x4(r5)
(dbx) where
strcpy.strcpy() at 0x10000a8c
main(), line 108 in "debug_message.c"
(dbx) list 108
108 strcpy(msgs[ix],"SENT");
(dbx) whatis msgs
unsigned char * msgs[2];
(dbx) print msgs
("SENT", "SENT")
(dbx) print ix
2
(dbx) quit
Chapter 12. Test and debug 421

The code is not running correctly, as only child 0 is printing out a received
message. Assuming that messages are working, what is going on? Get dbx
running again and look at where the missing message is generated (or not):
line 104 (see the next screen).

At this line, the message is sent but the message itself is set up on lines 98
and 101 within the structure the_word. dbx is used to list line 104 (list 104)
and then examine the type and contents of the structure (whatis the_word,
print the_word). As this structure is used throughout the code, it is useful to
see where and how it is changed, and this is accomplished by using trace
the_word. Just to make sure, we set a breakpoint at line 104 by using stop at
104.

The cont command is used to continue execution and we see the_word being
updated through the code and the stop at line 104. The trace on the_word
shows that message type mtype 3 has already been used and, as this value
is used to select individual messages or channels in this case, this may be a
problem. In fact, the problem was created by trying to send messages
identified by the child identity value, starting at 0. This caused an EINVAL
error so all mtype values had to be incremented by 1 to ensure correct
handling. If any of the magic value++ points are missed, the messages do not
get to the right place. In this instance, dbx is used to add 1 to the mtype value
and the code permitted to run to completion:

$ debug_message
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child 0 Present
Child 1 Present
Child 2 Present
Child 0, received message: more beer
Parent > Children quit!
Child > #0 quitting
Child > #1 quitting
Child > #2 quitting
Parent > All children have quit, completing
Parent > Completed
422 AIX 5L Porting Guide

$ dbx debug_message
Type 'help' for help.
reading symbolic information ...
(dbx) list 104
104 if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {
(dbx) whatis the_word
struct mess the_word;
(dbx) print the_word
(mtype = 0, mtext = "")
(dbx) trace the_word
[1] trace the_word
(dbx) stop at 104
[2] stop at 104
(dbx) cont
initially (at line 37 in "debug_message.c"):the_word = (mtype = 0, mtext = "")
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
after line 83 in "debug_message.c":the_word = (mtype = 1, mtext = "Present")
Child 0 Present
after line 83 in "debug_message.c":the_word = (mtype = 2, mtext = "Present")
Child 1 Present
after line 83 in "debug_message.c":the_word = (mtype = 3, mtext = "Present")
Child 2 Present
after line 101 in "debug_message.c":the_word = (mtype = 3, mtext = "cd /pub")
[2] stopped in main at line 104
104 if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {
(dbx) print the_word
(mtype = 3, mtext = "cd /pub")
(dbx) assign the_word.mtype=4
(dbx) cont
Child 0, received message: cd /pub
after line 104 in "debug_message.c":the_word = (mtype = 4, mtext = "cd /pub")
after line 101 in "debug_message.c":the_word = (mtype = 4, mtext = "more beer")
[2] stopped in main at line 104
104 if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {
(dbx) print the_word
(mtype = 4, mtext = "more beer")
(dbx) assign the_word.mtype=the_word.mtype+1
(dbx) cont
Child 1, received message: more beer
after line 104 in "debug_message.c":the_word = (mtype = 5, mtext = "more beer")
Parent > Children quit!
after line 118 in "debug_message.c":the_word = (mtype = 5, mtext = "Quit")
after line 123 in "debug_message.c":the_word = (mtype = 4, mtext = "Quit")
Child > #0 quitting
after line 123 in "debug_message.c":the_word = (mtype = 5, mtext = "Quit")
Child > #1 quitting
after line 123 in "debug_message.c":the_word = (mtype = 6, mtext = "Quit")
Child > #2 quitting
Parent > All children have quit, completing
Parent > Completed
execution completed
(dbx) quit
Chapter 12. Test and debug 423

When run, the output now reads:

The code is now running correctly.

12.2.1 Endianness and 32-bit/64-bit problem
The file debug_message.c has been configured to run on a little endian/ILP32
system. We need to get it running on a big endian machine and use the LP64
model. Here is the code:

/*
* Program debug_message.C
*
* This program has been modified (yet again) to exhibit a few bugs that can be
* investigated with the debugger.
*
* The program generates a number of child processes using fork and
* communicates between them using messages.
*
*/
#include <iostream.h> /* Needed for printf */
#include <sys/types.h> /* Needed for fork */
#include <unistd.h> /* Needed for fork */
#include <sys/msg.h> /* Needed for msgget... */
#include <string.h> /* Needed for strncmp */
#include <errno.h> /* Needed for perror */
#include <stdio.h> /* Needed for perror */
#include <stdlib.h> /* Needed for exit */

/* maximum message size */
#define MAX_MSG_SIZE 64

#define NKIDS 3 /* How many children? */
#define NUM_OF_MSGS 2 /* How many predefined messages are there? */

main(void)
{

/* Setup the union that allows an long val in a char record */
union mtext_u_t {

pnutt@aix510 5=debug_message
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child 0 Present
Child 1 Present
Child 2 Present
Child 0, received message: cd /pub
Child 1, received message: more beer
Parent > Children quit!
Child > #0 quitting
Child > #1 quitting
Child > #2 quitting
Parent > All children have quit, completing
Parent > Completed
424 AIX 5L Porting Guide

char mtext[MAX_MSG_SIZE];
long mval[MAX_MSG_SIZE/4];

};

/* Setup the message structure */
struct mess {

long mess_type;
mtext_u_t mtext_u;

} the_word;

/* Setup the special messages */
char msgs[NUM_OF_MSGS][MAX_MSG_SIZE] = { "cd /pub","more beer"};

int identity = -1; /* Define and initialize */
int ix = -1; /* Define and initialize */
pid_t pid = -1; /* Define and initialize */
int nkids = -1; /* Define and initialize */
int child = 0; /* Set child to false */
int parent = 0; /* Set parent to false */
int itemp = -1;
int msgid = -1;

/* Initialise a message queue */
itemp = IPC_CREAT | 0777;
if((msgid=msgget(IPC_PRIVATE,itemp))==-1) {

perror("Parent > msgget #1 > "); exit(1); }

printf("Parent > Making children\n");

/* Make NKIDS children */
for (ix = 0; ix < NKIDS; ix++) {

/* begat a child */
if ((pid = fork()) == -1) {

perror("Parent > fork #2 > "); exit(1); }

/* Check to see if child or parent */
if (pid == 0) {

/* CHILD */
child = 1; /* Set child true */
parent = 0; /* and parent false -just to make sure */
identity = ix; /* Set 'local' identity */
goto CHILD;

} else {
/* PARENT */
parent = 1; /* I am the parent */
child = 0; /* not the child */

}
}

/* PARENT SECTION */
/* NKIDS children have been created */

/* Make sure that children are alive */
usleep(10000);

for (ix = 0; ix < NKIDS; ix++) {
/* Read the message queue */
if((itemp=msgrcv(msgid,&the_word,MAX_MSG_SIZE,ix+1,0)) == -1) {

perror("Parent > msgrcv #3 > "); exit(1); }

/* Check if the message is from the children */
if(strncmp("Present",the_word.mtext_u.mtext,itemp) == 0) {
Chapter 12. Test and debug 425

printf("Child > #%d Present\n",ix);
} else {

printf("Parent > unexpected message!\n");
}

}

/* Write a message out to each child */
for (ix = 0; ix < NKIDS; ix++) {

/* Set the message type -Child id in this case */
the_word.mess_type = ix+ NKIDS;

/* Set the message text */
strcpy(the_word.mtext_u.mtext,msgs[ix]);

/* Send the message */
if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {

perror("Parent > msgsnd #4 > "); exit(1); }

/* Wait for child to get the message */
usleep(20000);

}

/* Send a special message to child 1 */
the_word.mess_type = NKIDS+ 2;
strcpy(the_word.mtext_u.mtext,"Special");

/* Setup the control word */
the_word.mtext_u.mtext[60] = (char)0xde;
the_word.mtext_u.mtext[61] = (char)0xfa;
the_word.mtext_u.mtext[62] = (char)0xed;
the_word.mtext_u.mtext[63] = (char)0xfe;

/* Send the message */
if(msgsnd(msgid,&the_word,sizeof(the_word.mtext_u),0) != 0) {

perror("Parent > msgsnd #5 > "); exit(1); }

/* Wait for child */
usleep(20000);

/* Have spoken to everyone, tell all children to quit */
printf("Parent > Children quit!\n");

/* Setup the quit message */
strcpy(the_word.mtext_u.mtext,"Quit");

for (ix = 0; ix < NKIDS; ix++) {

/* Target each child in turn */
the_word.mess_type = ix+ 1+ NKIDS;

/* Send the message */
if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {

perror("Parent > msgsnd #6 > "); exit(1); }
}

/* Wait for children to exit */
usleep(20000);

printf("Parent > All children have quit, completing\n");

/* Remove the message queue */
if(msgctl(msgid,IPC_RMID,NULL) == -1) perror("Parent > msgctl > ");
426 AIX 5L Porting Guide

printf("Parent > Completed\n");

exit(0);
CHILD:

/* CHILD */

/* Tell everyone I am waiting */
/* Setup the message type */
the_word.mess_type = identity+ 1;

/* Setup the message text */
strcpy(the_word.mtext_u.mtext,"Present");

/* Send the message */
if(msgsnd(msgid,&the_word,MAX_MSG_SIZE,0) != 0) {

perror("Child > msgsnd #7 > "); exit(1); }

printf("Child > #%d waiting\n",identity);

/* Wait for something to do */
ix = 1;
while(ix) {

/* Setup the message type first for this child */
itemp = identity+ 1+ NKIDS;

/* Read the message queue */
if((itemp=msgrcv(msgid,&the_word,MAX_MSG_SIZE,itemp,0)) == -1) {

perror("Child > msgrcv #8 > "); exit(1); }

/* Am I being told to quit? */
if(strncmp("Quit",the_word.mtext_u.mtext,itemp) == 0) {

ix = 0; /* Yes, set ix to a 'false' value */
} else if(strncmp("Special",the_word.mtext_u.mtext,itemp) == 0) {

printf("Child #%d, Special message received: %x\n",
identity,the_word.mtext_u.mval[15]);

} else {
printf("Child > #%d received message %s\n",

identity,the_word.mtext_u.mtext);
}

}

/* Have found QUIT, bye bye */
printf("Child > #%d quitting\n",identity);

exit(0);
}

Compile the code using -g, just in case we have problems and generate two
executables, one for ILP32 mode and one for LP64 mode:
Chapter 12. Test and debug 427

The code has been run in 32-bit mode and runs to completion, but the second
child message is missing again and the special message text definitely looks
wrong. Duplicate the changes from the original debug_message.c code,
recompile, and start up the debugger.

The following output shows the dbx session. This time, we set breakpoints at
lines 121 and 127 to look at the word setup. Being suspicious of a char/long
union with explicit byte addressing, we get dbx to run a standard subroutine
swab, which switches adjacent bytes within the special message word. The
data is printed out in hexadecimal and looks a lot better, but the words are
still incorrect. As the code runs correctly on the original little endian platform
and we are running on a big endian platform, this appears to be an
endianness problem.

pnutt@aix510 1=make
xlc -g -c debug_message.c
mv debug_message.o debug_message32.o
xlc -g -o debug_message32 debug_message32.o
xlc -g -q64 -c debug_message.c
mv debug_message.o debug_message64.o
xlc -g -q64 -o debug_message64 debug_message64.o
pnutt@aix510 2=debug_message32
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child > #0 Present
Child > #1 Present
Child > #2 Present
Child > #0 received message more beer
Child > #1 received message ÿÿÿÿ
Child #1, Special message received: defaedfe
Parent > Children quit!
Child > #0 quitting
Child > #1 quitting
Child > #2 quitting
Parent > All children have quit, completing
Parent > Completed
428 AIX 5L Porting Guide

Chapter 2, “Endianness - byte ordering” on page 9 has some programming
examples. For example, the example in Figure 7 on page 15 is used to detect
the endianness of the run time system and take the appropriate action. The
modified sections of code are shown below:

pnutt@aix510 1=dbx debug_message32
Type 'help' for help.
reading symbolic information ...
(dbx) l 120
120 /* Setup the control word */
(dbx) l
121 the_word.mtext_u.mtext[60]= (char)0xde;
122 the_word.mtext_u.mtext[61]= (char)0xfa;
123 the_word.mtext_u.mtext[62]= (char)0xed;
124 the_word.mtext_u.mtext[63]= (char)0xfe;
125
126 /* Send the message */
127 if(msgsnd(msgid,&the_word,sizeof(the_word.mtext_u),0) != 0) {
128 perror("Parent > msgsnd #5 > "); exit(1); }
129
130 /* Wait for child */
(dbx) stop at 121
[1] stop at "debug_message.C":121
(dbx) stop at 127
[2] stop at "debug_message.C":127
(dbx) c
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child > #0 Present
Child > #1 Present
Child > #2 Present
Child > #0 received message cd /pub
Child > #1 received message more beer
[1] stopped in main at line 121 in file "debug_message.C"
121 the_word.mtext_u.mtext[60]= (char)0xde;
(dbx) s
stopped in main at line 122 in file "debug_message.C"
122 the_word.mtext_u.mtext[61]= (char)0xfa;
(dbx) s
stopped in main at line 123 in file "debug_message.C"
123 the_word.mtext_u.mtext[62]= (char)0xed;
(dbx) s
stopped in main at line 124 in file "debug_message.C"
124 the_word.mtext_u.mtext[63]= (char)0xfe;
(dbx) s
[2] stopped in main at line 127 in file "debug_message.C"
127 if(msgsnd(msgid,&the_word,sizeof(the_word.mtext_u),0) != 0) {
(dbx) call swab(&the_word.mtext_u.mval[15],&the_word.mtext_u.mval[15],4)

swab returns successfully
(dbx) p the_word.mtext_u.mval[15]
0xfadefeed
(dbx) c
Child #1, Special message received: fadefeed
Parent > Children quit!
Chapter 12. Test and debug 429

The code has been updated, so we will try to run it in 32-bit mode and then
again in 64-bit mode:

.

.

.
#define NUM_OF_MSGS 2 /* How many predefined messages are there? */

/* Check if we are big or little endian */
inline int is_bigendian()
{

const int endian = 1; /* Setup the LSB */
return(1-*(char*)&endian); /* Check and invert boolean */

}
.
.
.
/* Send a special message to child 1 */

the_word.mess_type = NKIDS+ 2;
strcpy(the_word.mtext_u.mtext,"Special");

if(is_bigendian()) {
/* Setup the control word -written for a LE machine */
printf("BIG Endian system\n");
the_word.mtext_u.mtext[63] = (char)0xde;
the_word.mtext_u.mtext[62] = (char)0xfa;
the_word.mtext_u.mtext[61] = (char)0xed;
the_word.mtext_u.mtext[60] = (char)0xfe;

} else {
/* Setup the control word -written for a BE machine */
printf("LITTLE Endian system\n");
the_word.mtext_u.mtext[60] = (char)0xde;
the_word.mtext_u.mtext[61] = (char)0xfa;
the_word.mtext_u.mtext[62] = (char)0xed;
the_word.mtext_u.mtext[63] = (char)0xfe;

}

/* Send the message */
if(msgsnd(msgid,&the_word,sizeof(the_word.mtext_u),0) != 0) {

perror("Parent > msgsnd #5 > "); exit(1); }
.
.
.

430 AIX 5L Porting Guide

The 32-bit code runs correctly, but the 64-bit version has a problem reported
from msgrcv. Run dbx and look at the msgsnd call that is sending the message
to check out the argument list:

pnutt@aix510 1=debug_message32
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child > #0 Present
Child > #1 Present
Child > #2 Present
Child > #0 received message cd /pub
Child > #1 received message more beer
BIG Endian system
Child #1, Special message received: feedfade
Parent > Children quit!
Child > #0 quitting
Child > #1 quitting
Child > #2 quitting
Parent > All children have quit, completing
Parent > Completed

pnutt@aix510 2=debug_message64
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child > #0 Present
Child > #1 Present
Child > #2 Present
Child > #0 received message cd /pub
Child > #1 received message more beer
BIG Endian system
Child > msgrcv #8 > : Arg list too long
Parent > Children quit!
Child > #0 quitting
Child > #2 quitting
Parent > All children have quit, completing
Parent > Completed
Chapter 12. Test and debug 431

msgsnd is sending a message of 128 bytes, MAX_MSG_SIZE is defined at 64.
This could be a ILP32/LP64 model issue, but the easiest fix is to change the
msgsnd call to use MAX_MSG_SIZE. Modify the code, recompile, and run it
again:

pnutt@aix510 1=dbx debug_message64
Type 'help' for help.
reading symbolic information ...

(dbx) stop in main
[1] stop in main
(dbx) c
[1] stopped in main at line 48 in file "debug_message.C"

48 char msgs[NUM_OF_MSGS][MAX_MSG_SIZE] = { "cd /pub","more beer"};
(dbx) stop at 145
[3] stop at "debug_message.C":145
(dbx) c
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child > #0 Present
Child > #1 Present
Child > #2 Present
Child > #0 received message cd /pub
Child > #1 received message more beer
BIG Endian system
[3] stopped in main at line 145 in file "debug_message.C"
145 if(msgsnd(msgid,&the_word,sizeof(the_word.mtext_u),0) != 0) {

(dbx) dump
main(), line 145 in "debug_message.C"
pid = 25892
msgid = 1966155
itemp = 64
parent = 1
child = 0
nkids = -1
ix = 2
identity = -1
msgs = (
"cd /pub"
"more beer"
)
the_word = (mess_type = 5, mtext_u = [union])
(dbx) print sizeof(the_word.mtext_u)
128
(dbx) quit
432 AIX 5L Porting Guide

The msgsnd error has gone away but the special message text is wrong again.
We will run dbx again, but this time, we will set multproc on so we can debug
the child process where the special message is output. The output from the
two dbx sessions is shown in the next screen. The first block is from the
parent dbx session and the second block is the child dbx session. Both
sessions ran concurrently and allowed dbx interaction with the both running
processes:

pnutt@aix510 1=debug_message64
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child > #0 Present
Child > #1 Present
Child > #2 Present
Child > #0 received message cd /pub
Child > #1 received message more beer
BIG Endian system
Child #1, Special message received: ffffff80
Parent > Children quit!
Child > #0 quitting
Child > #1 quitting
Child > #2 quitting
Parent > All children have quit, completing
Parent > Completed
Chapter 12. Test and debug 433

When a fork occurs, another debug session is started, and this allows
handshaking and IPC to be investigated, if necessary. The following shows
the debug session attached to the relevant child process:

pnutt@aix510 1=dbx debug_message64
(dbx) multproc on
(dbx) c
Parent > Making children
application forked, child pid=26208, process stopped, awaiting input

stopped due to fork with multiprocessing enabled in . at 0x377c
0x000000000000377c e9a1ff68 ld r13,-152(r1)
(dbx) c
Child > #0 waiting
(dbx) c
application forked, child pid=21900, process stopped, awaiting input

stopped due to fork with multiprocessing enabled in . at 0x377c
0x000000000000377c e9a1ff68 ld r13,-152(r1)
(dbx) c
Child > #1 waiting
application forked, child pid=30196, process stopped, awaiting input

stopped due to fork with multiprocessing enabled in . at 0x377c
0x000000000000377c e9a1ff68 ld r13,-152(r1)
(dbx) c
Child > #2 waiting
Child > #0 Present
Child > #1 Present
Child > #2 Present
Child > #0 received message cd /pub
Child > #1 received message more beer
BIG Endian system
Parent > Children quit!
Child > #0 quitting
Child > #2 quitting
Parent > All children have quit, completing
Parent > Completed

execution completed

(dbx) q
434 AIX 5L Porting Guide

A breakpoint is set where the special message is output (line 207). The
contents of the_word.mtext_u.mval is printed. A hexadecimal output format is
requested with the set $hexints command to dbx. The output is not clear, so
we use set $pretty=”on”. This time, the output looks a bit easier to read.
mval[15] is definitely 0xffffff80, but mval[7] contains some of the data we want
0xfeedfade. When we look at sizeof(long), it shows that it is eight bytes, but
looking at the code, line 31 is long mval[MAX_MSG_SIZE/4];. This creates
two problems:

 • First, if it really needs four bytes per word, the code should use int and
then use sizeof(int) in the divide rather than 4.

debugging child, pid=21900, process stopped, waiting input

stopped due to fork with multiprocessing enabled in . at 0x377c
0x000000000000377c e9a1ff68 ld r13,-152(r1)
(dbx) stop at 207
[3] stop at "debug_message.C":207
(dbx) c

Trace/BPT trap in . at 0x377c
0x000000000000377c e9a1ff68 ld r13,-152(r1)
(dbx) c
[3] stopped in main at line 207 in file "debug_message.C"
207 printf("Child #%d, Special message received:

%x\n",identity,the_word.mtext_u.mval[15]);
(dbx) whatis the_word.mtext_u.mval
long mval[16];
(dbx) set $hexints
(dbx) print the_word.mtext_u.mval
(0x5370656369616c00, 0x72001000a01f2ed8, 0x8, 0x64, 0x9001000a01daa78, 0x1, 0x64,
0x1feedfade,
0x0, 0x80000000, 0xffffffffffffe90, 0xfffffffffffff80, 0xbadc0ffee0ddf00d,
0x1000004bc,
0x800200140030000, 0xfffffffffffff80)
(dbx) set $pretty="on"
(dbx) print the_word.mtext_u.mval
[0] = 0x5370656369616c00
[1] = 0x72001000a01f2ed8
[2] = 0x8
[3] = 0x64
[4] = 0x9001000a01daa78
[5] = 0x1
[6] = 0x64
[7] = 0x1feedfade
[8] = 0x0
[9] = 0x80000000
[10] = 0xffffffffffffe90
[11] = 0xfffffffffffff80
[12] = 0xbadc0ffee0ddf00d
[13] = 0x1000004bc
[14] = 0x800200140030000
[15] = 0xfffffffffffff80
(dbx) unset $hexints
Chapter 12. Test and debug 435

 • As the code uses hardcoded byte addresses for the special message
word, which is in an int/char union, it has to use four bytes per word.
Modify the code, recompile, and try again:

The code succeeds.

12.3 idebug

idebug (IBM Distributed Debugger) is a graphical debugger. Depending on
the needs, it is possible to run the debugger directly from a graphical terminal
connected to the host running the code, or run from a client on a personal
work station connecting to a remote server. The idebug system is supplied
with the C for AIX Version 5 and VisualAge C++ Professional for AIX Version
5 compilers.

The next example is a piece of code which tries to compute a Mandelbrot set:

#include <pthread.h>
#include <stdlib.h>
#include <errno.h>

/***************************************/
/* Values may be changed */
/***************************************/
#define MAX_ITERATION 1024
#define MAX_LENGTH 100
#define X_MIN -2.1
#define Y_MIN -1.1
#define X_MAX 0.7
#define Y_MAX 1.1
#define RESOLUTION 20 /* vertical resolution, horizontal is then derived */

/***/

pnutt@aix510 1=debug_message64
Parent > Making children
Child > #0 waiting
Child > #1 waiting
Child > #2 waiting
Child > #0 Present
Child > #1 Present
Child > #2 Present
Child > #0 received message cd /pub
Child > #1 received message more beer
BIG Endian system
Child #1, Special message received: feedfade
Parent > Children quit!
Child > #0 quitting
Child > #2 quitting
Child > #1 quitting
Parent > All children have quit, completing
Parent > Completed
436 AIX 5L Porting Guide

/* Do not change the following variables */
/***/
#define COLORS 11

typedef struct {
int y, startx, endx;

} interval;

char *col = " -:=+oxOX@#";
int **pixels;
int xres = RESOLUTION*3.2;
int yres = RESOLUTION;
float xmin = X_MIN, ymin = Y_MIN;
float xstep = (X_MAX-X_MIN)/(RESOLUTION*3.2);
float ystep = (Y_MAX-Y_MIN)/RESOLUTION;

/***/
/* Compute row, subinterval specified in *argy */
/* if computation takes more than 3 seconds */
/* split into two threads */
/***/
void *row(void *argy)
{
pthread_t th1, th2;
time_t start, now;
int x, y ,iteration = 0, cindx = 0;
int rc;
interval *intv, int1, int2;
float z1 = 0.0, z2 = 0.0, t1;

intv = (interval *)argy;

/* record start time of this thread */
start = time(NULL);

for(x = intv->startx; x <= intv->endx; x++, cindx = 0, iteration = 0, z1 = 0.0, z2 =
0.0) {

/* compute one pixel */
do {
t1 = z1*z1-z2*z2+(xmin+x*xstep);
z2 = 2*z1*z2+(ymin+intv->y*ystep);
z1 = t1;
iteration++;

}
while(iteration < MAX_ITERATION && z1*z1+z2*z2 < MAX_LENGTH);

do
cindx++;

while((1 << cindx) < iteration);

pixels[intv->y][x] = (int)((iteration >= MAX_ITERATION) ? 0 : (cindx%COLORS));

/* record time passed in this thread */
now = time(NULL);

/* if too much time has elpased, start two new threads */
if (difftime(now,start) > 3.0 && intv->endx-x > 3) {
/* printf("Splitting row %d: (%d,%d)\n", intv->y, x+1, intv->endx); */
int1.y = int2.y = intv->y;
int1.startx = x++;
int1.endx = (intv->endx + x)/2;
int2.startx = (intv->endx + x)/2+1;
int2.endx = intv->endx;
Chapter 12. Test and debug 437

rc = pthread_create(&th1, NULL, row, (void *)&int1);
if (rc == EAGAIN || rc == EINVAL || rc == EPERM)

exit(1);

rc = pthread_create(&th2, NULL, row, (void *)&int2);
if (rc == EAGAIN || rc == EINVAL || rc == EPERM)

exit(1);

rc = pthread_join(th1, NULL);
if (rc == EINVAL || rc == ESRCH || rc == EDEADLK)

exit(1);

rc = pthread_join(th2, NULL);
if (rc == EINVAL || rc == ESRCH || rc == EDEADLK)

exit(1);

x = intv->endx;
}

}
pthread_exit(0);

}

int main(int argc, char **argv)
{
pthread_t mythreads[RESOLUTION];
interval intv;
int x,y;
int rc;

/* allocate memory for fractal pixels */
if(NULL == (pixels = (int **)malloc(sizeof(int *)*(long)yres))) {
perror("malloc");
exit(0);

}

for(y = 0; y < yres; y++)
if(NULL == (pixels[y] = (int *)malloc(sizeof(int)*(long)xres))) {
perror("malloc");
exit(0);

}

/* start all row-threads */
for(y = 0; y < yres; y++) {
intv.y = y;
intv.startx = 0;
intv.endx = xres-1;

rc = pthread_create(&mythreads[y], NULL, row, (void *)&intv);
if (rc == EAGAIN || rc == EINVAL || rc == EPERM)
exit(1);

}

/* join all threads */
for(y = 0; y < yres; y++) {
rc = pthread_join(mythreads[y], NULL);
if (rc == EINVAL || rc == ESRCH || rc == EDEADLK)
exit(1);

}

/* print out fractal pixels */
for(y = 0;y < yres; y++) {
for(x = 0; x < xres; x++)
438 AIX 5L Porting Guide

putchar(col[pixels[y][x]]);
putchar('\n');

}

/* free allocated memory */
for(y = 0; y < yres; y++)
free(pixels[y]);

free(pixels);

exit(0);
}

The program is compiled:

cc_r -o debugmandelbrot debugmandelbrot.c

and run. It gives unexpected results, as shown below. Lines, which seem to
be part of the expected result, are printed randomly:

We choose to recompile for debugging with:

cc_r -g -o debugmandelbrot debugmandelbrot.c

and start the idebug program. We will try to debug remotely, so we start the
program irmtdbgc on the remote host:

$ debugmandelbrot

::::===============+++++++++++++o x=====

:::::::::::::=====================+oo++oxxOoO oo#+O++++o+======

::::::::::::::::::::::::::==================+o+o+==========:::::
$

Chapter 12. Test and debug 439

On the client machine, we start idebug and log on, choosing the debugthread
program, and pressing the load button (see Figure 71).

Figure 71. Selecting the program to debug

$ pwd
/tmp
$ ls debugmandelbrot*
debugmandelbrot debugmandelbrot.c
$ irmtdbgc
IBM Distributed Debugger
Version 8.5 (10/6/00) - Licenced Material - Property of IBM
(c) Copyright IBM Corp 1991, 2000 - All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADB Schedule Contract with IBM Corp.

Initializing communication: protocol=tcpip port=8000 connect=wait
Waiting for connection...
440 AIX 5L Porting Guide

On the server, irmtdbc will confirm that a connection has been established:

You will see the panel shown in Figure 72 on page 442.

$ pwd
/tmp
$ ls debugmandelbrot*
debugmandelbrot debugmandelbrot.c
$ irmtdbgc
IBM Distributed Debugger
Version 8.5 (10/6/00) - Licenced Material - Property of IBM
(c) Copyright IBM Corp 1991, 2000 - All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADB Schedule Contract with IBM Corp.

Initializing communication: protocol=tcpip port=8000 connect=wait
Waiting for connection...
Connection established
Chapter 12. Test and debug 441

Figure 72. Distributed debugger main panel

We start by setting a breakpoint in the computation of the complex number in
line 55, as shown in Figure 73 on page 443.
442 AIX 5L Porting Guide

Figure 73. Breakpoint at line 55

We press the play button (it is the fifth round button from the left on the top
panel shown in Figure 73), which will run the application until a break point is
reached. At this point, the upper left window with the tab name Stacks will list
the threads which have been created, as shown in Figure 74 on page 444.
Chapter 12. Test and debug 443

Figure 74. Variables in thread 16

We press the play button a few times, following the threads which happen to
be scheduled, and observe that the computation of the complex number
(variables z1 and z2) is indeed taking place. We can step into the current
source code line and follow the computation one line at a time, using the
second round button from the left, as shown in Figure 75 on page 445.
444 AIX 5L Porting Guide

Figure 75. Stepping through the code one line at a time

We now believe that the problem lies elsewhere. The code printing out the
results of the computations (line 140 - 144) looks correct:

for(y = 0;y < yres; y++) {
for(x = 0; x < xres; x++)
putchar(col[pixels[y][x]]);

putchar('\n');
}

so we remove the break point at line 55 and create a new one at line 66, as
shown in Figure 76 on page 446.
Chapter 12. Test and debug 445

Figure 76. New breakpoint at line 66

We press the play button. At that time, we would like to see what pixels are
being updated. We look up the values involved; for that, we need to
de-reference the intv variable, as shown in Figure 77 on page 447.
446 AIX 5L Porting Guide

Figure 77. Dereferencing a pointer value

We obtain the value of the interval (row number and endpoints) the specific
thread has to compute, as shown in Figure 78 on page 448.
Chapter 12. Test and debug 447

Figure 78. Contents of a dereferenced structure pointer

We then press play again, until another thread gets scheduled. Again, we
de-reference the intv variable for that thread, as shown in Figure 79 on
page 449.
448 AIX 5L Porting Guide

Figure 79. Structure contents for the next thread

We notice that the values are the same for different threads. We then realize
the mistake. In line 127:

rc = pthread_create(&mythreads[y], NULL, row, (void *)&intv);

the threads are being created and asked to compute a unique row, based on
the data pointed to by the reference &intv passed as argument. However, intv
is being updated in line 123 - 125:

intv.y = y;
intv.startx = 0;
intv.endx = xres-1;
Chapter 12. Test and debug 449

and since this variable is part of the shared process data, any thread can
read the structure’s values, even as they are being updated. The solution is
to pass these values to each thread, ensuring that they are not being
overwritten. One way of solving the problem is shown in Appendix A.2.4,
“mandelbrot4.c” on page 466.

The idebug system may seem a little complex when you use if for the first
time. However the experienced developers that wrote this book can tell you
that it is more than worth your while to take the time to learn how to use it. It
is particularly good when debugging very large applications with source files
distributed across many subdirectories.
450 AIX 5L Porting Guide

Appendix A. Sample programs

This appendix contains listings of programs referred to in this book.

A.1 Makefile sample programs

This section contains code listings related to the make command.

A.1.1 The find_spec_targets_aix.ksh sample program

This is the find_spec_targets_aix.ksh sample program, that you can use to
search makefiles for special targets that are not supported by the AIX 5L make
command.

#!/usr/bin/ksh
##
##
Sourcefile: find_spec_targets_aix.ksh
##
Description:
This script looks for special targets, that are not
supported by the make command in AIX.
##
##
Arguments :
The name of a makefile to search in.
##
Change History:
Feature Date Who Description
xxxxxxx 02/25/2001 Jesper Frimann Ljungberg Original version
##
##
##

ALL_SPEC_TARGETS=".DELETE_ON_ERROR .DONE .EXIT .EXPORT_ALL_VARIABLES
.FAILED .GET_POSIX .INIT .INOBJECTDIR .INTERMEDIATE
.INTERRUPT .KEEP_STATE .KEEP_STATE_FILE .MAIN
.MAKE_VERSION .MUTEX .NOTPARALLEL .NO_PARALLEL .PARALLEL
.PATH .PATHsuffix .PHONY .SCCS_GET .SCCS_GET_POSIX
.SECONDARY .WAIT"

if ["$*" = ""] ; then
OTHER_MAKEFILES=makefile

else
© Copyright IBM Corp. 2001 451

OTHER_MAKEFILES=$*
fi

for SPECTARGET in $ALL_SPEC_TARGETS
do

echo "Finding makefiles with $SPECTARGET special targets in them:"
find . \(-name *akefile* -o -name *AKEFILE* -o -name

$OTHER_MAKEFILES \) -exec egrep -l $SPECTARGET {} \;
done

A.1.2 The find_spec_targets_gnu.ksh sample program

This is the find_spec_targets_gnu.ksh sample program, that you can use to
search makefiles for special targets that are not supported by the GNU make
command.

#!/usr/bin/ksh
##
##
Sourcefile: find_spec_targets_gnu.ksh
##
Description:
This script looks for special targets, that are not
supported by the gnu make command
##
##
Arguments :
The name of a makefile to search in.
##
Change History:
Feature Date Who Description
xxxxxxx 02/25/2001 Jesper Frimann Ljungberg Original version
##
##
##

ALL_SPEC_TARGETS=".DONE .EXIT .FAILED .GET_POSIX .INIT .INOBJECTDIR
.INTERRUPT .KEEP_STATE .KEEP_STATE_FILE .MAIN
.MAKE_VERSION .MUTEX .NO_PARALLEL .PARALLEL .PATH
.PATHsuffix.POSIX .SCCS_GET .SCCS_GET_POSIX .WAIT"

if ["$*" = ""] ; then
OTHER_MAKEFILES=makefile

else
OTHER_MAKEFILES=$*
452 AIX 5L Porting Guide

fi

for SPECTARGET in $ALL_SPEC_TARGETS
do

echo "Finding makefiles with $SPECTARGET special targets in it:"
find . \(-name *akefile* -o -name *AKEFILE* -o -name\
$OTHER_MAKEFILES \) -exec egrep -l $SPECTARGET {} \;

done

A.1.3 The find_predef_macro_aix.ksh sample program

This is the find_predef_macro_aix.ksh sample program, that you can use to
search makefiles for predefined macros that are not supported by the AIX 5L
make command.

#!/usr/bin/ksh
##
##
Sourcefile: find_predef_macro_aix.ksh
##
Description:
This script looks for Predefined macros,
that are not supported by the make command in AIX.
##
##
Arguments :
The name of a makefile to search in.
##
Change History:
Feature Date Who Description
xxxxxxx 02/25/2001 Jesper Frimann Ljungberg Original version
##
##
##

ALL_SPEC_TARGETS='(CCC) (CP) (CPP) (CXX) (CWEAVE) (CTANGLE) (EC) (F77) (FC)
(LINT) (MACHINE) (MAKE_COMMAND)(MAKEFILE) (MAKEINFO) (MV)
(M2C) (PC) (RANLIB)(RC) (RM) (RMFLAGS) (TANGLE) (TEX)
(TEXI2DVI)(WEAVE) (YACCE) (YACCR)'

if ["$*" = ""] ; then
OTHER_MAKEFILES=makefile

else
Appendix A. Sample programs 453

OTHER_MAKEFILES=$*
fi

for SPECTARGET in $ALL_SPEC_TARGETS
do

echo "Finding makefiles with $SPECTARGET special targets in it:"
find . \(-name *akefile* -o -name *AKEFILE* -o -name

$OTHER_MAKEFILES \) -exec grep -l $SPECTARGET {} \;
done

A.1.4 The find_predef_macro_gnu.ksh sample program

This is the find_predef_macro_gnu.ksh sample program, that you can use to
search makefiles for predefined macros that are not supported by the GNU
make command.

#!/usr/bin/ksh
##
##
Sourcefile: find_predef_macro_gnu.ksh
##
Description:
This script looks for Predefined macros,
that are not supported by the gnu make command.
##
##
Arguments :
The name of a makefile to search in.
##
Change History:
Feature Date Who Description
xxxxxxx 02/25/2001 Jesper Frimann Ljungberg Original version
##
##
##

ALL_SPEC_TARGETS='(CCC) (CP) (EC) (MACHINE) (MAKEFILE)(MV) (RANLIB) (RC)
(RMFLAGS) (WEAVE) (YACCR)'

if ["$*" = ""] ; then
OTHER_MAKEFILES=makefile

else
OTHER_MAKEFILES=$*

fi
454 AIX 5L Porting Guide

for SPECTARGET in $ALL_SPEC_TARGETS
do

echo "Finding makefiles with $SPECTARGET special targets in it:"
find . \(-name *akefile* -o -name *AKEFILE* -o -name\

$OTHER_MAKEFILES \) -exec grep -l $SPECTARGET {} \;
done

A.1.5 The find_internal_macro_aix.ksh sample program

This is the find_predef_macro_aix.ksh sample program, that you can use to
search makefiles for internal macros that are not supported by the AIX 5L
make command.

#!/usr/bin/ksh
##
##
Sourcefile: find_internal_macro_aix.ksh
##
Description:
This script looks for internal macros,
that are not supported by the make command in AIX.
##
##
Arguments :
The name of a makefile to search in.
##
Change History:
Feature Date Who Description
xxxxxxx 02/26/2001 Jesper Frimann Ljungberg Original version
##
##
##

if ["$*" = ""] ; then
OTHER_MAKEFILES=makefile

else
OTHER_MAKEFILES=$*

fi

echo 'Finding makefiles with the $+ internal macros in them:'
find . \(-name *akefile* -o -name *AKEFILE* -o -name

$OTHER_MAKEFILES \) -exec grep -l '$+' {} \;
echo 'Finding makefiles with the $^ internal macros in them:'
find . \(-name *akefile* -o -name *AKEFILE* -o -name

$OTHER_MAKEFILES \) -exec grep -l '$^' {} \;
Appendix A. Sample programs 455

A.1.6 The hwinfo.c sample program

#include <stdio.h>
#include <sys/systemcfg.h>
/*
* This program basically just some printfs to be used in makefiles,
* or on the command line while compiling.
* In a makefile it may be used like this:
*
* $cat makefile
* XPORTFILES = $(B_EX) $(F_EX)
* OBJFILES = foo.o bar.o
* HWFLAGS=`hwinfo`
* CFLAGS= $(HWFLAGS) -O3 -qstrict
*
* foo.o: ./src/foo.c ./inc/foo.h
* $(CC) $(CFLAGS) -c $(<D)/$*.c
*
* It have been found to work on a 43P,G40,S80,59H,H80,44P, and IA64b
*/

main()
{

/*
* Print out the -q<64/32>, after finding out if we are using a 32
* or 64 bit processor
*
*/

printf(" -q%d",_system_configuration.width);

/*
*
* Dertermine the processor and put some nice values to -qtune and -qarch.
*
*/

switch (_system_configuration.implementation) {
case POWER_601:

printf(" -qarch=601 -qtune=601");
break;

case POWER_603:
printf(" -qarch=603 -qtune=603");
break;
456 AIX 5L Porting Guide

case POWER_604:
printf(" -qarch=604 -qtune=604");
break;

case POWER_620:
printf("-qarch=rs64a -qtune=rs64a");
break;

case POWER_630:
printf(" -qarch=pwr3 -qtune=pwr3");
break;

case POWER_A35:
printf(" -qarch=403 -qtune=403");
break;

case POWER_RS64II:
printf(" -qarch=rs64b -qtune=rs64b");
break;

case POWER_RS64III:
printf(" -qarch=rs64c -qtune=rs64c");
break;

case POWER_RS64IV:
printf(" -qarch=rs64c -qtune=rs64c");
break;

case POWER_RS2:
printf(" -qarch=pwr2 -qtune=pwr2");
break;

case POWER_RS1:
if (_system_configuration.rtc_type == RTC_IA64)

printf(" -qarch=itanium -qtune=itanium");
else

printf(" -qarch=pwr -qtune=pwr");
break;

case POWER_RSC:
if (_system_configuration.rtc_type == RTC_IA64)

printf(" -qarch=itanium -qtune=itanium");
else

printf(" -qarch=p2sc -qtune=p2sc");
break;

}

/*
* If we have a Level 1 instruction cache then print out the size,
* that it is X way associativ and line size.
*
*/

if (_system_configuration.icache_size > 0)
printf(" -qcache=type=I:level=1:size=%d:assoc=%d:line=%d",

_system_configuration.icache_size,
Appendix A. Sample programs 457

_system_configuration.icache_asc,
_system_configuration.icache_line);

/*
* If we have a Level 1 data cache then print out the size, that it is
* X way associativ and line size.
*
*/

if (_system_configuration.dcache_size > 0)
printf(" -qcache=type=D:level=1:size=%d:assoc=%d:line=%d",

_system_configuration.dcache_size,
_system_configuration.dcache_asc,
_system_configuration.dcache_line);

/*
* If we have a Level 2 cache then print out the size and
* that it is X way associativ.
*
*/

if (_system_configuration.L2_cache_size > 0)
printf(" -qcache=type=C:level=2:size=%d:assoc=%d",

_system_configuration.L2_cache_size,
_system_configuration.L2_cache_asc);

/*
* If we have a translation Lookaside buffer and a level 2 cache
* then print out the size of the instruction and data tlb and
* that it is X way associativ.
*/

if (_system_configuration.L2_cache_size > 0 &&
_system_configuration.tlb_attrib != 1) {
printf(" -qcache=type=I:level=3:size=%d:assoc=%d",

_system_configuration.itlb_size,
_system_configuration.itlb_asc);

printf(" -qcache=type=D:level=3:size=%d:assoc=%d",
_system_configuration.dtlb_size,
_system_configuration.dtlb_asc);

}

/*
* If we have a translation Lookaside buffer and NO! level
* 2 cache then print out the size of the instruction and
* data tlb and that it is X associativ.
458 AIX 5L Porting Guide

*/

if (_system_configuration.L2_cache_size == 0 &&
_system_configuration.tlb_attrib != 1) {
printf(" -qcache=type=I:level=2:size=%d:assoc=%d",

_system_configuration.itlb_size,
_system_configuration.itlb_asc);

printf(" -qcache=type=D:level=2:size=%d:assoc=%d",
_system_configuration.dtlb_size,
_system_configuration.dtlb_asc);

}

}

A.2 POSIX threads sample programs

This section contains the programs from Section 10.11, “Example: The
Mandelbrot set” on page 391.

A.2.1 mandelbrot1.c

/*
* File: mandelbrot1.c
* Compile: cc -o mandelbrot1 mandelbrot1.c
* Description: Prints a ascii based picture
* of a part of the mandelbrot set.
*
* Arguments: none
*
* (C) COPYRIGHT International Business Machines Corp. 2001
* All Rights Reserved
*
*/

#include <stdlib.h>

int main(int argc, char **argv)
{
printf(":::===");
printf("====================o++===================::::::::::::::\n");
printf("::========");
printf("====================++o++==+=================:::::::::::\n");
printf(":::=============");
printf("====================+++soo+++===================::::::::\n");
printf("::::::::::::::::::::::::::::::::::::::==================");
Appendix A. Sample programs 459

printf("==================+++Dooo++++=====================::::::\n");
printf("::::::::::::::::::::::::::::::::::======================");
printf("===============++Exoooo oo+ooG=====================::::\n");
printf("::::::::::::::::::::::::::::::==========================");
printf("==============+++++o oU++======================::\n");
printf("::::::::::::::::::::::::::==============================");
printf("=======+++++++++++oO o++N+++=====================:\n");
printf("::::::::::::::::::::::==================================");
printf("==++Dooo+++++Ox+OooooO OooooO++oo+++++++o+============\n");
printf(":::::::::::::::::::=====================================");
printf("==E+++x OoXox oo+++xooooR+==========\n");
printf("::::::::::::::::==");
printf("I+++++O o @oA+===========\n");
printf(":::::::::::::==R++");
printf("xooooX o+N++===========\n");
printf(":::::::::::=====================++++=======++=====T+++++");
printf("++x o+G+o=========\n");
printf("::::::::========================++o++++++++++++++++++++x");
printf("X OoE========\n");
printf("::::::==========================+++++oxE+oox oooo++++++X");
printf(" x+++=========\n");
printf(":::===========================++++++Wo oo++oo");
printf(" : o+=========\n");
printf("::========================++++++++oxX Ooo ");
printf(" O++==========\n");
printf("========================+++++o+oooo x ");
printf(" O+===========\n");
printf("============++++++++++++++++oo @ O ");
printf(" +++============\n");
printf("============++++++++++++++++oo @ O ");
printf(" +++============\n");
printf("========================+++++o+oooo x ");
printf(" O+===========\n");
printf("::========================++++++++oxX Ooo ");
printf(" O++==========\n");
printf(":::===========================+++++++o oo++oo");
printf(" : o+=========\n");
printf("::::::==========================+++++oxx+oox oooo++++++X");
printf(" x+++=========\n");
printf("::::::::========================++o++++++++++++++++++++x");
printf("X Oo+========\n");
printf(":::::::::::=====================++++=======++======+++++");
printf("++x o+++o=========\n");
printf(":::::::::::::===++");
printf("xooooX o++++===========\n");
printf("::::::::::::::::==");
printf("++++++O o @o++===========\n");
460 AIX 5L Porting Guide

printf(":::::::::::::::::::=====================================");
printf("==++++x OoOox oo+++xoooo++==========\n");
printf("::::::::::::::::::::::==================================");
printf("==++xooo+++++Ox+OooooO OooooO++oo+++++++o+============\n");
printf("::::::::::::::::::::::::::==============================");
printf("=======+++++++++++oO o++++++=====================:\n");
printf("::::::::::::::::::::::::::::::==========================");
printf("==============+++++o o+++======================::\n");
printf("::::::::::::::::::::::::::::::::::======================");
printf("===============+++xoooo oo+oo+=====================::::\n");
printf("::::::::::::::::::::::::::::::::::::::==================");
printf("==================++++ooo++++=====================::::::\n");
printf(":::=============");
printf("====================+++o+o+++===================::::::::\n");
printf("::========");
printf("====================++o++==+=================:::::::::::\n");
return 0;

}

A.2.2 mandelbrot2.c

/*
* File: mandelbrot2.c
* Compile: cc -o mandelbrot2 mandelbrot2.c
* Description: Computes a ascii based picture
* of a specified part of the
* mandelbrot set.
*
* Arguments: none
*
* Change define values, then recompile:
* MAX_ITERATION, ..., RESOLUTION
*
* (C) COPYRIGHT International Business Machines Corp. 2001
* All Rights Reserved
*
*/

#include <stdlib.h>
#include <stdio.h>

/***************************************/
/* Values may be changed */
/***************************************/
#define MAX_ITERATION 262144
#define MAX_LENGTH 100
#define X_MIN -2.1
Appendix A. Sample programs 461

#define Y_MIN -1.1
#define X_MAX 0.7
#define Y_MAX 1.1
#define RESOLUTION 35 /* vertical resolution, horizontal is then derived */

/***/
/* Do not change the following */
/***/
#define COLORS 11
char *col = " -:=+oxOX@#";
int **pixels;
int x, y;
int xres = RESOLUTION*3.2;
int yres = RESOLUTION;
float xmin = X_MIN, ymin = Y_MIN;
float xstep = (X_MAX-X_MIN)/(RESOLUTION*3.2);
float ystep = (Y_MAX-Y_MIN)/RESOLUTION;

/***/
/* compute row specified in y */
/***/
void row(int y)
{
int x, iteration = 0, cindx = 0;
float z1 = 0.0, z2 = 0.0, t1;

for(x = 0; x < xres; x++, cindx = 0, iteration = 0, z1 = 0.0, z2 = 0.0) {
/* compute one pixel */
do {
t1 = z1*z1-z2*z2+(xmin+x*xstep);
z2 = 2*z1*z2+(ymin+y*ystep);
z1 = t1;
iteration++;

}
while(iteration < MAX_ITERATION && z1*z1+z2*z2 < MAX_LENGTH);

do
cindx++;

while((1 << cindx) < iteration);

pixels[y][x] = (int)((iteration >= MAX_ITERATION) ? 0 :
(cindx%COLORS));
}

}

int main(int argc, char **argv)
{

462 AIX 5L Porting Guide

/* allocate memory for fractal pixels */
if(NULL == (pixels = (int **)malloc(sizeof(int *)*(long)yres))) {
perror("malloc");
exit(1);

}

for(y = 0; y < yres; y++) {
if(NULL == (pixels[y] = (int *)malloc(sizeof(int)*(long)xres))) {
perror("malloc");
exit(1);

}
}

/* compute a row at the time */
for(y = 0; y < yres; y++)

row(y);

/* print out fractal pixels */
for(y = 0;y < yres;y++) {
for(x = 0; x < xres; x++)
putchar(col[pixels[y][x]]);

putchar('\n');
}

/* free allocated memory */
for(y = 0; y < yres; y++)
free(pixels[y]);

free(pixels);

exit(0);
}

A.2.3 mandelbrot3.c

/*
* File: mandelbrot3.c
* Compile: cc_r -o mandelbrot3 mandelbrot3.c
* Description: Computes a ascii based picture
* of a specified part of the
* mandelbrot set.
* Uses threads, one per vertical
* line.
*
* Arguments: none
*
* Change define values, then recompile:
* MAX_ITERATION, ..., RESOLUTION
Appendix A. Sample programs 463

*
* (C) COPYRIGHT International Business Machines Corp. 2001
* All Rights Reserved
*
*/

#include <pthread.h>
#include <stdlib.h>
#include <errno.h>

/***************************************/
/* Values may be changed */
/***************************************/
#define MAX_ITERATION 262144
#define MAX_LENGTH 100
#define X_MIN -2.1
#define Y_MIN -1.1
#define X_MAX 0.7
#define Y_MAX 1.1
#define RESOLUTION 35 /* vertical resolution, horizontal is then derived */

/***/
/* Do not change the following */
/***/
#define COLORS 11
char *col = " -:=+oxOX@#";
int **pixels;
int xres = RESOLUTION*3.2;
int yres = RESOLUTION;
float xmin = X_MIN, ymin = Y_MIN;
float xstep = (X_MAX-X_MIN)/(RESOLUTION*3.2);
float ystep = (Y_MAX-Y_MIN)/RESOLUTION;

/***/
/* compute row specified in *argy */
/***/
void *row(void *argy)
{
int x, iteration = 0, cindx = 0, y;
float z1 = 0.0, z2 = 0.0, t1;

y = *(int *)argy;

for(x = 0; x < xres; x++, cindx = 0, iteration = 0, z1 = 0.0, z2 = 0.0) {
/* compute one pixel */
do {
t1 = z1*z1-z2*z2+(xmin+x*xstep);
464 AIX 5L Porting Guide

z2 = 2*z1*z2+(ymin+y*ystep);
z1 = t1;
iteration++;

}
while(iteration < MAX_ITERATION && z1*z1+z2*z2 < MAX_LENGTH);

do
cindx++;

while((1 << cindx) < iteration);

pixels[y][x] = (iteration >= MAX_ITERATION) ? 0 : (cindx%COLORS);
}
pthread_exit(0);

}

int main(int argc, char **argv)
{
pthread_t mythreads[RESOLUTION];
int myarg[RESOLUTION];
int x, y;
int rc;

/* allocate memory for fractal pixels */
if(NULL == (pixels = (int **)malloc(sizeof(int *)*(long)yres))) {
perror("malloc");
exit(1);

}

for(y = 0; y < yres; y++)
if(NULL == (pixels[y] = (int *)malloc(sizeof(int)*(long)xres))) {
perror("malloc");
exit(1);

}

/* start all row-threads */
for(y = 0; y < yres; y++) {
myarg[y] = y;
rc = pthread_create(&mythreads[y], NULL, row, (void *)&myarg[y]);
if (rc == EAGAIN || rc == EINVAL || rc == EPERM)
exit(1);

}

/* join all threads */
for(y = 0; y < yres; y++) {
rc = pthread_join(mythreads[y], NULL);
if (rc == EINVAL || rc == ESRCH || rc == EDEADLK)
exit(1);
Appendix A. Sample programs 465

}

/* print out fractal pixels */
for(y = 0; y < yres; y++) {
for(x = 0; x < xres; x++)
putchar(col[pixels[y][x]]);

putchar('\n');
}

/* free allocated memory */
for(y = 0; y < yres; y++)
free(pixels[y]);

free(pixels);

exit(0);
}

A.2.4 mandelbrot4.c

/*
* File: mandelbrot4.c
* Compile: cc_r -o mandelbrot4 mandelbrot4.c
* Description: Computes a ascii based picture
* of a specified part of the
* mandelbrot set.
* Uses threads, one per vertical
* line. Each vertical line, starts
* new threads, if it records that
* it has been computing more than
* three seconds.
*
* Arguments: none
*
* Change define values, then recompile:
* MAX_ITERATION, ..., RESOLUTION
*
* (C) COPYRIGHT International Business Machines Corp. 2001
* All Rights Reserved
*
*/

#include <pthread.h>
#include <stdlib.h>
#include <errno.h>

/***************************************/
/* Values may be changed */
466 AIX 5L Porting Guide

/***************************************/
#define MAX_ITERATION 262144
#define MAX_LENGTH 100
#define X_MIN -2.1
#define Y_MIN -1.1
#define X_MAX 0.7
#define Y_MAX 1.1
#define RESOLUTION 35 /* vertical resolution, horizontal is then derived */

/***/
/* Do not change the following variables */
/***/
#define COLORS 11

typedef struct {
int y, startx, endx;

} interval;

char *col = " -:=+oxOX@#";
int **pixels;
int xres = RESOLUTION*3.2;
int yres = RESOLUTION;
float xmin = X_MIN, ymin = Y_MIN;
float xstep = (X_MAX-X_MIN)/(RESOLUTION*3.2);
float ystep = (Y_MAX-Y_MIN)/RESOLUTION;

/***/
/* Compute row, subinterval specified in *argy */
/* if computation takes more than 3 seconds */
/* split into two threads */
/***/
void *row(void *argy)
{
pthread_t th1, th2;
time_t start, now;
int x, y ,iteration = 0, cindx = 0;
int rc;
interval *intv, int1, int2;
float z1 = 0.0, z2 = 0.0, t1;

intv = (interval *)argy;

/* record start time of this thread */
start = time(NULL);

for(x = intv->startx; x <= intv->endx; x++, cindx = 0, iteration = 0, z1
= 0.0, z2 = 0.0) {
Appendix A. Sample programs 467

/* compute one pixel */
do {
t1 = z1*z1-z2*z2+(xmin+x*xstep);
z2 = 2*z1*z2+(ymin+intv->y*ystep);
z1 = t1;
iteration++;

}
while(iteration < MAX_ITERATION && z1*z1+z2*z2 < MAX_LENGTH);

do
cindx++;

while((1 << cindx) < iteration);

pixels[intv->y][x] = (int)((iteration >= MAX_ITERATION) ? 0 :
(cindx%COLORS));

/* record time passed in this thread */
now = time(NULL);

/* if too much time has elpased, start two new threads */
if (difftime(now,start) > 3.0 && intv->endx-x > 3) {
/* printf("Splitting row %d: (%d,%d)\n", intv->y, x+1, intv->endx); */
int1.y = int2.y = intv->y;
int1.startx = x++;
int1.endx = (intv->endx + x)/2;
int2.startx = (intv->endx + x)/2+1;
int2.endx = intv->endx;

rc = pthread_create(&th1, NULL, row, (void *)&int1);
if (rc == EAGAIN || rc == EINVAL || rc == EPERM)

exit(1);

rc = pthread_create(&th2, NULL, row, (void *)&int2);
if (rc == EAGAIN || rc == EINVAL || rc == EPERM)

exit(1);

rc = pthread_join(th1, NULL);
if (rc == EINVAL || rc == ESRCH || rc == EDEADLK)

exit(1);

rc = pthread_join(th2, NULL);
if (rc == EINVAL || rc == ESRCH || rc == EDEADLK)

exit(1);

x = intv->endx;
}

}

468 AIX 5L Porting Guide

pthread_exit(0);
}

int main(int argc, char **argv)
{
pthread_t mythreads[RESOLUTION];
interval intv[RESOLUTION];
int x,y;
int rc;

/* allocate memory for fractal pixels */
if(NULL == (pixels = (int **)malloc(sizeof(int *)*(long)yres))) {
perror("malloc");
exit(0);

}

for(y = 0; y < yres; y++)
if(NULL == (pixels[y] = (int *)malloc(sizeof(int)*(long)xres))) {
perror("malloc");
exit(0);

}

/* start all row-threads */
for(y = 0; y < yres; y++) {
intv[y].y = y;
intv[y].startx = 0;
intv[y].endx = xres-1;

rc = pthread_create(&mythreads[y], NULL, row, (void *)&intv[y]);
if (rc == EAGAIN || rc == EINVAL || rc == EPERM)
exit(1);

}

/* join all threads */
for(y = 0; y < yres; y++) {
rc = pthread_join(mythreads[y], NULL);
if (rc == EINVAL || rc == ESRCH || rc == EDEADLK)
exit(1);

}

/* print out fractal pixels */
for(y = 0;y < yres; y++) {
for(x = 0; x < xres; x++)
putchar(col[pixels[y][x]]);

putchar('\n');
}

Appendix A. Sample programs 469

/* free allocated memory */
for(y = 0; y < yres; y++)
free(pixels[y]);

free(pixels);

exit(0);
}

A.2.5 mandelbrot5.c

/*
* File: mandelbrot5.c
* Compile: cc_r -o mandelbrot5 mandelbrot5.c
* Description: Computes a ascii based picture
* of a specified part of the
* mandelbrot set.
* Uses threads, one per vertical
* line. Each vertical line, starts
* new threads, if it records that
* it has been computing more than
* three seconds and the processors
* are idle.
*
* Arguments: none
*
* Change define values, then recompile:
* MAX_ITERATION, ..., RESOLUTION
*
* (C) COPYRIGHT International Business Machines Corp. 2001
* All Rights Reserved
*
*/

#include <pthread.h>
#include <stdlib.h>
#include <sys/sysinfo.h>
#include <nlist.h>
#include <sys/systemcfg.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>

/***************************************/
/* Values may be changed */
/***************************************/
#define MAX_ITERATION 262144
470 AIX 5L Porting Guide

#define MAX_LENGTH 100
#define X_MIN -2.1
#define Y_MIN -1.1
#define X_MAX 0.7
#define Y_MAX 1.1
#define RESOLUTION 35 /* vertical resolution, horizontal is then derived */

/***/
/* Do not change the following */
/***/
#define N_VALUE(index) (nlists[index].n_value)
#define NLIST_CPU 5
#define NUMBER_OF_KNSTRUCTS 6
#define COLORS 11

typedef struct {
int y, startx, endx;

} interval;

int knlist(struct nlist *NList, int NumberOfElements, int Size);
int cpus, fd;

struct nlist nlists[7] = {
{ "sysinfo", (long)0, (short)0, (unsigned short)0, (char)0, (char)0 },
{ "vmker", (long)0, (short)0, (unsigned short)0, (char)0, (char)0 },
{ "vmminfo", (long)0, (short)0, (unsigned short)0, (char)0, (char)0 },
{ "iostat", (long)0, (short)0, (unsigned short)0, (char)0, (char)0 },
{ "ifnet", (long)0, (short)0, (unsigned short)0, (char)0, (char)0 },
{ "cpuinfo", (long)0, (short)0, (unsigned short)0, (char)0, (char)0 },
{ NULL, (long)0, (short)0, (unsigned short)0, (char)0, (char)0 }

};

char *col = " -:=+oxOX@#";
int **pixels;
int xres = RESOLUTION*3.2;
int yres = RESOLUTION;
float xmin = X_MIN, ymin = Y_MIN;
float xstep = (X_MAX-X_MIN)/(RESOLUTION*3.2);
float ystep = (Y_MAX-Y_MIN)/RESOLUTION;

/**********************/
/* read kernel memory */
/**********************/
void read_kmem(char *buf, long bufsize, long n_value)
{
/* Get the structure from the running kernel. */
if (lseek(fd, n_value, SEEK_SET) == -1) {
Appendix A. Sample programs 471

perror("lseek error");
exit(1);

}
if (read(fd, buf, bufsize) == -1) {
perror("read error");
exit(1);

}
}

/***/
/* Compute row, subinterval specified in *argy */
/* if computation takes more than 3 seconds, and */
/* some cpus seem idle, split into two threads */
/***/
void *row(void *argy)
{
struct cpuinfo *cpuinfoa, *cpuinfob;
long cpu_idle, cpu_user, cpu_sys, cpu_wait, cpu_sum, i;

pthread_t th1, th2;
time_t start, now;
int x, iteration = 0, cindx = 0;
int rc;
interval *intv, int1, int2;
float z1 = 0.0, z2 = 0.0, t1;
double idlemax;

/* used for keeping track of CPU usage */
cpuinfoa = (struct cpuinfo *)malloc(sizeof(struct cpuinfo) * (long)cpus);
cpuinfob = (struct cpuinfo *)malloc(sizeof(struct cpuinfo) * (long)cpus);

intv = (interval *)argy;

/* record start time of this thread */
start = time(NULL);

for(x = intv->startx; x <= intv->endx; x++, cindx = 0, iteration = 0, z1
= 0.0, z2 = 0.0) {

read_kmem((char *)&cpuinfoa[0], sizeof(struct cpuinfo)*(long)cpus,
N_VALUE(NLIST_CPU));

/* compute one pixel */
do {
t1 = z1*z1-z2*z2+(xmin+x*xstep);
z2 = 2*z1*z2+(ymin+intv->y*ystep);
z1 = t1;
iteration++;
472 AIX 5L Porting Guide

}
while(iteration < MAX_ITERATION && z1*z1+z2*z2 < MAX_LENGTH);

do
cindx++;

while((1 << cindx) < iteration);

pixels[intv->y][x] = (iteration >= MAX_ITERATION) ? 0 : (cindx%COLORS);

/* sample cpu usage */
read_kmem((char *)&cpuinfob[0], sizeof(struct cpuinfo)*(long)cpus,

N_VALUE(NLIST_CPU));

idlemax = 0.0;

for (i=0; i<cpus; i++) {
cpu_idle = cpuinfob[i].cpu[CPU_IDLE]-cpuinfoa[i].cpu[CPU_IDLE];
cpu_user = cpuinfob[i].cpu[CPU_USER]-cpuinfoa[i].cpu[CPU_USER];
cpu_sys = cpuinfob[i].cpu[CPU_KERNEL]-cpuinfoa[i].cpu[CPU_KERNEL];
cpu_wait = cpuinfob[i].cpu[CPU_WAIT]-cpuinfoa[i].cpu[CPU_WAIT];
cpu_sum = cpu_idle + cpu_user + cpu_sys + cpu_wait;
if ((double)cpu_idle/(double)cpu_sum*100.0 > idlemax)

idlemax = (double)cpu_idle/(double)cpu_sum*100.0;
}

/* record time passed in this thread */
now = time(NULL);

/* if too much time has elpased and user cpu is too idle, start two new
threads */

if (difftime(now,start) > 3.0 && intv->endx-x > 3 && idlemax > 20.0) {
/* printf("Splitting row %d: (%d,%d)\n", intv->y, x+1, intv->endx); */

int1.y = int2.y = intv->y;
int1.startx = x++;
int1.endx = (intv->endx + x)/2;
int2.startx = (intv->endx + x)/2+1;
int2.endx = intv->endx;

rc = pthread_create(&th1, NULL, row, (void *)&int1);
if (rc == EAGAIN || rc == EINVAL || rc == EPERM)

exit(1);

rc = pthread_create(&th2, NULL, row, (void *)&int2);
if (rc == EAGAIN || rc == EINVAL || rc == EPERM)

exit(1);

rc = pthread_join(th1, NULL);
Appendix A. Sample programs 473

if (rc == EINVAL || rc == ESRCH || rc == EDEADLK)
exit(1);

rc = pthread_join(th2, NULL);
if (rc == EINVAL || rc == ESRCH || rc == EDEADLK)

exit(1);

x = intv->endx;
}

}
pthread_exit(0);

}

int main(int argc, char **argv)
{
pthread_t mythreads[RESOLUTION];
interval intv[RESOLUTION];
struct cpuinfo *cpuinfoa, *cpuinfob;
long cpu_idle, cpu_user, cpu_sys, cpu_wait, cpu_sum;
int x, y;
int rc;

/* Get the number of CPUs */
cpus = _system_configuration.ncpus;

/* Request the Kernel addresses - if this fails stop now */
if (knlist(nlists, NUMBER_OF_KNSTRUCTS, sizeof(struct nlist)) == -1)
exit(1);

/* Open kernel memory for reading */
if ((fd = open("/dev/kmem", O_RDONLY)) == -1) {
perror("opening /dev/kmem");
printf("As root use: chmod ugo+r /dev/kmem\n");
printf("to fix this\n");
exit(1);

}

/* allocate memory for fractal pixels */
if(NULL == (pixels = (int **)malloc(sizeof(int *)*(long)yres))) {
perror("malloc");
exit(0);

}

for(y = 0; y < yres; y++)
if(NULL == (pixels[y] = (int *)malloc(sizeof(int)*(long)xres))) {
perror("malloc");
exit(0);
474 AIX 5L Porting Guide

}

/* start all row-threads */
for(y = 0; y < yres; y++) {
intv[y].y = y;
intv[y].startx = 0;
intv[y].endx = xres-1;

rc = pthread_create(&mythreads[y], NULL, row, (void *)&intv[y]);
if (rc == EAGAIN || rc == EINVAL || rc == EPERM)
exit(1);

}

/* join all threads */
for(y = 0; y < yres; y++) {
rc = pthread_join(mythreads[y], NULL);
if (rc == EINVAL || rc == ESRCH || rc == EDEADLK)
exit(1);

}

/* print out fractal pixels */
for(y = 0;y < yres; y++) {
for(x = 0; x < xres; x++)
putchar(col[pixels[y][x]]);

putchar('\n');
}

/* free allocated memory */
for(y = 0; y < yres; y++)
free(pixels[y]);

free(pixels);

exit(0);
}

Appendix A. Sample programs 475

476 AIX 5L Porting Guide

Appendix B. Default inference rules for the make commands

This appendix contains information on the default inference rules for the
different make commands available on various UNIX-based platforms, along
with those defined by the POSIX standard (IEEE Std 1003.2) and the GNU
make command. When you see a - (hyphen) in the tables, this means that the
particular rule is not implemented on the platform in question.

The rules have been split into tables for ease of use, and have been sorted in
alphabetic order, ordered by the source. Thus, if you want to find the rule that
governs how to make a .o file from a .c file, you look after the .c.o rule, where
the .c is what the tables are sorted by.

Intermediate variables have been expanded. So if you are using the value of
a variable like COMPILE.c in your makefiles (to redefine the way the compiler
is called or which compiler is to be used), then you have to do some
substitution in the rules. For example, on Solaris, the double suffix rule for
making a .o file from a .c file looks like this:

$(CC) $(CFLAGS) $(CPPFLAGS) -c $(OUTPUT_OPTION) $<

This is the version that is listed in Table 111 on page 491. This rule is a result
of a merger of the rules:

$(COMPILE.c) $(OUTPUT_OPTION) $<
COMPILE.c= $(CC) $(CFLAGS) $(CPPFLAGS) -c

These mergers have been made so that you can compare the different rules
without having to cross-reference other tables to look up intermediate
variables.

B.1 Single suffix inference rules

Table 110 lists the single suffix inference rules.

Table 110. Single suffix rules

Suffix Make Single suffix rule

.a~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<
© Copyright IBM Corp. 2001 477

POSIX -

.c AIX $(CC) $(CFLAGS) $(LDFLAGS) $< -o $@

HP-UX $(CC) $(CFLAGS) $< $(LDFLAGS) -o $@

Solaris $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)-o $@ $< $(LDLIBD)

Tru64 $(CC) $(LDFLAGS) $(CFLAGS) $< $(LOADLIBES) -o $@

GNU $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH) $^
$(LOADLIBES) $(LDLIBS) -o $@

POSIX $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $<

.c~ AIX $(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) $(LDFLAGS) $*.c -o $*
-rm -f $*.c

HP-UX $(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) $(LDFLAGS) -o $* $*.c
-rm -f $*.c

Solaris $(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $*.c

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.C AIX $(CCC) $(CCFLAGS) $(LDFLAGS) $< -o $@

HP-UX $(CXX) $(CXXFLAGS) $< $(LDFLAGS) -o $@

Solaris $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS) -o $@ $< $(LDLIBS)

Tru64 -

GNU $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH) $^
$(LOADLIBES) $(LDLIBS) -o $@

POSIX -

.C~ AIX $(GET) $(GFLAGS) -p $< > $*.C
$(CCC) $(CCFLAGS) $(LDFLAGS) $*.C -o $*
-rm -f $*.C

HP-UX $(GET) $(GFLAGS) -p $< > $*.C
$(CXX) $(CXXFLAGS) $(LDFLAGS) $*.C -o $*
rm -f $*.C

Solaris $(GET) $(GFLAGS) -p $< > $*.C
$(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS) -o $@ $*.C $(LDLIBS)

Tru64 -

Suffix Make Single suffix rule
478 AIX 5L Porting Guide

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.cc AIX -

HP-UX $(CXX) $(CXXFLAGS) $< $(LDFLAGS) -o $@

Solaris $(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS) -o $@ $< $(LDLIBS)

Tru64 -

GNU $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
$(LOADLIBES) $(LDLIBS) -o $@

POSIX -

.cc~ AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cc
$(CXX) $(CXXFLAGS) $(LDFLAGS) $*.cc -o $*
rm -f $*.cc

Solaris $(GET) $(GFLAGS) -p $, > $*.cc
$(CCC) $(CCFLAGS) $(CPPFLAGS) $(LDFLAGS)-o $@ $*.cc $(LDLIBS)

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.ch~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.CLEAN
UP

AIX -

HP-UX -

Solaris -

Tru64 $(RM) $(RMFLAGS) $?

GNU -

Suffix Make Single suffix rule
Appendix B. Default inference rules for the make commands 479

POSIX -

.CO AIX -

HP-UX -

Solaris -

Tru64 $(CO) $(COFLAGS) $< $@

GNU -

POSIX -

.cpp AIX -

HP-UX $(CXX) $(CXXFLAGS) $< $(LDFLAGS) -o $@

Solaris -

Tru64 -

GNU $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH) $^
$(LOADLIBES) $(LDLIBS) -o $@

POSIX -

.cpp~ AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cpp
$(CXX) $(CXXFLAGS) $(LDFLAGS) $*.cpp -o $*
rm -f $*.cpp

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.csh AIX -

HP-UX -

Solaris -

Tru64 $(CP) $(CPFLAGS) $< $@
chmod +x $@

GNU -

POSIX -

.cxx AIX -

Suffix Make Single suffix rule
480 AIX 5L Porting Guide

HP-UX $(CXX) $(CXXFLAGS) $< $(LDFLAGS) -o $@

Solaris -

Tru64 -

GNU -

POSIX -

.cxx~ AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cxx
$(CXX) $(CXXFLAGS) $(LDFLAGS) $*.cxx -o $*
rm -f $*.cxx

Solaris -

Tru64 -

GNU -

POSIX -

.def~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.dvi~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.e AIX -

HP-UX -

Solaris -

Suffix Make Single suffix rule
Appendix B. Default inference rules for the make commands 481

Tru64 $(EC) $(LDFLAGS) $(EFLAGS) $< $(LOADLIBES) -o $@

GNU -

POSIX -

.el~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.elc AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.f AIX $(FC) $(FFLAGS) $(LDFLAGS) $< -o $@

HP-UX $(FC) $(FFLAGS) $(LDFLAGS) -o $@ $<

Solaris $(FC) $(FFLAGS) $(LDFLAGS) -o $@ $< $(LDLIBS)

Tru64 $(FC) $(LDFLAGS) $(FFLAGS) $< $(LOADLIBES) -o $@

GNU $(FC) $(FFLAGS) $(LDFLAGS) $(TARGET_ARCH) $^ $(LOADLIBES)
$(LDLIBS) -o $@

POSIX $(FC) $(FFLAGS) $(LDFLAGS) -o $@ $<

.f~ AIX $(GET) $(GFLAGS) -p $< > $*.f
$(FC) $(FFLAGS) $(LDFLAGS) $*.f -o $*

HP-UX $(GET) $(GFLAGS) -p $< > $*.f
$(FC) $(FFLAGS) $(LDFLAGS) -o $* $*.f

Solaris $(GET) $(GFLAGS) -p $< > $*.f
$(FC) $(FFLAGS) $(LDFLAGS) -o $@ $*.f

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

Suffix Make Single suffix rule
482 AIX 5L Porting Guide

POSIX -

.f90 AIX -

HP-UX -

Solaris $(F90C) $(F90FLAGS) $(LDFLAGS) -o $@ $< $(LDLIBS)

Tru64 $(F90C) $(FFLAGS) $(LDFLAGS) -o $@

GNU -

POSIX -

.f90~ AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.f90
$(F90C) $(F90FLAGS) $(LDFLAGS)-o $@ $*.f90 $(LDLIBS)

Tru64 $(GET) $(GFLAGS) -p $< > $*.f90
$(F90C) $(FFLAGS) $(LDFLAGS) -o $@ $*.f90

GNU -

POSIX -

.ftn AIX -

HP-UX -

Solaris $(F90C) $(F90FLAGS) $(LDFLAGS) -o $@ $< $(LDLIBS)

Tru64 -

GNU -

POSIX -

.ftn~ AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.ftn
$(F90C) $(F90FLAGS) $(LDFLAGS) -o $@ $*.ftn $(LDLIBS)

Tru64 -

GNU -

POSIX -

.F AIX -

Suffix Make Single suffix rule
Appendix B. Default inference rules for the make commands 483

HP-UX $(FC) $(FFLAGS) $< $(LDFLAGS) -o $@

Solaris $(FC) $(FFLAGS) $(LDFLAGS) -o $@ $< $(LDLIBS)

Tru64 $(FC) $(LDFLAGS) $(FFLAGS) $< $(LOADLIBES) -o $@

GNU $(FC) $(FFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH) $^
$(LOADLIBES) $(LDLIBS) -o $@

POSIX -

.F~ AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.F
$(FC) $(FFLAGS) $(LDFLAGS) $*.F -o $*
-rm -f $*.F

Solaris $(GET) $(GFLAGS) -p $< >.$*.F
$(FC) $(FFLAGS) $(LDFLAGS) -o $@ $*.F

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.h~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.info~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.l AIX -

HP-UX -

Suffix Make Single suffix rule
484 AIX 5L Porting Guide

Solaris $(RM) $*.c
$(LEX) $(LFLAGS) -t $< > $*.c
$(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) -o $@ $*.c -ll
$(LDLIBS)

Tru64 $(LEX) $(LFLAGS) $<
$(CC) $(LDFLAGS) $(CFLAGS) lex.yy.c $(LOADLIBES) -ll -o $@
$(RM) $(RMFLAGS) lex.yy.c

GNU -

POSIX -

.l~ AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.l
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c
mv lex.yy.c $@

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.ln~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

makefile AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.mod AIX -

Suffix Make Single suffix rule
Appendix B. Default inference rules for the make commands 485

HP-UX -

Solaris $(M2C) $(M2FLAGS) $(MODFLAGS)-o $@ -e $@ $<

Tru64 -

GNU $(M2C) $(M2FLAGS) $(MODFLAGS) $(TARGET_ARCH) -o $@ -e $@ $^

POSIX -

.mod~ AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.mod
$(M2C) $(M2FLAGS) $(MODFLAGS) -o $@ -e $@ $*.mod

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.o~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.out~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.p AIX -

HP-UX $(PC) $(PFLAGS) $< $(LDFLAGS) -o $@

Solaris $(PC) $(PFLAGS) $(CPPFLAGS) $(LDFLAGS) -o $@ $< $(LDLIBS)

Tru64 $(PC) $(LDFLAGS) $(PFLAGS) $< $(LOADLIBES) -o $@

Suffix Make Single suffix rule
486 AIX 5L Porting Guide

GNU $(PC) $(PFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH) $^
$(LOADLIBES) $(LDLIBS) -o $@

POSIX -

.p~ AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.p
$(PC) $(PFLAGS) $(LDFLAGS) $*.p -o $*
-rm -f $*.p

Solaris $(GET) $(GFLAGS) -p $< > $*.p
$(PC) $(PFLAGS) $(CPPFLAGS) $(LDFLAGS) -o $@ $*.p $(LDLIBS)

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.r AIX -

HP-UX $(FC) $(RFLAGS) $< $(LDFLAGS) -o $@

Solaris $(FC) $(FFLAGS) $(RFLAGS) $(LDFLAGS) -o $@ $< $(LDLIBS)

Tru64 $(RC) $(LDFLAGS) $(RFLAGS) $< $(LOADLIBES) -o $@

GNU $(FC) $(FFLAGS) $(RFLAGS) $(LDFLAGS) $(TARGET_ARCH) $^
$(LOADLIBES) $(LDLIBS) -o $@

POSIX -

.r~ AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.r
$(FC) $(RFLAGS) $(LDFLAGS) $*.r -o $*
-rm -f $*.r

Solaris $(GET) $(GFLAGS) -p $< > $*.r
$(FC) $(FFLAGS) $(RFLAGS) $(LDFLAGS) -o $@ $*.r $(LDLIBS)

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.s AIX -

HP-UX -

Solaris -s

Tru64 $(AS) $(ASFLAGS) -o $@ $<

Suffix Make Single suffix rule
Appendix B. Default inference rules for the make commands 487

GNU $(CC) $(LDFLAGS) $(TARGET_MACH) $^ $(LOADLIBES) $(LDLIBS) -o
$@

POSIX -

.s~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.S AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(CC) $(LDFLAGS) $(TARGET_MACH) $^ $(LOADLIBES) $(LDLIBS) -o
$@

POSIX -

.S~ AIX -

HP-UX -

Solaris -

Tru64 $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

GNU -

POSIX -

.SCCS_
GET

AIX -

HP-UX -

Solaris -

Tru64 sccs $(SCCSFLAGS) get $(SCCSGETFLAGS) $@

GNU -

POSIX -

Suffix Make Single suffix rule
488 AIX 5L Porting Guide

.sh AIX cp $< $@; chmod a+x $@

HP-UX cp $< $@; chmod 0777 $@

Solaris $(RM) $@
cat $< > $@
chmod -x $@

Tru64 $(CP) $(CPFLAGS) $< $@
chmod +x $@

GNU cat $< > $@
chmod a+x $@

POSIX cp $< $@
chmod a+x $@

.sh~ AIX $(GET) $(GFLAGS) -p $< > $*.sh
cp $*.sh $*; chmod a+x $@
-rm -f $*.c

HP-UX $(GET) $(GFLAGS) -p $< > $*.sh
cp $*.sh $*; chmod 0777 $@

Solaris $(GET) $(GFLAGS) -p $< > $*.sh
cp $* $*.sh $@
chmod a+x $@

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX

.sym~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.tex~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

Suffix Make Single suffix rule
Appendix B. Default inference rules for the make commands 489

POSIX -

.texi~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.texinfo
~

AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.txinfo AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.w~ AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.web~ AIX -

Suffix Make Single suffix rule
490 AIX 5L Porting Guide

B.2 Double suffix inference rules

Table 111 lists the double suffix inference rules.

Table 111. Double suffix rules

HP-UX -

Solaris -

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

.y AIX -

HP-UX -

Solaris $(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) -o $@ $< $(LDLIBS)
$(RM) ytab.c

Tru64 $(YACC) $(YFLAGS) $<
$(CC) $(LDFLAGS) $(CFLAGS) y.tab.c $(LOADLIBES) -ly -o $@
$(RM) $(RMFLAGS) y.tab.c

GNU -

POSIX -

.y~ AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) $(CPPFLAGS) -c -o $@ ytab.c
$(RM) y.tab.c

Tru64 -

GNU $(GET) $(GFLAGS) $(SCCS_OUTPUT_OPTION) $<

POSIX -

Suffix Make Double suffix rule

.c.a AIX $(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

Suffix Make Single suffix rule
Appendix B. Default inference rules for the make commands 491

HP-UX $(CC) -c $(CFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

Solaris $(CC) $(CFLAGS) $(CPPFLAGS) -c -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 $(CC) $(CFLAGS) -c $<
$(AR) $(ARFLAGS) $@ $*.o
$(RM) $(RMFLAGS) $*.o

GNU -

POSIX $(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

.c~.a AIX $(GET) $(GFLAGS) -p $< > $*.c
$(CC) -c $(CFLAGS) $*.c
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[co]

HP-UX $(GET) $(GFLAGS) -p $< > $*.c
$(CC) -c $(CFLAGS) $*.c
ar rv $@ $*.o
rm -f $*.[co]

Solaris $(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c -o $% $*.c
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.c~.c AIX $(GET) $(GFLAGS) -p $< > $*.c

HP-UX $(GET) $(GFLAGS) -p $< > $*.c

Solaris -

Tru64 -

GNU -

POSIX -

.c.o AIX $(CC) $(CFLAGS) -c $<

HP-UX $(CC) $(CFLAGS) -c $<

Solaris $(CC) $(CFLAGS) $(CPPFLAGS) -c $(OUTPUT_OPTION) $<

Tru64 $(CC) $(CFLAGS) -c $<

Suffix Make Double suffix rule
492 AIX 5L Porting Guide

GNU $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
$(OUTPUT_OPTION) $<

POSIX $(CC) $(CFLAGS) -c $<

.c.out AIX -

HP-UX -

Solaris -

Tru64 $(CC) $(LDFLAGS) $(CFLAGS) $< $(LOADLIBES) -o $@

GNU -

POSIX -

.c~.o AIX $(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) -c $*.c
-rm -f $*.c

HP-UX $(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) -c $*.c
-rm -f $*.c

Solaris $(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) -c $*.c

Tru64 -

GNU -

POSIX -

.c.ln AIX -

HP-UX -

Solaris $(LINT) $(LINTFLAGS) $(CPPFLAGS) $(OUTPUT_OPTION) -c $<

Tru64 -

GNU
$(LINT) $(LINTFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -C$* $<

POSIX -

.c~.ln AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.c
$(LINT) $(LINTFLAGS) $(CPPFLAGS) $(OUTPUT_OPTION) -c $*.c

Tru64 -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 493

GNU -

POSIX -

.cc.a AIX -

HP-UX $(CXX) -c $(CXXFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

Solaris $(CCC) $(CCFLAGS) $(CPPFLAGS) -c -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.cc~.a AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cc
$(CXX) -c $(CXXFLAGS) $*.cc
ar rv $@ $*.o
rm -f $*.cc $*.o

Solaris $(GET) $(GFLAGS) -p $< > $*.cc
$(CCC) $(CCFLAGS) $(CPPFLAGS) -c -o $% $*.cc
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.cc.o AIX -

HP-UX $(CXX) $(CXXFLAGS) -c $<

Solaris $(CCC) $(CCFLAGS) $(CPPFLAGS) -c $(OUTPUT_OPTION) $<

Tru64 -

GNU $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
$(OUTPUT_OPTION) $<

POSIX -

.cc.cc~ AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cc

Solaris -

Suffix Make Double suffix rule
494 AIX 5L Porting Guide

Tru64 -

GNU -

POSIX -

.cc~.o AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cc
$(CXX) $(CXXFLAGS) -c $*.cc
rm -f $*.cc

Solaris $(GET) $(GFLAGS) -p $< > $*.cc
$(CCC) $(CCFLAGS) $(CPPFLAGS) -c $(OUTPUT_OPTION) $*.cc

Tru64 -

GNU -

POSIX -

.cpp.a AIX -

HP-UX $(CXX) -c $(CXXFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

Solaris -

Tru64 -

GNU -

POSIX -

.cpp~.a AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cpp
$(CXX) -c $(CXXFLAGS) $*.cpp
ar rv $@ $*.o
rm -f $*.cpp $*.o

Solaris -

Tru64 -

GNU -

POSIX -

.cpp~.
cpp

AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cpp

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 495

Solaris -

Tru64 -

GNU -

POSIX -

.cpp.o AIX -

HP-UX $(CXX) $(CXXFLAGS) -c $<

Solaris -

Tru64 -

GNU $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
$(OUTPUT_OPTION) $<

POSIX -

.cpp~.o AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cpp
$(CXX) $(CXXFLAGS) -c $*.cpp
rm -f $*.cpp

Solaris -

Tru64 -

GNU -

POSIX -

.cps.h AIX -

HP-UX -

Solaris $(CPS) $(CPSFLAGS) $*.cps

Tru64 -

GNU -

POSIX -

.cps~.h AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.cps
$(CPS) $(CPSFLAGS) $*.cps

Tru64 -

Suffix Make Double suffix rule
496 AIX 5L Porting Guide

GNU -

POSIX -

.cxx.a AIX -

HP-UX $(CXX) -c $(CXXFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

Solaris -

Tru64 -

GNU -

POSIX -

.cxx~.a AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cxx
$(CXX) -c $(CXXFLAGS) $*.cxx
ar rv $@ $*.o
rm -f $*.cxx $*.o

Solaris -

Tru64 -

GNU -

POSIX -

.cxx~.
cxx

AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cxx

Solaris -

Tru64 -

GNU -

POSIX -

.cxx.o AIX -

HP-UX $(CXX) $(CXXFLAGS) -c $<

Solaris -

Tru64 -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 497

GNU -

POSIX -

.cxx~.o AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.cxx
$(CXX) $(CXXFLAGS) -c $*.cxx
rm -f $*.cxx

Solaris -

Tru64 -

GNU -

POSIX -

.C.a AIX $(CCC) -c $(CCFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

HP-UX $(CXX) -c $(CXXFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

Solaris $(CC) $(CFLAGS) $(CPPFLAGS) -c -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.C~.a AIX $(GET) $(GFLAGS) -p $< > $*.C
$(CCC) -c $(CCFLAGS) $*.C
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[Co]

HP-UX $(GET) $(GFLAGS) -p $< > $*.C
$(CXX) -c $(CXXFLAGS) $*.C
ar rv $@ $*.o
rm -f $*.[Co]

Solaris $(GET) $(GFLAGS) -p $< > $*.C
$(CC) $(CFLAGS) $(CPPFLAGS) -c -o $% $*.C
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

Suffix Make Double suffix rule
498 AIX 5L Porting Guide

.C~.C AIX $(GET) $(GFLAGS) -p $< > $*.C; chmod 444 $*.C

HP-UX $(GET) $(GFLAGS) -p $< > $*.C

Solaris -

Tru64 -

GNU -

POSIX -

.C.o AIX $(CCC) $(CCFLAGS) -c $

HP-UX $(CXX) $(CXXFLAGS) -c $<

Solaris $(CC) $(CFLAGS) $(CPPFLAGS) -c $(OUTPUT_OPTION) $<

Tru64 -

GNU $(CXX) $(CXXFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
$(OUTPUT_OPTION) $<

POSIX -

.C~.o AIX $(GET) $(GFLAGS) -p $< > $*.C
$(CCC) $(CCFLAGS) -c $
-rm -f $*.C

HP-UX $(GET) $(GFLAGS) -p $< > $*.C
$(CXX) $(CXXFLAGS) -c $*.C
rm -f $*.C

Solaris $(GET) $(GFLAGS) -p $< > $*.C
$(CC) $(CFLAGS) $(CPPFLAGS) -c $(OUTPUT_OPTION) $*.C

Tru64 -

GNU -

POSIX -

.def.
sym

AIX -

HP-UX -

Solaris $(M2C) $(M2FLAGS) $(DEFFLAGS) -o $@ $<

Tru64 -

GNU $(M2C) $(M2FLAGS) $(DEFFLAGS) $(TARGET_ARCH) -o $@ $<

POSIX -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 499

.def~.
sym

AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.def
$(M2C) $(M2FLAGS) $(DEFFLAGS) -o $@ $*.def

Tru64 -

GNU -

POSIX -

.e.o AIX -

HP-UX -

Solaris -

Tru64 $(EC) $(EFLAGS) -c $<

GNU -

POSIX -

.e.out AIX -

HP-UX -

Solaris -

Tru64 $(EC) $(LDFLAGS) $(EFLAGS) $< $(LOADLIBES) -o $@

GNU -

POSIX -

.f.a AIX $(FC) -c $(FFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

HP-UX $(FC) -c $(FFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

Solaris $(FC) $(FFLAGS) -c -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 $(FC) $(FFLAGS) -c $<
$(AR) $(ARFLAGS) $@ $*.o
$(RM) $(RMFLAGS) $*.o

GNU -

Suffix Make Double suffix rule
500 AIX 5L Porting Guide

POSIX $(FC) $(FFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

.f~.a AIX $(GET) $(GFLAGS) -p $< > $*.f
$(FC) -c $(FFLAGS) $*.f
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[fo]

HP-UX $(GET) $(GFLAGS) -p $< > $*.f
$(FC) -c $(FFLAGS) $*.f
ar rv $@ $*.o
rm -f $*.[fo]

Solaris $(GET) $(GFLAGS) -p $< > $*.f
$(FC) $(FFLAGS) -c -o $% $*.f
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.f~.f AIX $(GET) $(GFLAGS) -p $< > $@

HP-UX $(GET) $(GFLAGS) -p $< > $*.f

Solaris -

Tru64 -

GNU -

POSIX -

.f.o AIX $(FC) $(FFLAGS) -c $<

HP-UX $(FC) $(FFLAGS) -c $<

Solaris $(FC) $(FFLAGS) -c $(OUTPUT_OPTION) $<

Tru64 $(FC) $(FFLAGS) -c $<

GNU $(FC) $(FFLAGS) $(TARGET_ARCH) -c $(OUTPUT_OPTION) $<

POSIX $(FC) $(FFLAGS) -c $<

.f.out AIX -

HP-UX -

Solaris -

Tru64 $(FC) $(LDFLAGS) $(FFLAGS) $< $(LOADLIBES) -o $@

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 501

GNU -

POSIX -

.f~.o AIX $(GET) $(GFLAGS) -p $< > $*.f
$(FC) $(FFLAGS) -c $*.f
rm -f $*.f

HP-UX $(GET) $(GFLAGS) -p $< > $*.f
$(FC) $(FFLAGS) -c $*.f
-rm -f $*.f

Solaris $(GET) $(GFLAGS) -p $< > $*.f
$(FC) $(FFLAGS) -c $*.f

Tru64 $(GET) $(GFLAGS) -p $< > $*.f
$(FC) $(FFLAGS) -c $*.f

GNU -

POSIX -

.f90.a AIX -

HP-UX -

Solaris $(F90C) $(F90FLAGS) -c -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 $(F90C) $(FFLAGS) -c $<
$(AR) $(ARFLAGS) $@ $*.o
$(RM) $(RMFLAGS) $*.o

GNU -

POSIX -

.f90~.a AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.f90
$(F90C) $(F90FLAGS) -c -o $% $*.f90
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.f90~.
mod

AIX -

Suffix Make Double suffix rule
502 AIX 5L Porting Guide

HP-UX -

Solaris -

Tru64 $(GET) $(GFLAGS) -p $< > $*.f90
$(F90C) $(FFLAGS) -c $*.f90

GNU -

POSIX -

.f90.o AIX -

HP-UX -

Solaris $(F90C) $(F90FLAGS) -c $(OUTPUT_OPTION) $<

Tru64 -

GNU -

POSIX -

.f90~.o AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.f90
$(F90C) $(F90FLAGS) -c $(OUTPUT_OPTION) $*.f90

Tru64 $(GET) $(GFLAGS) -p $< > $*.f90
$(F90C) $(FFLAGS) -c $*.f90

GNU -

POSIX -

.F.a AIX -

HP-UX -

Solaris $(FC) $(FFLAGS) $(CPPFLAGS) -c -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.F~.a AIX -

HP-UX -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 503

Solaris $(GET) $(GFLAGS) -p $< > $*.F
$(FC) $(FFLAGS) $(CPPFLAGS) -c -o $% $*.F
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.F.f AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(FC) $(FFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -F
$(OUTPUT_OPTION) $<

POSIX -

.F.o AIX -

HP-UX -

Solaris $(FC) $(FFLAGS) $(CPPFLAGS) -c $(OUTPUT_OPTIONS) $<

Tru64 $(FC) $(FFLAGS) -c $<

GNU $(FC) $(FFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
$(OUTPUT_OPTION) $<

POSIX -

.F~.o AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.F
$(FC) $(FFLAGS) -c $*.F

Tru64 -

GNU -

POSIX -

.F.out AIX -

HP-UX -

Solaris -

Suffix Make Double suffix rule
504 AIX 5L Porting Guide

Tru64 $(FC) $(LDFLAGS) $(FFLAGS) $< $(LOADLIBES) -o $@

GNU -

POSIX -

.ftn.a AIX -

HP-UX -

Solaris $(F90C) $(F90FLAGS) -c -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.ftn~.a AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.ftn
$(F90C) $(F90FLAGS) -c -o $% $*.ftn
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.ftn.o AIX -

HP-UX -

Solaris $(F90C) $(F90FLAGS) -c $(OUTPUT_OPTION) $<

Tru64 -

GNU -

POSIX -

.ftn.o AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.ftn
$(F90C) $(F90FLAGS) -c $(OUTPUT_OPTION) $*.ftn

Tru64 -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 505

GNU -

POSIX -

.h~.h AIX $(GET) $(GFLAGS) -p $< > $*.h

HP-UX $(GET) $(GFLAGS) -p $< > $*.h

Solaris -

Tru64 -

GNU -

POSIX -

.hpp~.
hpp

AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.hpp

Solaris -

Tru64 -

GNU -

POSIX -

.hxx~.
hxx

AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.hxx

Solaris -

Tru64 -

GNU -

POSIX -

.H~.H AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.H

Solaris -

Tru64 -

GNU -

POSIX -

Suffix Make Double suffix rule
506 AIX 5L Porting Guide

.java.
class

AIX -

HP-UX -

Solaris javac $<

Tru64 -

GNU -

POSIX -

.java~.
class

AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.java
javac $<

Tru64 -

GNU -

POSIX -

.l.c AIX $(LEX) $<
mv lex.yy.c $@

HP-UX $(LEX) $(LFLAGS) $<
mv lex.yy.c $@

Solaris $(RM) $@
$(LEX) $(LFLAGS) -t $< > $@

Tru64 $(LEX) $(LFLAGS) $<
$(MV) $(MVFLAGS) lex.yy.c $@

GNU @$(RM) $@
$(LEX) $(LFLAGS) -t $< > $@

POSIX $(LEX) $(LFLAGS) $<
mv lex.yy.c $@

.l~.c AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.l
$(LEX) $(LFLAGS) $*.l
mv lex.yy.c $@

Tru64 -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 507

GNU -

POSIX -

.l.ln AIX -

HP-UX -

Solaris $(RM) $*.c
$(LEX) $(LFLAGS) -t $< > $*.c
$(LINT) $(LINTFLAGS) $(CPPFLAGS) -o $@ -i $*.c
$(RM) $*.c

Tru64 -

GNU @$(RM) $*.c
$(LEX) $(LFLAGS) -t $< > $*.c
$(LINT) $(LINTFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -i $*.c -o $@
$(RM) $*.c

POSIX -

.l~.ln AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.l
$(RM) $*.c
$(LEX) $(LFLAGS) -t $*.l > $*.c
$(LINT) $(LINTFLAGS) $(CPPFLAGS) -o $@ -i $*.c
$(RM) $*.c

Tru64 -

GNU -

POSIX -

.l.o AIX $(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.l
mv lex.yy.c $@

HP-UX $(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm lex.yy.c
mv lex.yy.o $@

Solaris $(RM) $*.c
$(LEX) $(LFLAGS) -t $< > $*.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c -o $@ $*.c
$(RM) $*.c

Tru64 $(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
$(RM) $(RMFLAGS) lex.yy.c
$(MV) $(MVFLAGS) lex.yy.o $@

Suffix Make Double suffix rule
508 AIX 5L Porting Guide

GNU -

POSIX $(LEX) $(LFLAGS) <$
$(CC) $(CFLAGS) -c lex.yy.c
$rm -f lex.yy.c
mv lex.yy.o $@

.l~.o AIX $(GET) $(GFLAGS) -p $< > $*.l
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.l
mv lex.yy.c $*.o

HP-UX $(GET) $(GFLAGS) -p $< > $*.l
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.l
mv lex.yy.o $*.o

Solaris $(GET) $(GFLAGS) -p $< > $*.l
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c
mv lex.yy.c $@

Tru64 -

GNU -

POSIX -

.l.out AIX -

HP-UX -

Solaris -

Tru64 $(LEX) $(LFLAGS) $<
$(CC) $(LDFLAGS) $(CFLAGS) lex.yy.c $(LOADLIBES) -ll -o $@
$(RM) $(RMFLAGS) lex.yy.c

GNU -

POSIX -

.l.r AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(LEX) $(LFLAGS) -t $< > $@
mv -f lex.yy.r $@

POSIX -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 509

.L.C AIX -

HP-UX $(LEX) $(LFLAGS) $<
mv lex.yy.c $@

Solaris -

Tru64 -

GNU -

POSIX -

.L~.C AIX -

HP-UX $(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.L
mv lex.yy.c $@
-rm -f $*.L

Solaris -

Tru64 -

GNU -

POSIX -

.L~.L AIX -

HP-UX $(GET) $(GFLAGS) $<

Solaris -

Tru64 -

GNU -

POSIX -

.L.o AIX -

HP-UX $(LEX) $(LFLAGS) $<
$(CXX) $(CXXFLAGS) -c lex.yy.c
-rm -f lex.yy.c; mv lex.yy.o $@

Solaris -

Tru64 -

GNU -

POSIX -

.L~.o AIX -

Suffix Make Double suffix rule
510 AIX 5L Porting Guide

HP-UX $(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.L
$(CXX) $(CXXFLAGS) -c lex.yy.c
-rm -f lex.yy.c $*.L
mv lex.yy.o $@

Solaris -

Tru64 -

GNU -

POSIX -

.mod.a AIX -

HP-UX -

Solaris $(M2C) $(M2FLAGS) $(MODFLAGS) -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.mod~.a AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.mod
$(M2C) $(M2FLAGS) $(MODFLAGS) -o $% $*.mod

Tru64 -

GNU -

POSIX -

.mod.o AIX -

HP-UX -

Solaris $(M2C) $(M2FLAGS) $(MODFLAGS) -o $@ $<

Tru64 -

GNU $(M2C) $(M2FLAGS) $(MODFLAGS) $(TARGET_ARCH) -o $@ $<

POSIX -

.mod~.o AIX -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 511

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.mod
$(M2C) $(M2FLAGS) $(MODFLAGS) -o $@ $*.mod

Tru64 -

GNU -

POSIX -

.o.out AIX -

HP-UX -

Solaris -

Tru64 $(CC) $(LDFLAGS) $(CFLAGS) $< $(LOADLIBES) -o $@

GNU -

POSIX -

.p.a AIX -

HP-UX $(PC) $(PFLAGS) +a -c $<

Solaris $(PC) $(PFLAGS) $(CPPFLAGS) -c -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.p.a~ AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.p
$(PC) $(PFLAGS) +a -c $*.p
-rm -f $*.p

Solaris $(GET) $(GFLAGS) -p $< > $*.p
$(PC) $(PFLAGS) $(CPPFLAGS) -c -o $% $*.p
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.p.o AIX -

Suffix Make Double suffix rule
512 AIX 5L Porting Guide

HP-UX $(PC) $(PFLAGS) -c $<

Solaris $(PC) $(PFLAGS) $(CPPFLAGS) -c $(OUTPUT_OPTION) $<

Tru64 $(PC) $(PFLAGS) -c $<

GNU -

POSIX -

.p~.o AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.p
$(PC) $(PFLAGS) -c $*.p
-rm -f $*.p

Solaris $(GET) $(GFLAGS) -p $< > $*.p
$(PC) $(PFLAGS) $(CPPFLAGS) -c $(OUTPUT_OPTION) $*.p

Tru64 -

GNU $(PC) $(PFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
$(OUTPUT_OPTION) $<

POSIX -

.p.out AIX -

HP-UX -

Solaris -

Tru64 $(PC) $(LDFLAGS) $(PFLAGS) $< $(LOADLIBES) -o $@

GNU -

POSIX -

.p~.p AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.p

Solaris -

Tru64 -

GNU

POSIX -

.r.a AIX -

HP-UX $(FC) -c $(RFLAGS) $<
ar rv $@ $*.o
rm -f $*.o

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 513

Solaris $(COMPILE.r) -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.r~.a AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.r
$(FC) -c $(RFLAGS) $*.r
ar rv $@ $*.o
rm -f $*.[ro]

Solaris $(GET) $(GFLAGS) -p $< > $*.r
$(COMPILE.r) -o $% $*.r
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.r.f AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(FC) $(FFLAGS) $(RFLAGS) $(TARGET_ARCH) -F $(OUTPUT_OPTION)
$<

POSIX -

.r.o AIX -

HP-UX $(FC) $(RFLAGS) -c $<

Solaris $(COMPILE.r) $(OUTPUT_OPTION) $<

Tru64 $(RC) $(RFLAGS) -c $<

GNU $(FC) $(FFLAGS) $(RFLAGS) $(TARGET_ARCH) -c $(OUTPUT_OPTION)
$<

POSIX -

.r~.o AIX -

Suffix Make Double suffix rule
514 AIX 5L Porting Guide

HP-UX $(GET) $(GFLAGS) -p $< > $*.r
$(FC) $(RFLAGS) -c $*.r
-rm -f $*.r

Solaris $(GET) $(GFLAGS) -p $< > $*.r
$(COMPILE.r) $(OUTPUT_OPTION) $*.r

Tru64 -

GNU -

POSIX -

.r.out AIX -

HP-UX -

Solaris -

Tru64 $(RC) $(LDFLAGS) $(RFLAGS) $< $(LOADLIBES) -o $@

GNU -

POSIX -

.r~.r AIX -

HP-UX $(GET) $(GFLAGS) -p $< > $*.r

Solaris -

Tru64 -

GNU -

POSIX -

.s.a AIX -

HP-UX -

Solaris $(AS) $(ASFLAGS) -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.s~.a AIX $(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -o $*.o $*.s
$(AR) $(ARFLAGS) $@ $*.o
-rm -f $*.[so]

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 515

HP-UX $(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -o $*.o $*.s
ar rv $@ $*.o
-rm -f $*.[so]

Solaris $(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -o $% $*.s
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.s.o AIX $(AS) $(ASFLAGS) -o $@ $<

HP-UX $(AS) $(ASFLAGS) -o $@ $<

Solaris $(AS) $(ASFLAGS) -o $@ $<

Tru64 $(AS) $(ASFLAGS) -o $@ $<

GNU $(AS) $(ASFLAGS) $(TARGET_MACH) -o $@ $<

POSIX -

.s~.o AIX $(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -o $*.o $*.s
-rm -f *.s

HP-UX $(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -o $*.o $*.s
-rm -f $*.s

Solaris $(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -o $@ $*.s

Tru64 -

GNU -

POSIX -

.s.out AIX -

HP-UX -

Solaris -

Tru64 $(CC) $(LDFLAGS) $(CFLAGS) $< $(LOADLIBES) -o $@

GNU -

POSIX -

Suffix Make Double suffix rule
516 AIX 5L Porting Guide

.S.a AIX -

HP-UX -

Solaris $(AS) $(ASFLAGS) -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.S~.a AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.S
$(AS) $(ASFLAGS) -o $% $*.S
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

Tru64 -

GNU -

POSIX -

.S.o AIX -

HP-UX -

Solaris $(AS) $(ASFLAGS) -o $@ $<

Tru64 -

GNU $(CC) $(ASFLAGS) $(CPPFLAGS) $(TARGET_MACH) -c -o $@ $<

POSIX -

.S~.o AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.S
$(AS) $(ASFLAGS) -o $@ $*.S

Tru64 -

GNU -

POSIX -

.S.s AIX -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 517

HP-UX -

Solaris -

Tru64 -

GNU $(CC) -E $(CPPFLAGS) $< > $@

POSIX -

.tex.dvi AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(TEX) $<

POSIX -

.texi.info AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(MAKEINFO) $(MAKEINFO_FLAGS) $< -o $@

POSIX -

.texinfo.
info

AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(MAKEINFO) $(MAKEINFO_FLAGS) $< -o $@

POSIX -

.texi.dvi AIX -

HP-UX -

Solaris -

Suffix Make Double suffix rule
518 AIX 5L Porting Guide

Tru64 -

GNU $(TEXI2DVI) $(TEXI2DVI_FLAGS) $<

POSIX -

.texinfo.
dvi

AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(TEXI2DVI) $(TEXI2DVI_FLAGS) $<

POSIX -

.txinfo.
info

AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(MAKEINFO) $(MAKEINFO_FLAGS) $< -o $@

POSIX -

.txinfo.
dvi

AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(TEXI2DVI) $(TEXI2DVI_FLAGS) $<

POSIX -

.w.c AIX -

HP-UX -

Solaris -

Tru64 -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 519

GNU $(CTANGLE) $< - $@

POSIX -

.w.tex AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(CWEAVE) $< - $@

POSIX -

.web.p AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(TANGLE) $<

POSIX -

.web.tex AIX -

HP-UX -

Solaris -

Tru64 -

GNU $(WEAVE) $<

POSIX -

.y.c AIX $(YACC) $(YFLAGS) $<
mv y.tab.c $@

HP-UX $(YACC) $(YFLAGS) $<
mv y.tab.c $@

Solaris $(YACC) $(YFLAGS) $<
mv y.tab.c $@

Tru64 $(YACC) $(YFLAGS) $<
$(MV) $(MVFLAGS) y.tab.c $@

GNU $(YACC) $(YFLAGS) $<
mv -f y.tab.c $@

Suffix Make Double suffix rule
520 AIX 5L Porting Guide

POSIX $(YACC) $(YFLAGS) $<
mv y.tab.c $@

.y~.c AIX $(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $*.c
-rm -f $*.y

HP-UX $(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $*.c
-rm -f $*.y

Solaris $(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $@

Tru64 -

GNU -

POSIX -

.y.ln AIX -

HP-UX -

Solaris $(YACC) $(YFLAGS) $<
$(LINT) $(LINTFLAGS) $(CPPFLAGS) -o $@ -i y.tab.c
$(RM) y.tab.c

Tru64 -

GNU $(YACC) $(YFLAGS) $<
$(LINT) $(LINTFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -C$* y.tab.c
$(RM) y.tab.c

POSIX -

.y~.ln AIX -

HP-UX -

Solaris $(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(LINT) $(LINTFLAGS) $(CPPFLAGS) -o $@ -i y.tab.c
$(RM) y.tab.c

Tru64 -

GNU -

POSIX -

.y.o AIX $(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm -f y.tab.c
mv y.tab.o $@

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 521

HP-UX $(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

Solaris $(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) $(CPPFLAGS) -c -o $@ y.tab.c
$(RM) y.tab.c

Tru64 $(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
$(RM) $(RMFLAGS) y.tab.c
$(MV) $(MVFLAGS) y.tab.o $@

GNU -

POSIX $(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm -f y.tab.c
mv y.tab.o $@

.y~.o AIX $(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) -c y.tab.c
rm -f y.tab.c $*.y
mv y.tab.o $*.o

HP-UX $(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) -c y.tab.c
rm -f y.tab.c $*.y
mv y.tab.o $*.o

Solaris $(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) -c y.tab.c
rm -f y.tab.c
mv y.tab.o $@

Tru64 -

GNU -

POSIX -

.y.out AIX -

HP-UX -

Solaris -

Tru64 $(YACC) $(YFLAGS) $<
$(CC) $(LDFLAGS) $(CFLAGS) y.tab.c $(LOADLIBES) -ly -o $@
$(RM) $(RMFLAGS) y.tab.c

GNU -

POSIX -

Suffix Make Double suffix rule
522 AIX 5L Porting Guide

.Y.C AIX -

HP-UX $(YACC) $(YFLAGS) $<
mv y.tab.c $@

Solaris -

Tru64 -

GNU -

POSIX -

.Y~.C AIX -

HP-UX $(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.Y
mv y.tab.c $*.C
-rm -f $*.Y

Solaris -

Tru64 -

GNU -

POSIX -

.Y.o AIX -

HP-UX $(YACC) $(YFLAGS) $<
$(CXX) $(CXXFLAGS) -c y.tab.c
-rm -f y.tab.c
mv y.tab.o $@

Solaris -

Tru64 -

GNU -

POSIX -

.Y~.o AIX -

HP-UX $(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.Y
$(CXX) $(CXXFLAGS) -c y.tab.c
-rm -f y.tab.c $*.Y
mv y.tab.o $*.o

Solaris -

Tru64 -

GNU -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 523

POSIX -

.Y~.Y AIX -

HP-UX $(GET) $(GFLAGS) $<

Solaris -

Tru64 -

GNU -

POSIX -

.ye.e AIX -

HP-UX -

Solaris -

Tru64 $(YACCE) $(YFLAGS) $<
$(MV) $(MVFLAGS) y.tab.e $@

GNU -

POSIX -

.ye.o AIX -

HP-UX -

Solaris -

Tru64 $(YACCE) $(YFLAGS) $<
$(EC) $(EFLAGS) -c y.tab.e
$(RM) $(RMFLAGS) y.tab.e
$(MV) $(MVFLAGS) y.tab.o $@

GNU -

POSIX -

.yr.o AIX -

HP-UX -

Solaris -

Tru64 $(YACCR) $(YFLAGS) $<
$(RC) $(RFLAGS) -c y.tab.r
$(RM) $(RMFLAGS) y.tab.r
$(MV) $(MVFLAGS) y.tab.o $@

GNU -

Suffix Make Double suffix rule
524 AIX 5L Porting Guide

POSIX -

.ye.e AIX -

HP-UX -

Solaris -

Tru64 $(YACCR) $(YFLAGS) $<
$(MV) $(MVFLAGS) y.tab.r $@

GNU -

POSIX -

Suffix Make Double suffix rule
Appendix B. Default inference rules for the make commands 525

526 AIX 5L Porting Guide

Appendix C. C compiler options

This appendix contains all the compiler options for the C compilers on AIX,
HP-UX, Solaris, and Tru64. These tables let you find the compiler options
that you are using on your source platform and then have a look at the
corresponding option for the C compiler on AIX.

C.1 Licensing compiler options

Compiler options that are associated with licensing, as shown in Table 112.
This is only valid for Solaris.

Table 112. Licensing options

C.2 Standards compliance compiler options

Standard compiler compliance compiler options (shown in Table 113) are
compiler options that let your compiler comply with a certain standard.

Table 113. Standards compliance options

Operating
system

Option Value
and
default

Description

AIX n/a n/a n/a

HP-UX n/a - -

Solaris -noqueue n/a Instructs the compiler not to queue the compilation if a license
is not available.

Solaris -xlicinfo - Returns information about the licensing system.

Tru64 n/a n/a n/a

Operating
system

Option Value and
default

Description

AIX -qgenproto ““ or
parmnames;
default is
nogenproto

Produces ANSI prototypes from K&R function
definitions.

AIX -qnogenproto Does not produce ANSI prototypes from K&R
function definitions.
© Copyright IBM Corp. 2001 527

AIX -qlanglvl ANSI or
SAAL2, SAA,
EXTended,
CLAssic,
NOUCS, or
UCS; default is
ANSI with xlc
or c89,
extended
when using cc

Selects the C language level for compilation.

AIX -qlibansi Assumes that all functions with the name of an ANSI
C library function are in fact the system functions.

AIX -qnolibansi Turns off the assumption that all functions with the
name of an ANSI C library function are in fact the
system functions.

HP-UX -Aa Enables strict ANSI C compliance.

HP-UX -Ac Disables ANSI C compliance (HP C Version 3.1
compatibility).

HP-UX -Ae Enables ANSI C compliance, HP value-added
features (as described for +e option), and
_HPUX_SOURCE name space macro. It is
equivalent to -Aa +e -D_HPUX_SOURCE.

HP-UX +e Enables the following HP value added features
while compiling in ANSI C mode: sized enum, long
long, long pointers, compiler supplied defaults for
missing arguments to intrinsic calls, and $ in
identifier HP C extensions.

Solaris -X a, c, s, or t The -X options specify varying degrees of
compliance to the ANSI/ISO C standard.

Tru64 -std Selects the relaxed ANSI language mode. This is
the default. Enforces the ANSI C standard, but
allows some common programming practices
disallowed by the standard.

Operating
system

Option Value and
default

Description
528 AIX 5L Porting Guide

C.3 Optimization and performance compiler options

Modern compilers apply several different methods to optimize your program.
We have tried to group the various methods together in tables.

Tru64 -std0 Selects the K & R language mode. Enforces the K &
R programming style, with certain ANSI extensions
in areas where the K & R behavior is undefined or
ambiguous. In general, -std0 compiles most
pre-ANSI C programs and produces expected
results. The -std0 option causes the __STDC__
macro to be undefined.

Tru64 -std1 Selects the strict ANSI language mode. Strictly
enforces the ANSI C standard and all its prohibitions
(such as those that apply to the handling of void
types, the definition of lvalues in expressions, the
mixing of integrals and pointers, and the
modification of rvalues).

Tru64 -ms Selects the Microsoft language mode, which
provides some compatibility with the Microsoft
Visual C compiler. Although this option does not
provide full compatibility, it can be useful as a
porting aid.

Tru64 -common Selects the K & R language mode. This option is
equivalent to -std0.

Tru64 -traditional Selects the K & R language mode. This option is
equivalent to -std0.

Tru64 -vaxc Selects the VAX C language mode. This is similar to
-std (relaxed ANSI mode), but extends the language
semantics in ways that are incompatible with ANSI
C. It provides close compatibility with the vaxc
compiler.

Tru64 -isoc94 Causes the macro __STDC_VERSION__ to be
passed to the preprocessor and enables recognition
of the digraph forms of various operators. Note that
the -isoc94 option has no influence on -stdn options
and vice versa.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 529

C.3.1 Aliasing

Table 114 shows the aliasing options.

Table 114. Aliasing options

Operating
system

Option Value and
default

Description

AIX -qalias TYPeptr,
[NO]TYPeptr,
ALLPtrs,
[NO]ALLPtrs,
[ADDRtaken,
[NO]ADDRtaken,
ANSI, or
[NO]ANSI

Specifies whether type-based aliasing is to
be used during optimization. If used,
#pragma ALIAS=suboption must appear
before the first program statement.

AIX -qansialias Specifies that type-based aliasing is to be
used during optimization. This option is
obsolete. Use -qalias= in your new
applications.

AIX -qnoansialias default Specifies that no type-based aliasing is to be
used during optimization. This option is
obsolete. Use -qalias= in your new
applications.

AIX -qassert TYPeptr, ALLPtrs,
ADDRtaken, or
noassert

Requests the compiler to apply aliasing
assertions to your compilation unit. This
option is obsolete and -qalias should be
used.

Tru64 -ansi_alias Directs the compiler to assume the ANSI C
aliasing rules, and thus allows the optimizer
to be more aggressive in its optimizations.

Tru64 -noansi_alias Directs the compiler not to assume the ANSI
C aliasing rules, and thus not allow the
optimizer to be more aggressive in its
optimizations.
530 AIX 5L Porting Guide

C.3.2 Inlining

Table 115 shows the inlining options.

Table 115. Inlining options

Operating
system

Option Value
and
default

Description

AIX -qinline See
manual

Attempts to inline functions instead of generating calls to a
function.

AIX -qnoinline See
manual

Disables attempts to inline functions.

AIX -Q Attempts to inline functions instead of generating calls to a
function. The -Q option is equivalent to the -qinline function.

AIX -ma Substitutes inline code for calls to function alloca as if #pragma
alloca directives are in the source code.

HP-UX +ESfic Compiles with inline fast indirect calls.

HP-UX +ESsfc Replaces function pointer comparison millicode calls with
inline code.

Solaris -xinline Tries to inline only those functions specified.

Solaris -xlibmil Inlines some library routines for faster execution.

Solaris -xnolibmil Does not inline math library routines.

Solaris -xcrossfile= 0 or 1;
default is
1

Enables optimization and inlining across source files (SPARC
only).

Tru64 -inline none,
manual,
size,
speed, or
all

Specifies whether to provide inline expansion of functions.

Tru64 -noinline No inline optimization.

Tru64 -preempt_
module

Supports symbol preemption on a module-by-module basis.
During optimization, inlining is performed only on functions
within a single compilation unit.
Appendix C. C compiler options 531

C.3.3 Side effects

Table 116 shows the side effects options.

Table 116. Side effects options

C.3.4 Code size reduction

Table 117 shows the code size reduction options.

Table 117. Code size reduction options

Operating
system

Option Value
and
default

Description

AIX -qignerrno Allows the compiler to perform optimizations that assume
errno is not modified by system calls.

AIX -qnoignerrno Tells the compiler not to perform optimizations that assume
errno is not modified by system calls.

AIX -qisolated_
call=

Function Specifies functions in the source file that have no side effects.

Operating
system

Option Value and
default

Description

AIX -qcompact nocampct When used with optimization, reduces code size where
possible, at the expense of execution speed.

AIX -qnocompact Default When used with optimization, does not reduce code size.

AIX -qonce Avoids including a header file more than once, even if it is
specified in several of the files you are compiling.

AIX -qnoonce Default Do not avoid including a header file more than once, even
if it is specified in several of the files you are compiling.

Tru64 -compress Passes the -compress option to the compilation phase (if
the -c option is present) or passes the -compress_r option
to ld (if the -r option is present). Use of this option causes
the output object file to be produced in compressed object
file format, resulting in a substantially smaller object file.

Tru64 -om_dead_cod
e

Removes dead code (unreachable instructions)
generated after applying optimizations. The .lita section is
not compressed by this option.

Tru64 -om_compress
_lita

Removes unused .lita entries after optimization, and then
compresses the .lita section.
532 AIX 5L Porting Guide

C.3.5 Compile time optimization

Table 118 shows the compile time optimization options.

Table 118. Compile time optimization options

C.3.6 Performance data collection

Table 119 shows the performance data collection options.

Table 119. Performance data collection options

Operating
system

Option Value and
default

Description

AIX -qgenpcomp nopcomp Generates a precompiled version of any header file for which
the original source is used.

AIX -qmaxmem 2048 KB,
-1 for
unlimited.

Limits the amount of memory used for local tables of
specific, memory-intensive optimizations.

AIX -qnopcomp Disables generation of a precompiled version of any header
file for which the original source is used.

AIX -qspill Default is
512

Specifies the size of the register allocation spill area.

Operating
system

Option Value and
default

Description

AIX -qfdpr nofdpr Collects program information for use with the AIX fdpr
performance-tuning utility.

AIX -qnofdpr Disables collection of program information for use
with the AIX fdpr performance-tuning utility.

AIX -qpdf1 See manual Tunes optimizations through Profile-Directed
Feedback. For optimum performance, use the -O3
option with all compilations when you use PDF.

AIX -qnopdf1 Default Turns off tuned optimizations through Profile-Directed
Feedback.

AIX -qpdf2 See manual Tunes optimizations through Profile-Directed
Feedback.

AIX -noqpdf2 Default Turns off tuned optimizations through Profile-Directed
Feedback.

AIX -p Sets up the object files produced by the compiler for
profiling.
Appendix C. C compiler options 533

AIX -pg Sets up the object files produced by the compiler for
profiling. Provides more information than is provided
by the -p option.

AIX -profile= ibm, p, or, pg Sets up the object files produced by the compiler for
profiling. The suboption indicates the profiling tool. If
the -qtbtable option is not set, the -qprofile option will
generate full traceback tables.

AIX -qnoproile Disables profiling.

HP-UX +dfname Specifies the profile database to use with
profile-based optimization.

HP-UX +P Performs profile-based optimization.

HP-UX +pa Requests routine-level profiling with CXperf.

HP-UX +pal Requests routine-level and loop-level profiling with
CXperf.

HP-UX +pgmname Specifies the execution profile data set to be used by
the optimizer.

HP-UX -y Generates information used by the HP SoftBench
static analysis tool.

HP-UX -G Inserts information required by the gprof profiler in the
object file.

HP-UX -p Inserts information required by the prof profiler in the
object file.

HP-UX +I Prepares the object code for profile-based
optimization data collection.

Solaris -xF Enables performance analysis of the executable
using the analyzer.

Solaris -p Prepares the object code to collect data for profiling.

Solaris -xa Inserts code to count how many times each basic
block is executed.

Solaris -xprofile= collect[X],
use[X], or
tcov; default
for X is a.out

Collects data for a profile or uses a profile to optimize
(SPARC only).

Operating
system

Option Value and
default

Description
534 AIX 5L Porting Guide

Tru64 -feedback File Specifies that the compiler should use the profile
information contained in file when performing
optimizations.

Tru64 -om_split_
procedures

Splits frequently accessed routines into "hot" and
"cold" code segments, and stores these segments in
different parts of the image. The hot segments are the
most frequently executed parts of the code, as
determined by feedback data produced by a
representative run of the program. The hot segments
are stored near other parts of the program that are
also executed frequently. In this way, the most
frequently executed parts of the program are
compacted in a way that makes them more likely to fit
into the cache. This speeds up the execution time of
that code.

Tru64 -om_feedback Uses the pixie-produced information stored in the
augmented executable by means of the cc
command's -feedback option and the pixie (or prof)
command's -update option.

Tru64 -om_ireorg_
feedback, file

file Uses the pixie-produced information in file. Counts
and file.Addrs to reorganize the instructions to reduce
cache thrashing.

Tru64 -spike Invokes the spike tool to perform code optimization
after linking a program. -spike is a replacement for
-om and does similar optimizations. See spike(1) for
complete information on the spike command, its
options, and its relationship to -spike.

Tru64 -gen_feedback Generates accurate profile information to be used
with -feedback optimizations.

Tru64 -prof_gen Generates an executable image that has profiling
code added to it. Using this option is equivalent to
running the pixie command on an existing image.
The pixie-instrumented file is called a.out (or as
specified with the -o option).

Tru64 -prof_gen_noopt Generates a non-optimized executable image that,
when run, will generate profiling data that the compiler
can use to improve its optimization choices (with
-prof_use_feedback).

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 535

Tru64 -prof_use_
feedback

Uses profiling feedback to improve compiler
optimization. Using this option is equivalent to using
the prof command to produce a feedback file, and
then using the cc -feedback command to recompile
the program.

Tru64 -prof_use_om_
feedback

Uses profiling feedback to rearrange the resulting
image to reduce cache conflicts of the program text.
This option uses the -om postlink optimizer, and is
equivalent to using the -om -WL,
-om_ireorg_feedback options. If the -pids option is
also specified, this option merges the .Counts
performance data files using the prof -pixie -merge
command.

Tru64 -prof_dir Specifies a location to which the profiling data files
(.Counts and .Addrs) are written. Use this option in
conjunction with the -prof_gen option and the
-prof_use_feedback or -prof_use_om_feedback
option to specify a location for the profiling data files.
If you do not specify this option, the profiling files are
written to the current directory. Specifying the
-prof_dir option also enables the -pids option.

Tru64 -pids Enables the addition of the process ID to the file name
of the basic block counts file (.Counts). This facilitates
collecting information from multiple invocations of the
pixie output file. Unless the -prof_dir option is
specified, the default is -nopids.

Tru64 -nopids Disables the addition of the process ID to the file
name of the basic block counts file.

Tru64 -pg Turns gprof profiling on or off when compiling and
linking the file immediately following this option. The
gprof profiler produces a call graph showing the
execution of a C program.

Tru64 -nopg Turns off gprof profiling.

Operating
system

Option Value and
default

Description
536 AIX 5L Porting Guide

C.3.7 Loop optimization

Table 120 shows the loop optimization options.

Table 120. Loop optimization options

Operating
system

Option Value and
default

Description

AIX -qunroll= 0, 1, 2, 3, 4, 5, 6,
7, or 8; default is
4

Unrolls inner loops in the program by a
specified factor.

AIX -qnounroll Disables unrolling of inner loops in the
program.

AIX -qstrict_induction Default when
using -O level 0
or using c89

Disables loop induction variable optimizations
that have the potential to alter the semantics of
your program.

AIX -qnostrict_induction Otherwise Allows loop induction variable optimizations
that have the potential to alter the semantics of
your program.

Solaris -xdepend Analyzes loops for inter-iteration data
dependencies and does loop restructuring
(SPARC only).

Solaris -xspace Does no optimizations or parallelization of
loops that increase code size.

Solaris -xunroll= 1-N Suggests, to the optimizer, to unroll loops n
times.

Tru64 -unroll n 0-N Controls the loop-unrolling optimization
(available only at levels -O2 and higher). -unroll
n allows the compiler to unroll loops up to n
times. -unroll 1 disables the optimization.
-unroll 0 (the default) allows the compiler to
decide what is best.
Appendix C. C compiler options 537

C.3.8 Processor and architectural optimization

Table 121 shows the processor and architectural options.

Table 121. Processor and architectural options

Operating
system

Option Value and
default

Description

AIX -qcache= assoc=number,
auto, cost=cycles,
level=level,
line=bytes,
size=Kbytes,
type=cache_type

Specifies the cache configuration for a specific
execution machine. The -qcache option has an effect
only if you also specify the -qipa, -O4, -O5, or -qsmp
options.

Solaris -xcache= generic, s1/l1/a1,
s1/l1/a1:s2/l2/a2,
or
s1/l1/a1:s2/l2/a2:s
3/l3/a3

Defines the cache properties for use by the optimizer.

AIX -qtune= auto, 403, 601,
603, 604, p2sc,
pwr2, pwr3, pwrx,
rs64a, or rs64b

Specifies the architecture for which the executable
program is optimized. (If -qtune is specified without
-qarch=suboption, the compiler uses -qarch=com.)

HP-UX +DS model Performs instruction scheduling for a specific
implementation of PA-RISC.

Solaris -xchip= generic, old,
super, super2,
micro, micro2,
hyper, hyper2,
powerup, ultra,
ultra2, ultra3,
ultra2i, 386, 486,
pentium,
pentium_pro, 603,
or 604

Specifies the target processor for use by the optimizer.
The documentation is a bit unclear whether PPC603
and PPC604 is supported

Solaris -x386 Optimizes for the 80386 processor.

Solaris -x486 Optimizes for the 80486 processor.

Solaris -xpentium Optimizes for the Pentium processor.

Solaris -xtarget Specifies the target system for instruction set and
optimization.
538 AIX 5L Porting Guide

C.3.9 Optimization spreading across several files

Table 122 shows the multiple file optimization options.

Table 122. Multiple file optimization

C.3.10 Optimization flags (-O and family)

Table 123 shows the optimization flags.

Table 123. Optimization flags

Tru64 -tune generic, host, ev4,
ev5, ev56, ev6, or
ev67

Instructs the optimizer to tune the application for a
specific version of the Alpha hardware. This will not
prevent the application from running correctly on other
versions of Alpha, but it may run more slowly than
generically-tuned code on those versions.

Operating
system

Option Value
and
default

Description

AIX -qipa= See
manual.

Turns on or customizes a class of optimizations known as
interprocedural analysis (IPA). If the -S compiler option is
specified with noobject, noobject is ignored.

Tru64 -ifo Provides improved optimization (inter-file optimization) and
code generation across file boundaries that would not be
possible if the files were compiled separately.

Operating
system

Option Value
and
default

Description

AIX -O ““, 2, 3, 4,
or 5

Optimizes code at a choice of levels during compilation.

AIX -qOPTimize Same as
-O

Optimizes code at a choice of levels during compilation.

HP-UX -fast Expands into a set of compiler options, which results in
improved application run-time. Options included are +O3,
+Onolooptransform, +Olibcalls, +FPD, +Oentryschedule,
and +Ofastaccess. Any of these options can be overridden
by placing a subsequent option after -fast on the command
line.

HP-UX -O Optimizes at level 2.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 539

C.3.11 Limiting of optimization options

Table 124 shows the restricting optimization options.

Table 124. Restricting optimization

HP-UX +Oopt opt or
opt=func,
ffunc

Invokes optimization level opt where opt is 0 to 4. See the HP
C/HP-UX Programmer's Guide for additional optimization
options.

HP-UX -B extern Performs the same operation as
+Oextern=sym1,sym2,sym3..., except that symbols are
loaded from an existing file instead of specified on the
command line.

Solaris -fast Selects the optimum combination of compilation options for
speed.

Tru64 -fast Provides a single method for turning on a collection of
optimizations for increased performance.Note that the -fast
option can produce different results for floating- point
arithmetic and math functions, although most programs are
not sensitive to these differences.

Solaris -xo 1, 2, 3, 4,
or 5

Optimizes the object code.

Solaris -O The same as -xo2.

Tru64 -O 1, 2, 3, or
4

Determines the level of optimization.

Operating
system

Option Value
and
default

Description

AIX -qstrict Default
depends
on
-Olevel.

Turns off aggressive optimizations that have the
potential to alter the semantics of your program.

AIX -qnostrict Default
depends
on
-Olevel.

Ignores turning off aggressive optimizations that have
the potential to alter the semantics of your program.

HP-UX +ESnoparmreloc Disables parameter relocation for function calls.

Operating
system

Option Value
and
default

Description
540 AIX 5L Porting Guide

C.3.12 Other optimization options

Table 125 shows the other optimization flags.

Table 125. Other optimization flags

Solaris -xmaxopt= off, 1, 2, 3,
4, or 5.
Default is
off.

This command limits the level of pragma opt to the
level specified.

Tru64 -check_omp Enables run-time checking of certain OpenMP
constructs. This includes run-time detection of invalid
nesting and other invalid OpenMP cases. When
invalid nesting is discovered at run time and this
option is set, the executable will fail with a Trace/BPT
trap.

Operating
system

Option Value and
default

Description

AIX -qgrrcopy overlap or
nooverlap. See the
manual for the
default.

Enables destructive copy operations for
structures and unions (for faster code).

HP-UX +k Generates long-displacement code
sequences so a program can reference
large amounts of global data physically
located in shared libraries.

HP-UX +hugesize Lowers the threshold for huge data.

Solaris -xliclib=sunperf Links in the Sun-supplied performance
libraries. The documentation is inconsistent
whether this is -xliclib or -xlic_lib.

Solaris -xprefetch auto, no%auto,
explicit,
no%explicit, yes,
or no.

Enable prefetch instructions (SPARC only).

Solaris -xrestrict= %all, %none, or
function name.

Treats pointer-valued function parameters
as restricted pointers (SPARC only).

Solaris -xsafe=mem Allows the compiler to assume no
memory-based traps occur (SPARC only).

Operating
system

Option Value
and
default

Description
Appendix C. C compiler options 541

Tru64 -asume See manual. With the command, you tell the compiler
that it can assume various things. See the
man page for cc for more information.

Tru64 -cord Runs the procedure rearranger, cord, on
the resulting file after linking. The
rearrangement is done to reduce the cache
conflicts associated with accessing the
program's text

Tru64 -intrinsics The -intrinsics option causes the compiler
to automatically recognize intrinsic
functions wherever it can, based only on
name and call signature. Unlike
-D_INTRINSICS, this option can treat
library function calls as intrinsic even when
the appropriate header file is not included.
Any function declaration or call site (in the
case of implicit declaration), with a name
matching the name of an intrinsic function,
is examined to see if its parameters and
return result are consistent with the intrinsic
function of that name. If so, calls are treated
as being intrinsic. If not, a diagnostic is
issued and calls are treated as ordinary
external function calls.

Tru64 -nointrinsics Disables intrinsics.

Tru64 om_no_inst_sched Turns off instruction scheduling.

Tru64 om_no_align_labels Turns off alignment of labels. Normally, the
-om option will align the targets of all
branches on quadword boundaries to
improve loop performance.

Tru64 -ansi_args Tells the compiler that the source code
follows all ANSI rules about arguments, that
is, whether the type of an argument
matches the type of the parameter in the
called function or whether a function
prototype is present so the compiler can
automatically perform the expected type
conversion.

Operating
system

Option Value and
default

Description
542 AIX 5L Porting Guide

Tru64 -om_Gcommon, num common or num Sets the size threshold of common
symbols. Every common symbol whose
size is less than or equal to num will be
allocated close to each other. This option
can be used to improve the probability that
the symbol can be accessed directly from
the $gp register. (Normally, om tries to
collect all common symbols together, not
just symbols that conform to certain size
constraints.)

Tru64 -[no]ansi_args Tells the compiler the source code does not
follow ANSI rules.

Tru64 -preempt_symbol Preserves full symbol preemption; that is,
supports symbol preemption on a
symbol-by-symbol basis within a module as
well as between modules. Restricts the
optimizer so that calls to extern functions
are ineligible for inline replacement.

Tru64 -speculate all Speculation is a compiler optimization that
causes the hardware to begin executing an
operation before it determines that the flow
of control will actually reach that operation.
If the flow of control does reach that
operation, the result will be available sooner
than it would have been without speculative
execution. If the flow of control does not
reach that operation, the result will simply
be ignored.

Tru64 -speculate by_routine A module compiled with -speculate
by_routine cannot use any form of local
exception handling, but can be linked with
other modules that do. The run-time system
checks each exception to see if it occurred
in a speculative routine. It dismisses
exceptions from routines that are
speculatively executed, but signals
exceptions from other routines.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 543

C.4 Data alignment compiler options

Table 126 lists the data alignment compiler options.

Table 126. Data alignment compiler options

Operating
system

Option Value and default Description

AIX -qalign power, full,
mac68k, twobyte,
packed,
bit_packed, or
natural
Default is full.

Specifies what aggregate alignment rules
the compiler uses for compilation. You can
code #pragma options align=reset in a
source file to change the alignment option
to what it was before the last alignment
option was specified. If no previous
alignment rule appears in the file, the
alignment rule specified in the invocation
command is used.

AIX -qenum= small, int, intlong,
1, 2, 4, 8, or
RESET.
Defaults is int.

Specifies the amount of storage occupied
by the enumerations.

HP-UX +u Bytes. Controls pointer alignment where bytes is
1, 2, or 4.

HP-UX -Y Enables Native Language Support (NLS).

Solaris -xchar_byte_order= low, high, or
default.

Produces an integer constant by placing
the characters of a multi-character
character-constant in the specified byte
order. The default places the characters of
a multi-character character-constant in an
order determined by the compilation mode
-X[a|c|s|t].

Solaris -xmemalign= 1, 2, 4, 8, or 16,
followed by i, s, or f.

Specifies maximum assumed memory
alignment and behavior of misaligned data
accesses.

Tru64 -granularity Size Controls the size of shared data in
memory that can be safely accessed from
different threads. The possible size values
are byte, longword, and quadword.

Tru64 -protect_headers all, none, or default. Ensures that the compiler's assumptions
about pointer sizes and data alignments
are not in conflict with the default values
that were in effect when the system
libraries were created.
544 AIX 5L Porting Guide

Tru64 -misalign Lets the compiler assume that
misalignment is present in the program.

Tru64 -nomisalign Lets the compiler assume that no
misalignment is present in the program.
(This is a synonym for the -asume
aligned_objects.)

Tru64 -member_alignment Directs the compiler to byte-align data
structure members (with the exception of
bit-field members). By default, data
structure members are aligned on natural
boundaries instead of the next byte.

Tru64 -nomember_alignment Directs the compile not to byte-align data
structure members.

Tru64 -Zp 1, 2, 4, or 8. Aligns structure members and entire
structures based on the integer n. This
option sets a limit on the alignment given
to structure members so that each
member after the first is stored on a
maximum of an n-byte boundary.

Tru64 -strong_volatile Affects the generation of code for
assignments to objects that are less than
or equal to 16 bits in size that have been
declared as volatile. The generated code
includes a load-locked instruction for the
enclosing longword or quadword, an
insertion of the new value of the object,
and a store-conditional instruction for the
enclosing longword or quadword.

Tru64 -weak_volatile Default. The -weak_volatile option does not
generate locked instructions for this
sequence. This allows byte or word
access to memory-like I/O devices for
which larger accesses will not cause read
or write side effects. Because the
sequence does not access byte or word
data independently directly in memory
(that is, ensure byte granularity), adjacent
volatile data can be corrupted when such
byte or word accesses are performed in a
multithreaded environment.

Operating
system

Option Value and default Description
Appendix C. C compiler options 545

C.5 Floating point and numeric compiler options

Here we have compiler options that deal with floating point and other
numerical features of the compilers.

C.5.1 Sizes

Table 127 shows the floating point size options.

Table 127. Floating point size

Operating
system

Option Value and
default

Description

AIX -qldbl128 Increases the size of long double type from 64 bits to 128
bits.

AIX -qnoldbl128 Disables 128 bits long doubles.

AIX -qldbl128 Increases the size of long double type from 64 bits to 128
bits. The -qlongdouble option is the same as the -qldbl128
option.

AIX -qnoldbl128 Disables 128 bits long doubles. The -qnolongdouble option
is the same as the -qnoldbl128 option.

AIX -qlonglit Changes implicit type selection in 64-bit mode to use larger
data types where possible.

AIX -qnolonglit Does not change implicit type selection in 64-bit mode to use
larger data types where possible.

AIX -qlonglong Default is
cc.

Allows long long types in your program.

AIX -qnolonglong Default is
c89.

Does not allow long long types in your program.

HP-UX +f Inhibits the promotion of float to double, except for function
calls and returns.

HP-UX +r Inhibits the automatic promotion of float to double.

Tru64 -double Promotes expressions of type float to double. This is the
default when -std0 is used.

Tru64 -float Prevents the compiler from promoting expressions of type
float to type double. This is the default except in -std0 mode.
546 AIX 5L Porting Guide

C.5.2 Rounding of floating points

Table 128 shows the rounding of floating points options.

Table 128. Rounding of floating points options

Operating
system

Option Value
and
default

Description

AIX -qrrm Prevents floating-point optimizations that are incompatible
with run-time rounding to plus and minus infinity modes.This
option is obsolete. Use -qfloat=rrm in your new applications.

AIX -qnorrm default Does not prevents floating-point optimizations that are
incompatible with run-time rounding to plus and minus infinity
modes.This option is obsolete. Use -qfloat=rrm in your new
applications.

AIX -y= n, m, p, or
z

Specifies the compile-time rounding mode of constant
floating-point expressions.

Solaris -fprecision= single,
double, or
extended

Initializes the rounding-precision mode bits in the
floating-point control word. Note that on Intel, only the
precision, not exponent, range is affected by the setting of
floating-point rounding precision mode.

Solaris -fround= nearest,
tozero,
negative,
or
positive;
default is
nearest

Sets the IEEE 754 rounding mode that is established at run
time during the program initialization

Tru64 -fprm c, d, n, or
m

Specifies rounding mode for floating points numbers.
Appendix C. C compiler options 547

C.5.3 Traps

Table 129 shows the floating point traps.

Table 129. Floating point traps

C.5.4 Single precision

Table 130 shows the single precision options.

Table 130. Single precision options

Operating
system

Option Value and
default

Description

AIX -qflttrap OVerflow,
UNDerflow,
ZEROdivide,
INValid,
INEXact,
ENable, or
IMPrecise

Generates extra instructions to detect and trap floating
point exceptions. If specified with #pragma options, the
-qnoflttrap option must be the first option specified.

HP-UX +FP flags Controls floating-point traps.

Tru64 -fptm n or u Generates instructions that do or do not trigger
floating-point underflow or inexact trapping modes. Any
floating point overflow, divide-by-zero, or invalid
operation will unconditionally generate a trap. The -fptm
n option is the default.

Tru64 -scope_safe Ensures that any trap (such as floating-point overflow) is
reported to have occurred in the procedure or guarded
scope that caused the trap. Any trap occurring outside
that scope is not reported to have occurred in the
procedure or guarded scope, with the exception of
well-defined trapb instructions following jsr instructions.

Operating
system

Option Value
and
default

Description

AIX -qrndsngl Specifies that the result of each single-precision (float)
operation is to be rounded to single precision.

AIX -qnorndsngl Default Specifies that the result of each single-precision (float)
operation is not to be rounded to single precision.

AIX -hsflt Speeds up calculations by removing range checking on
single-precision float results and on conversions from floating
point to integer.
548 AIX 5L Porting Guide

AIX -nohsflt Enables range checking on single-precision float results and
on conversions from floating point to integer

AIX -hssngl Specifies that single-precision expressions are rounded only
when the results are stored into float memory locations. This
option is obsolete. Use -qfloat=hssngl in your new
applications.

AIX -nohssngl Specifies that single-precision expressions are rounded after
expression evaluation. This option is obsolete. Use
-qfloat=hssngl in your new applications.

Solaris -xsfpconst Represents unsuffixed floating-point constants as single
precision.

Solaris -fsingle Causes the compiler to evaluate float expressions as single
precision rather than double precision.

Tru64 -float_const Causes the compiler to assign the type float (rather than
double) to floating-point constants, if their values can be
represented in single precision. This option is not available in
-std1 mode.

Operating
system

Option Value
and
default

Description
Appendix C. C compiler options 549

C.5.5 Other options

Table 131 shows the other floating point options.

Table 131. Other floating point options

Operating
system

Option Value and
default

Description

AIX -qfloat (no)emulate,
(no)fltint,
(no)fold,
(no)hsflt,
(no)hssngl,
(no)maf,
(no)rndsngl,
(no)rrm,
(no)rsqrt, or
(no)spnans.
Default is
noemulate,
nofltint, fold
nohsflt,
nohssngl, maf,
norndsngl norrm,
norsqrt, or
nospnans.

Specifies various floating point options to
speed up or improve the accuracy of floating
point operations.

AIX -fold Specifies that constant floating point
expressions are to be evaluated at compile
time.

AIX -nofold Specifies that constant floating point
expressions are not to be evaluated at compile
time.

AIX -qmaf Specifies that the floating-point multiply-add
instructions are to be generated. This option is
obsolete. Use -qfloat=maf in your new
applications.

AIX -qnomaf Specifies that the floating-point multiply-add
instructions are not to be generated. This
option is obsolete. Use -qfloat=maf in your new
applications.

Solaris -fnonstd Causes nonstandard initialization of
floating-point arithmetic hardware (SPARC
only).

Solaris -fns= yes or no. Turns on the SPARC nonstandard
floating-point mode (SPARC only).
550 AIX 5L Porting Guide

Solaris -fsimple=n 0, 1, or 2. Default
is 0 for no
-fsimple,
1 otherwise.

Allows the mizer to make simplifying
assumptions concerning floating-point
arithmetic.

Solaris -fstore Causes the compiler to convert the value of a
floating-point expression or function to the type
on the left-hand side of an assignment.

Solaris -ftrap= %all, %none,
common, invalid,
no%Invalid,
overflow,
no%overflow,
underflow,
no%underflow,
division,
no%division,
inexact, or
no%inexact.

Sets the IEEE 754 trapping mode in effect at
startup.

Solaris -nofstore Does not convert the value of a floating-point
expression or function to the type on the
left-hand side of an assignment.

Solaris -xlibmieee Forces IEEE 754 style return values for math
routines in exceptional cases.

Solaris -xvector= yes or no.
Default is no.

Enable automatic generation of calls to the
vector library functions.

Tru64 -fp_reorder Specifies that code transformations that affect
floating- point operations are allowed. These
changes can affect the accuracy of the
program's results.

Tru64 -ieee Ensures support of all portable features of the
IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754-1985),
including the treatment of denormalized
numbers, NaNs, and infinities and the handling
of error cases. This option also sets the
_IEEE_FP C preprocessor macro.

AIX -nofp_reorder Does not allow code transformations that affect
floating-point operations. These changes can
affect the accuracy of the program's results.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 551

C.6 Parallelization compiler options

Table 132 shows the compiler options that deals with parallelization.

Table 132. Parallelization options

Tru64 -trapuv Forces all uninitialized stack variables to be
initialized with 0xfff58005fff58005. When this
value is used as a floating-point variable, it is
treated as a floating-point NaN and causes a
floating- point trap. When it is used as a
pointer, an address or segmentation violation
usually occurs.

Operating
system

Option Value and
default

Description

AIX -qsmp= See manual Specifies if and how parallelized object code is
generated.

AIX -qnosmp default Specifies that parallelized object code is not to be
generated.

AIX -qthreaded Indicates to the compiler that the program will run in a
multithreaded environment.

AIX -qnothreaded Indicates to the compiler that the program will not run in a
multithreaded environment.

Solaris -mt Macro on that expands to -D_REENTRANT -lthread.

Solaris -xautopar Turns on automatic parallelization for multiple processors
(SPARC only).

Solaris -xexplicitpar Generates parallelized code based on specification of
#pragma MP directives (SPARC only).

Solaris -xloopinfo Shows which loops are parallelized and which are not
(SPARC only).

Solaris -xparallel Shows which loops are parallelized and which are not.

Solaris -xreduction Turns on reduction recognition during automatic
parallelization (SPARC only).

Solaris -xvpara Warns about loops that have #pragma MP directives
specified but may not be properly specified for
parallelization (SPARC only).

Operating
system

Option Value and
default

Description
552 AIX 5L Porting Guide

C.7 Source Code compiler options

Table 133 shows the compiler options that deal with the source code.

Table 133. Source code options

Solaris -Zll Creates the program database for lock_lint, but does not
actually compile (SPARC only).

Solaris -Zlp Prepares object files for the loop profiler (looptool)
(SPARC only).

Tru64 -pthread Directs the linker to use the threadsafe version of any
library specified with the -l option when linking programs.
This option also tells the linker to include the POSIX
1003.1c-conformant DECthreads interfaces in libpthread
when linking the program.

Tru64 -threads Directs the linker to use the threadsafe version of any
library specified with the -l option when linking programs.
This option also tells the linker to include the POSIX
1003.4a Draft 4 conformant DECthreads interfaces. It is
supported only for compatibility with earlier releases of
Tru64 UNIX. New designs should use the -pthread option.

Tru64 -mp Causes the compiler to recognize an older form of parallel
programming directives, as well as OpenMP directives,
and pass libots3 and appropriate thread libraries to the
linker. It also predefines the macro _OPENMP with a
value of 0.

Tru64 -omp Causes the compiler to recognize the OpenMP shared
memory parallel programming API pragmas and pass
libots3 and appropriate thread libraries to the linker. It
also predefines the macro _OPENMP with a nonzero
value.

Operating
system

Option Value and
default

Description

AIX -qattr= all or
““.

Produces a compiler listing that includes an
attribute listing for all identifiers.

AIX -qnoattr Default. Does not produces a compiler listing that
includes an attribute listing for all identifiers.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 553

AIX -B Determines substitute path names for the
compiler, assembler, linkage editor, and
preprocessor.

AIX -C -B -Bprefix or -B
-tprogram
-Bprefix
-tprograms.

Preserves comments in preprocessed
output.The optional prefix defines part of a path
name to the new programs. It must end in /.

Tru64 -C Passes all comments directly to the
preprocessor output, except comments on
preprocessor directive lines.

AIX -qcpluscmt Use this option if you want C++ comments to be
recognized in C source files.

AIX -qnocpluscmt Default. Use this option if you not want C++ comments to
be recognized in C source files.

AIX -D Name. Defines the identifier name as in a #define
preprocessor directive. -Dname is equal to
-Dname=1.

AIX -qdbcs Default is
nodbcs.

Use the -qdbcs option if your program contains
multibyte characters.

AIX -qnodbcs Use the -qnodbcs option if your program
contains multibyte characters.

AIX -qdigraph Allows use of digraph character sequences in
your program.

AIX -qnodigraph Default. Does not allow you to use digraph character
sequences in your program.

AIX -E Runs the source files named in the compiler
invocation through the preprocessor.

Tru64 -E Runs only the C macro preprocessor on the files
and sends the result to the standard output
device.

AIX -I Directory. Specifies an additional search path if the file
name in the #include directive is not specified
using its absolute path name.

Operating
system

Option Value and
default

Description
554 AIX 5L Porting Guide

Tru64 -I Directory. Specifies a search path for header files whose
names do not indicate a specific directory path
(that is, whose names do not begin with a /). The
actual search path depends upon the form of the
#include directive used for the file

AIX -qidirfirst Specifies the search order for files included with
the #include file_name directive.

AIX -qinoidirfirst Default. Specifies the search order for files included with
the #include file_name directive.

Tru64 -nocurrent_include Changes the behavior of the #include
filename directive to not search the source
file's directory for file name. This option causes
the #include filename directives to behave
like #include <filename> directives.

AIX -qignprag all, disjoint,
isolated, ibm, or
omp.

Instructs the compiler to ignore certain pragmas.
Uses : (colon) as delimiter.

AIX -M Creates an output file (.u) that contains targets
suitable for inclusion in a description file for the
AIX make command.

Tru64 -M Outputs a set of make dependency rules to
standard output for each source file on the
command line (and suppresses compilation).
The make dependencies include all of the
header files upon which each source file
depends. The make targets are the object files
for those source files. The output lines are
indented to show header file nesting.

Tru64 -MD Requests dependency files from the
preprocessor (and linker if it is also run). It does
not suppress compilation like the -M option. This
option is passed directly to the preprocessor and
linker.

AIX -qmakedep Creates an output file (.u) that contains targets
suitable for inclusion in a description file for the
AIX make command. (This is the same as the -M
option.)

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 555

AIX -qmacpstr Default is
nomacpstr.

Converts Pascal string literals into
null-terminated strings where the first byte
contains the length of the string.

AIX -qnomacpstr Disables the conversion of Pascal string literals
into null-terminated strings where the first byte
contains the length of the string.

AIX -qmbcs Default is
nombcs.

Use the -qmbcs option if your program contains
multibyte characters.

AIX -qnombcs Use the -qnombcs option if your program
contains multibyte characters.

AIX -P Preprocesses the C source files named in the
compiler invocation and creates an output
preprocessed source file for each input source
file.

Tru64 -P Runs only the C preprocessor and puts the result
for each .c or .s source file in a corresponding .i
file. The .i file has no #line_number preprocessor
directives in it.

AIX -qpascal Ignores the word pascal in type specifiers and
function declarations.

AIX -qnopascal Turns off Ignorance of the word pascal in type
specifiers and function declarations.

AIX -qstdinc Default is stdinc. Specifies which files are included with #include
<file_name> and #include file_name
directives. If a full (absolute) path name is
specified, this option has no effect on that path
name. It will still have an effect on all relative path
names.

AIX -qnostdinc Default is stdinc. Specifies which files are included with #include
<file_name> and #include file_name
directives.

AIX -qsyntaxonly Causes the compiler to perform syntax checking
without generating an object file.

AIX -t c, b, p, a, I, L, l,
or m.

Adds the prefix specified by the -B option to
designated programs.

Operating
system

Option Value and
default

Description
556 AIX 5L Porting Guide

AIX -U Name. Undefines a specified identifier defined by the
compiler or by the -D option.

AIX -qusepcomp Default is
nousecomp.

Uses precompiled header files for any files that
have not changed since the precompiled header
was created.

AIX -qnousepcomp Do not use precompiled header files for any files
that have not changed since the precompiled
header was created.

AIX -W See manual. Passes the listed words to a designated compiler
program.

HP-UX -C Prevents the preprocessor from stripping
comments.

HP-UX -Dname Defines the preprocessor variable name with a
value of 1.

HP-UX -Dname=def Defines the preprocessor variable name with a
value of def.

Tru64 -D name=def. Defines the name as if with a #define statement.
If no definition is given, the name is defined as 1.

HP-UX -E Performs preprocessing only with output to
stdout.

HP-UX -s Strips the symbol table from the executable file.

HP-UX -U Undefines name in the preprocessor.

HP-UX -P Performs preprocessing only with output to the
corresponding .i file.

HP-UX -z Disallows run-time dereferencing of null pointers.

HP-UX -Z Allows dereferencing of null pointers at run-time.

HP-UX -t Program or
name.

Substitutes or inserts subprocess program with
name.

HP-UX -W Program and
argstring.

Passes the arguments argstring to the
subprocess program.

Solaris -A name(token). Associates name as a predicate with the
specified tokens as if by a #assert
preprocessing directive.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 557

Solaris -C Prevents the preprocessor from removing
comments, except those on the preprocessing
directive lines.

Solaris -D name=token. Associates name with the specified tokens, as if
by a #define preprocessing directive. if no token
is specified, the value 1 will be used.

Solaris -E Runs the source file through the preprocessor
only and sends the output to stdout.

Solaris -fd Reports K&R-style function definitions and
declarations.

Solaris -H Prints to standard error, one per line, the path
name of each file included during the current
compilation.

Solaris -I Dir. Adds dir to the list that is searched for #include
files with relative file names.

Solaris -P Runs the source file through the C preprocessor
only.

Solaris -U Name. Removes any initial definition of the
preprocessor symbol name.

Tru64 -U Name. Removes any macro definition of name at the
start of the compilation. name could have been
defined with a -D option or predefined by the
compiler. If no name is specified or if name is not
defined, the -U option is ignored.

Solaris -xCC Accepts the C++-style comments.

Solaris -xM Runs only the preprocessor on the named C
programs, requesting that it generate makefile
dependencies and send the result to the
standard output.

Solaris -xM1 Collects dependencies like -xM, but excludes
/usr/include files.

Solaris -xP Prints prototypes for all K&R C functions defined
in this module.

Solaris -xpg Prepares the object code to collect data for
profiling with gprof(1).

Operating
system

Option Value and
default

Description
558 AIX 5L Porting Guide

n
C.8 Compiled code compiler options

Table 134 shows the options that deals with the compiled code.

Table 134. Compiled code options

Solaris -xsb Generates extra symbol table information for the
source browser.

Solaris -xsbfast Creates the database for the source browser.

Tru64 -FI Filename. Specifies a file that is to be included before the
first line in a source file is actually compiled.

Tru64 -machine_code Includes the generated machine code in the
listing file. By default, machine code is not listed.
To produce the listing file, you must also specify
-source_listing.

Tru64 -cpp This is the
default.

Calls the C macro preprocessor on C and
assembly source files before compiling.

Tru64 -nocpp Does not call the C macro preprocessor on C
and assembly source files before compiling.

Tru64 -oldcomment Directs the preprocessor to delete comments
(replacing them with nothing at all). This allows
traditional token concatenation.

Operating
system

Option Value and
default

Description

AIX -qbitfields unsigned or
signed.
Default is
unsigned.

Specifies if bit fields are signed or unsigned.

AIX -qdollar Allows the $ symbol to be used in the names of identifiers.

AIX -qnodollar Does not allow the $ symbol to be used in the names of
identifiers.

AIX -qupconv noupconv. Preserves the unsigned specification when performing
integral promotions.

AIX -qnoupconv Suppresses the prevention of the unsigned specification whe
performing integral promotions.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 559

ly.

s

le.

nt

s.
AIX -c Instructs the compiler to pass source files to the compiler on

Tru64 -c Suppresses the loading phase of the compilation and force
the creation of an object file.

AIX -qchars signed or
unsigned.
Default is
unsigned.

Instructs the compiler to treat all variables of type char as
either signed or unsigned.

AIX -qprocimported ““ or
funcname.
See the
manual for
the default.

Marks funcname as a imported function.

AIX -qproclocal ““ or
funcname.
See the
manual for
the default.

Marks funcname as a local function.

AIX -qprocunknown ““ or
funcname.
See the
manual for
the default.

Marks funcname as a unknown function.

AIX -r Produces a relocatable object.

AIX -S Generates an assembly language file (.s) for each source fi

AIX -qstatsym Default is
nostatsym.

Adds user-defined, non-external names that have a persiste
storage class to the name list.

AiX -qnostatsym Disables adding of user-defined, non-external names that
have a persistent storage class to the name list.

AIX -qtbtable none,
full, or
small.
Default is full.

Sets traceback table characteristics.

HP-UX -o outfile. Places object modules in outfile file.

HP-UX -S Generates an assembly language source file.

HP-UX +sb Make bit-fields signed by default in both 32- and 64-bit mode

Operating
system

Option Value and
default

Description
560 AIX 5L Porting Guide

)

h

t
n.

n
d

n
HP-UX +uc Makes unqualified char data types unsigned.

Solaris -c Directs the compiler to suppress linking with ld(1) and to
produce a .o file for each source file.

AIX -qdataimported names.
Default is
datalocal.

Marks data as imported.

AIX -qdatalocal Marks data as local.

AIX -o filename. Specifies a name or directory for the output executable file(s
created either by the compiler or the linkage editor.

Tru64 -o filename. Names the final output file output.

HP-UX -c Compiles only; does not link.

Solaris -o filename. Names the output file

Solaris -S Directs the compiler to produce an assembly source file but
not to assemble the program.

Tru64 -S Compiles the specified source files and generates symbolic
assembly language output in corresponding files suffixed wit
.s.

Tru64 -noobject Suppresses creation of an object file. By default, an object
module file is created with the same name as that of the firs
source file of a compilation unit and with the .o file extensio

Tru64 -Q Directs the preprocessor to use single quotes in __FILE__
expansions instead of double quotes.

Tru64 -signed This is the
default.

Causes all char declarations to have the same representatio
and range of values as signed char declarations. This is use
to override a previous -unsigned option. This is the default.

Tru64 -unsigned Causes all char declarations to have the same representatio
and range of values as unsigned char declarations.

Tru64 -volatile Causes all variables to be treated as volatile.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 561

C.9 Compilation mode compiler options

Table 135 shows the options that deals with the compilation. such as
messages, temporary files, and so on.

Table 135. Compiler mode options

Operating
system

Option Value and
default

Description

AIX -# Traces the compilation without doing anything.

AIX -qinfo See
manual.

Produces informational messages.

AIX -F config_file,
stanza, or
config_file:
stanza.

Names an alternative configuration file for xlc.

AIX -qnoinfo Does not produces informational messages.

AIX -qproto noproto. Assumes all functions are prototyped.

AIX -qnoproto Does not assume that all functions are prototyped.

AIX -qtabsize= Default is
8.

Changes the length of tabs, as perceived by the compiler.

HP-UX +help Launches a Web browser displaying an HTML version of the
HP C/HP-UX online help.

HP-UX -V Causes subprocesses to print version information to stderr.

Solaris -# Turns on verbose mode, showing each component as it is
invoked.

Solaris -### Shows each component as it would be invoked, but does not
actually execute it.

Solaris -keeptmp Retains temporary files created during compilation instead of
automatically deleting them.

Solaris -V Directs cc to print the name and version ID of each
component as the compiler executes.

Solaris -xhelp=f flags,
readme, or
errors.

Displays online help information.

Solaris -xtemp= directory. Sets the directory for temporary files used by cc to dir.-xtemp
has precedence over the TMPDIR environment variable.
562 AIX 5L Porting Guide

Solaris -xtime Reports the time and resources used by each compilation
component.

Tru64 -accept [no]vaxc_k
eywords or
[no]restrict
_keyword.

Causes the compiler to recognize additional keywords.

Tru64 -edit 0-9. When syntactic or semantic errors are detected by the
compiler's front end, invokes the editor defined by the
environment variable EDITOR (or vi if EDITOR is undefined).
Two files are opened for editing: the error message file,
which indicates the location of the error, and the source file.
When you exit from the editor, the compilation is restarted.
The n argument specifies the number of times a compilation
can be interrupted in this way

Tru64 -error_limit number.
Default is
30.

Sets a limit on the number of error-level diagnostics that the
compiler will emit.

Tru64 -noerror_limit Unsets a limit on the number of error-level diagnostics that
the compiler will emit.

Tru64 -nestlevel Number.
Default is
50.

Sets the nesting-level limit for include files.

Tru64 -V Prints the version of the compiler driver.

Tru64 -proto i or s. Extracts prototype declarations for function definitions and
puts them in a .H suffixed file. The suboption i includes
identifiers in the prototype, and the suboption s generates
prototypes for static functions as well.

Tru64 -H Halts compiling after the pass specified by the character c,
producing an intermediate file for the next pass. The c
character can be one of the following: [fablL] (see the -t
option for an explanation). It selects the compiler pass in the
same way as the -t option. If this option is used, the symbol
table file produced and used by the passes is given the name
of the last component of the source file with the suffix
changed to .T, and the file is always retained after the
compilation is halted.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 563

C.10 Diagnostics compiler options

Compiler options that deal with diagnostics are shown in Table 136.

Table 136. Compiler diagnostics options

Tru64 -W Passes the argument, or arguments (argi), to the compiler
pass, or passes (c[c...]). Each c character can be one of the
following: [ablLzpfy] (see the -t option for an explanation).
The c selects the compiler pass in the same way as the -t
option.

Tru64 -t The -t, -h, and -B options are used together to specify a
location and/or name for one or more compiler passes, tools,
libraries, or include files, other than their normal locations or
names. The -t option specifies which compiler passes (or
components) the -h and -B options that follow apply to.

Tru64 -h path Specifies the directory where the tool (or other component)
specified with -t is located. If -h is omitted, the tool is
assumed to be in the usual location (for example,
/usr/lib/complrs/cc). If path is omitted, the tool is assumed to
be in the root directory (/).

Tru64 -B Specifies a suffix to add to the normal names of any
components specified with the -t option. If string is omitted,
the usual component names are used.

Tru64 -K Directs the compiler to give recognizable names to
intermediate files and retain them for debugging purposes.
Each file is given the name of the last component of the
source file, replacing its suffix with the conventional suffix for
the type of file (for example, .B suffix for binary ucode
produced by the front end).

Operating
system

Option Value and
default

Description

AIX -qflag i, w, e, s, or u.
Default is
flag=i:i.

Specifies the minimum severity level of diagnostic
messages to be reported in source listings (first
specifier) and on screen (second specifier).

AIX -qmaxerr Default is
nomaxerr.

Instructs the compiler to halt compilation when a
specified number of errors of specified or greater
severity is reached.

AIX -qnomaxerr Allow as many errors as needed.

Operating
system

Option Value and
default

Description
564 AIX 5L Porting Guide

AIX -qnoprint Suppresses listings.

AIX -qshowinc Default is
noshowinc.

If used with the -qsource option, all the include files are
included in the source listing.

AIX -qnoshowinc Disables showing of include files in source listing.

AIX -qsource Default is
nosource.

Produces a compiler listing and includes source code.

AIX -qnosource Disables production of compiler listing and includes
source code.

AIX -qsrcmsg nosrcmsg. Adds the corresponding source code lines to the
diagnostic messages in the stderr file.

AIX -qnosrcmsg Disables the addition of the corresponding source code
lines to the diagnostic messages in the stderr file.

AIX -qsupress msg_num.
Default is
nosupress.

Lets you specify warning or information messages to be
suppressed in the compiler listing.

AIX -qnosupress Disables suppressing of warning or information
messages to be suppressed in the compiler listing.

AIX -qwarn64 Enables warning of possible long to integer data
truncations.

AIX -qnowarn64 default. Disables warning of possible long to integer data
truncations.

AIX -v Instructs the compiler to report information on the
progress of the compilation.

Tru64 -v Prints the compilation phases as they execute with their
arguments and their input and output files. Prints
resource usage in the C-shell time format. Prints the
macros defined at the start of the compilation.

AIX -w Requests that warning messages be suppressed.

AIX -qxcall Default is
noxcall.

Generates code to static routines within a compilation
unit as if they were external calls.

AIX -qnoxcall Does not generate code to static routines within a
compilation unit as if they were external calls. This
generates faster code than -qxcall

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 565

AIX -qspnans nospnans. Generates extra instructions to detect signalling NaN on
conversion from single precision to double precision.

AIX -qspnans Disables the generation of extra instructions to detect
signalling NaN on conversion from single precision to
double precision.

AIX -qsyntaxonly Causes the compiler to perform syntax checking
without generating an object file.

HP-UX +m Prints identifier maps in the source code listing.

HP-UX +L Enables any #pragma listing directives and the listing
facility.

HP-UX +o Prints hexadecimal code offsets in the source code
listing.

HP-UX -v Enables verbose mode.

HP-UX +M2 Provides migration warnings for transitioning code from
the ILP32 to the LP64 data model.

HP-UX +M Provides ANSI migration warnings that explain the
differences between code compiled with -Ac and -Aa.

HP-UX +M1 Provides platform migration warnings for features that
may not be supported in future releases.

HP-UX -w Suppresses warning messages.

HP-UX +Wen 1[,2,...N]. Changes the specified warnings to errors.

HP-UX +wn Specifies the level of the warning messages where n is
1 - 3.

HP-UX +Wn 1[,2,...N]. Suppresses the specified warnings.

HP-UX +Wwn 1[,2,...N]. Enables the specified warnings, assuming all other
warnings are suppressed with -w or +w3.

Solaris -erroff=t tag, no%tag,
%all, or
%none.
Default is
none.

Suppresses compiler warning messages.

Operating
system

Option Value and
default

Description
566 AIX 5L Porting Guide

Solaris -errtags= yes or no.
Default is yes
if -errtags is
specified

Displays the message tag for each warning message.

Solaris -errwarn=t tag, no%tag,
%all, or
%none.
Default is
none.

If the indicated warning message is issued, cc exits with
a failure status.

Solaris -v Directs the compiler to perform stricter semantic checks
and to enable other lint-like checks.

Solaris -w Suppresses compiler warning messages.

Solaris -xe Performs only syntax and semantic checking on the
source file, but does not produce any object or
executable code.

Solaris -xtransition Issues warnings for the differences between K&R C and
Sun ANSI/ISO C.

Solaris -xvpara Warns about loops that have #pragma MP directives
specified, but may not be properly specified for
parallelization.

Tru64 -show See manual. Specifies one or more items to be included in the listing
file. When specifying multiple keywords, separates
them by commas and no intervening blanks.

Tru64 -source_listing Produces a source program listing file with the same
name as the source file and with a .lis file extension.
You must specify this qualifier to get a listing. The
default is to not produce a listing file.

Tru64 -check Performs compile-time code checking. With this option,
the compiler checks for code that exhibits nonportable
behavior, represents a possible unintended code
sequence, or possibly affects operation of the program
because of a quiet change in the ANSI C standard.

Tru64 -msg_dump Causes the compiler to dump, to stdout, all messages
enabled by any given cc command line. The compiler
then exits, without doing a compilation.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 567

Tru64 -msg_enable level0-level6,
64bit,
alignment,
c_to_cxx,
check,
defunct,
noansi,
obsolescent,
overflow,
performance,
portable,
preprocessor,
questcode,
returnchecks,
or unused.

Enables a specific message or group of messages.

Tru64 -msg_disable Same as
above.

Disables a specific message or group of messages.
(Note that messages with error or fatal severity cannot
be disabled; only warning and informational messages
can be disabled.)

Tru64 -msg_always Same as
above.

Always emits the messages identified by the msg_list
argument.

Tru64 -msg_once Same as
above.

Emits the identified messages only once.

Tru64 -msg_fatal Same as
above.

Changes the identified messages to be fatal,
compilation-ending errors.

Tru64 -msg_warn Same as
above.

Changes the identified messages to be warnings. (Note
that error- or fatal-severity messages cannot be
changed to warning-severity messages.)

Tru64 -msg_inform Same as
above.

Changes the identified messages to be informational
messages. (Note that error- or fatal-severity messages
cannot be changed to informational-severity
messages.)

Tru64 -msg_error Same as
above.

Changes the identified messages to be error
messages. (Note that fatal-severity messages cannot
be changed to error-severity messages.)

Tru64 -portable Directs the compiler to issue diagnostics for certain
constructs that may not be portable to other compilers
or platforms. -portable is equivalent to -msg_enable
portable.

Operating
system

Option Value and
default

Description
568 AIX 5L Porting Guide

C.11 Debugging compiler options

Options that deals with debugging are shown in Table 137.

Table 137. Debugging options

Tru64 -SD directory. Suppresses certain warning- and informational-level
diagnostic messages that are inappropriate for system
header files. The suppressed messages relate to
non-portable constructs in header files whose path
names are prefixed by string directory.

Tru64 -verbose Produces longer error and warning messages.
Messages in this form may give the user more hints
about why the compilation failed.

Tru64 -w 0, 1, 2, or 3. Controls the display of messages as well as the actions
that occur as a result of the messages.

Tru64 -warnprotos Causes the compiler to produce warning messages
when a function is called that is not declared with a full
prototype. This checking is more strict than required by
ANSI C.

Tru64 -varargs Prints warnings for all lines that may require the
<varargs.h> macros.

Operating
system

Option Value and
default

Description

AIX -qcheck all,
(NO)NULLptr,
(no)bounds,
(NO)DIVzero.
Default is
-qnocheck.

Generates code which performs certain types of
run-time checking. Use : as delimiter.

AIX -qnocheck Disables generation of code which performs certain
types of run-time checking.

AIX -qdpcl nodpcl. Generates symbols that tools based on the
Dynamic Probe Class Library (DPCL) can use to
see the structure of an executable file.

AIX -qnodpcl Disables generation of symbols that tools based on
the Dynamic Probe Class Library (DPCL) can use
to see the structure of an executable file.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 569

AIX -g Generates debugging information used by the
debugger.

AIX -qdbxextra Specifies that all typedef declarations, struct, union,
and enum type definitions are included for
debugger processing.

AIX -qnodbxextra nodbxextra. Specifies that no typedef declarations, struct, union,
and enum type definitions are included for
debugger processing.

AIX -qextchk noextchk. Generates bind-time type checking information and
checks for compile-time consistency.

AIX -qnoextchk Disables generation of bind-time type checking
information and checks for compile-time
consistency.

AIX -qhalt i, w, e, s, or
u. Default is s.

Instructs the compiler to stop after the compilation
phase when it encounters errors of specified
severity or greater.

AIX -qheapdebug noheapdebug. Enables debug versions of memory management
functions.

AIX -qnoheapdebug Enables debug versions of memory management
functions.

AIX -qlinedebug Default is
nolinedebug.

Generates abbreviated line number and source file
name information for the debugger.

AIX -qnolinedebug Suppresses generation of abbreviated line number
and source file name information for the debugger.

AIX -qlist nolist. Produces a compiler listing that includes an object
listing.

AIX -qnolist Produces a compiler listing that includes an object
listing.

AIX -qlistopt Default is
nolistopt.

Suppresses a compiler listing that displays all
options in effect.

AIX -qnolistopt Suppresses a compiler listing that displays all
options in effect.

AIX -qphsinfo Default is
nophsinfo.

Reports the time taken in each compilation phase.

Operating
system

Option Value and
default

Description
570 AIX 5L Porting Guide

AIX -qnophsinfo Does not report the time taken in each compilation
phase.

AIX -qfullpath Default is
notullpath.

Specifies what path information is stored for files
when you use the -g option.

AIX -qnofullpath Disables the use of full path information when you
use the -g option.

AIX -qsymtab= unref or static. If specified, includes all typedef, struct, union, and
enum type definitions. If static is specified, also
includes user-defined, nonexternal names that
have a persistent storage class.

AIX -qxref Default is
noxref.

Produces a compiler that includes a
cross-reference of all identifiers.

AIX -qnoxref Do not produce a compiler listing that includes a
cross-reference listing of all identifiers.

HP-UX -g Inserts information for the symbolic debugger in the
object file.

HP-UX +objdebug When used with -g, +objdebug leaves debug
information in the object files instead of copying it to
the executable file. The object files must be
accessible to the HP WDB debugger when
debugging. This option is not supported by the HP
DDE debugger.

HP-UX +noobjdebug Disables +objdebug.

Solaris -g Produces additional symbol table information for
the debugger.

Tru64 -g 0, 1, 2, or 3.
Default is 2.

Produces symbol table information for debugging.

Solaris -s Removes all symbolic debugging information from
the output object file.

Solaris -xs Disables auto-read for dbx.

Tru64 -check_bounds Generates run-time code to check the values of
array subscripts (and equivalent pointer arithmetic
involving pointers produced by converting an array
name to a pointer) to verify that the resulting
address lies within the range for which the C
standard requires well-defined behavior.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 571

C.12 Linking and libraries compiler options

Compiler options that deals with linking and other library related options are
shown in Table 138 to Table 141.

C.12.1 Placing string literals and constants

Table 138. String literal options

Tru64 -nocheck_bounds Disables generation of run-time bound checking.

Operating
system

Option Value and
default

Description

AIX -qro Default for xlc
and c89

Specifies the storage type for string literals. Strings
are placed in ro storage.

AIX -qnoro Default for cc Specifies the storage type for string literals. Strings
are placed in rw storage.

AIX -qroconst Default for xlc
and c89

Specifies the storage type for constant values.
Constant values are placed in ro storage.

AIX -qnoroconst Default for cc Specifies the storage type for constant values.
Constant values are placed in rw storage.

HP-UX +ESconstlit Introduces new default behavior. HP C now stores
constant-qualified (const) objects and literals in
read-only memory.

HP-UX +ESlit Places string literals and constants into read-only
data storage.

HP-UX +ESnolit Disables +ESconstlit, causing HP C to no longer
store literals in read-only memory.

Solaris -xstrconst Inserts string literals into the read-only data section
of the text segment instead of the default data
segment.

Tru64 -readonly_strings Allows the compiler to assume that string literals
are read-only. This may improve application
performance. This option overrides
-writable_strings, which is the default.

Tru64 -writable_strings Causes all string literals to be writable. This is the
default. This option overrides -readonly_strings.

Operating
system

Option Value and
default

Description
572 AIX 5L Porting Guide

C.12.2 Static and dynamic linking and libraries

Table 139. Linking options

Operating
system

Option Value and default Description

AIX -brtl Tells the linkage editor to accept
both .so and .a library file types.

AIX -bstatic Specifies that static types of library
files are searched by the linkage
editor.

AIX -bdynamic Dynamic is default. Specifies that dynamic types of
library files are searched by the
linkage editor.

AIX -G Linkage editor (ld command) option
only. Used to generate a dynamic
library file.

AIX -qmkshrobj= Creates a shared object from
generated object files. This option,
together with the related options
described below, should be used
instead of the makeC++SharedLib
command. The advantage to using
this option is that the compiler will
automatically include and compile
the template instantiations in the
tempinc directory.

HP-UX -n Generates shareable code.

HP-UX -N Generates unshareable code.

HP-UX -noshared Creates statically-bound
executables.

Tru64 -non_shared Directs the linker to produce a static
executable. The output object
created by the linker will not use any
shared objects during execution.

HP-UX +z Generates shared library object
code (same as +Z in 64-bit mode).

HP-UX +Z Generates shared library object
code with a large data linkage table
(long-form PIC).

HP-UX -dynamic Enables linking of PIC objects.
Appendix C. C compiler options 573

HP-UX -q Marks the executable as demand
loadable.

HP-UX -Q Marks the executable as not being
demand loadable.

Solaris -B static or dynamic. Specifies whether bindings of
libraries for linking are static or
dynamic.

Solaris -d y or n. Specifies dynamic or static linking in
the link editor.

Solaris -G Passes the option to the link editor
to produce a shared object rather
than a dynamically linked
executable.

Solaris -h libname. Assigns a name to a shared
dynamic library as a way to have
different versions of a library.

Tru64 -call_shared Produces a dynamic executable file
that uses shareable objects during
run time. This is the default. The
loader uses shareable objects to
resolve undefined symbols.

Tru64 -expect_unresolved pattern. Causes any unresolved symbols
matching pattern to be ignored.
Such symbols are not displayed and
are not treated as errors or
warnings. You can enter this option
multiple times on a command line.

Tru64 -exact_version Used in conjunction with
-call_shared to request strict
dependency testing for the
executable file produced.
Executable files built in this manner
can be executed only if the shared
libraries that they use were not
modified after the executable was
built.

Operating
system

Option Value and default Description
574 AIX 5L Porting Guide

Tru64 -shared Produces dynamic shareable
objects. The loader will produce a
shareable object that other dynamic
executables can use at run time.

Tru64 -check_registry location_file. Checks the location of this shared
object's segments and make sure
they stay out of the way of other
object's segments in the
location_file. Multiple instances of
this option are allowed (Needs
-shared).

Tru64 -rpath path. Creates an rpath record containing
the specified path string. The path
string is a colon-separated list of
directories that is meaningful only
when creating an executable with
shared linkage (Needs -shared).

Tru64 -set_version version string. Establishes the version identifier (or
identifiers) associated with a shared
library. The string version-string is
either a single version identifier or a
colon-separated list of version
identifiers (Needs -shared).

Tru64 -soname shared_object_name. Sets DT_SONAME for a shared
object. The name can be a single
component name (for example,
libc.a), a full path name (starting
with a slash), or a relative path name
(containing a slash) (Needs
-shared).

Tru64 -update_registry location_file. Registers the location of this shared
object's segments and makes sure
they stay out of the way of others in
the location_file. Location_file is
updated if it is writable (Needs
-shared).

Operating
system

Option Value and default Description
Appendix C. C compiler options 575

C.12.3 Directories

Table 140. Directory search options

C.12.4 Other linker options
Table 141. Other linker options

Operating
system

Option Value
and
default

Description

AIX -l key Searches a specified library for linking.

HP-UX -I dir Inserts dir in the include file search path.

Solaris -l library Links with object library libname.so or libname.a.

AIX -L directory Searches the specified directory for library files specified by
the -l option.

HP-UX -L directory Links the libraries in directory before the libraries in the default
search path.

Solaris -L directory Adds directories to the list that the linker searches for libraries.

Solaris -i Passes the option to the linker to ignore any
LD_LIBRARY_PATH setting.

Solaris -R dir,dir... Passes a colon-separated list of directories used to specify
library search directories to the run-time linker.

Operating
system

Option Value and
default

Description

AIX -f filename. Linkage editor (ld command) option only. Passes to the
linkage editor the file name of a file containing a list of input
files to be processed.

AIX -qinlglue noinlglue. Generates fast external linkage by inlining the pointer glue
code necessary to make a call to an external function or a
call through a function pointer.

AIX -qnoinlglue Does note generate ‘linker glue.’

HP-UX -lx Links with the /lib/libx.a and /usr/lib/libx.a libraries.

HP-UX -Wd Omits HP provided prefix files required by the linker.

HP-UX -a Omits HP provided prefix files required by the linker.

HP-UX +a Omits HP provided prefix files required by the linker.
576 AIX 5L Porting Guide

Solaris -mc Removes duplicate strings from the .comment section of
the object file.

Solaris -mr Removes all strings from the .comment section.

Solaris -mr, string. Removes all strings from the .comment section and inserts
string in that section of the object file.

Solaris -Q y or n.
Default is y.

Emits or does not emit identification information to the
output file.

Solaris -xMerge Merges data segments into text segments.

Solaris -xcode=v abs32,
abs44,
abs64,
pic13, or
pic32.
Default
depends on
processor.

Specify code address space (SPARC ONLY).

Solaris -xildoff Turns off the incremental linker and forces the use of ld.

Solaris -xildon Turns on the incremental linker and forces the use of ild in
incremental mode.

Solaris -xnolib Does not link any libraries by default

Tru64 -fini symbol. Makes the procedure represented by the symbol into a
termination routine. A termination routine is a routine that is
called without an argument when either the file that
contains the routine is unloaded or the program that
contains the routine exits.

Tru64 -init symbol. Makes the procedure represented by the symbol into an
initialization routine. An initialization routine is a routine that
is called without an argument when either the file that
contains the routine is loaded or the program that contains
the routine is started.

Tru64 -input_to_ld filename. Directs the linker to read the contents of file filename as if
the contents had been supplied on the ld command line.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 577

C.13 Target platform compiler options

Compiler options that deal with the target architecture are shown in
Table 142.

Table 142. Target environment options

Tru64 -noarchive Prevents the linker from using archive libraries to resolve
symbols. This option is used in conjunction with
-call_shared. The -noarchive option is position sensitive; it
affects only those options and variables that follow it on the
command line. This option can also be used more than
once on the command line.

Operating
system

Option Value and
default

Description

AIX -q32 default. Selects 32-bit compiler mode.

HP-UX +DD32 Generates 32-bit code for PA1.1 architecture.

AIX -q64 Selects 64-bit compiler mode.

HP-UX +DD64 Generates 64-bit code for PA2.0 architecture.

AIX -qarch= auto, com or,
pwr, pwr2,
pwrx, ppc,
ppcgr, or
noauto.
Default is
com.

Specifies the architecture on which the executable
program will be run.

HP-UX +DA model. Generates object code for a specific version of the
PA-RISC architecture.

HP-UX +DC apptype. Generates code for portable or embedded applications.

Operating
system

Option Value and
default

Description
578 AIX 5L Porting Guide

Solaris -xarch= generic,
native, v7,
v8a, v8,
v8plus,
v8plusa,
v8plusb, v9,
v9a, v9b,
386,
pentium, or
pentium_pro.

Specifies instruction set architecture.

Solaris -xcg= 89 or 92. Macro that specifies values for -xarch, -xchip, and
-xcache (SPARC only).

HP-UX +DO osname. Sets the target operating system for the compiler.

Solaris -xregs= appl,
no%appl,
float, or
no%float.
Default is
appl or float.

Specifies the usage of registers for the generated code
(SPARC only).

Tru64 -arch generic, host,
ev4, ev5,
ev56, ev56,
ev67, or
pca56.

Specifies which version of the Alpha architecture to
generate instructions for. All Alpha processors
implement a core set of instructions and, in some
cases, extensions.

Tru64 -taso Directs the linker to load the executable file in the lower
31-bit addressable virtual address range. The -T and -D
options to the ld command can also be used,
respectively, to ensure that the text and data segments
are loaded into low memory.

Tru64 -xtaso Causes the compiler to respect #pragma
pointer_size directives, which control the size of
pointers. These directives are ignored otherwise. Also
causes the -taso option to be passed to the linker (if
linking).

Tru64 -xtaso_short Same as the -xtaso option, except -xtaso_short also
directs the compiler to allocate 32-bit pointers by
default. You can still use 64-bit pointers, but only by the
use of pointer_size pragmas.

Operating
system

Option Value and
default

Description
Appendix C. C compiler options 579

C.14 GCC options specific for AIX 5L

This section details the platform specific options of GCC when running on
RS/6000 and pSeries machines.

C.14.1 AIX options

The options that the GNU GCC compiler supports for AIX are shown in
Table 143.

Table 143. AIX options for GNU GCC

Tru64 -framepointer Makes all procedures in the source file use $fp (register
15) as the frame pointer.

Option Description

-gxcoff Produces debugging information in XCOFF format (if that is supported). This is
the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produces debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of these
extensions is likely to make other debuggers crash or refuse to read the program,
and may cause assemblers other than the GNU assembler (GAS) to fail with an
error.

-mnohc-struct-return Returns some structures of more than one word in registers, when convenient.
This is the default. For compatibility with the IBM-supplied compilers, use the
option -fpcc-struct-return or the option -mhc-struct-return.

-mthreads Support AIX threads. Links an application written to use pthreads with special
libraries and startup code to enable the application to run.

Operating
system

Option Value and
default

Description
580 AIX 5L Porting Guide

C.14.2 Power and PowerPC options

The options that the GNU GCC compiler supports for the POWER and
PowerPC processors on the RS/6000 and pSeries machines are shown in
Table 144.

Table 144. RS/6000 and pSeries specific options for GNU GCC

Option Description

-fpic Generates position-independent code (PIC) suitable for use in a shared library,
if supported for the target machine. Such code accesses all constant addresses
through a global offset table (GOT). The dynamic loader resolves the GOT
entries when the program starts (the dynamic loader is not part of GCC; it is part
of the operating system). If the GOT size for the linked executable exceeds a
machine-specific maximum size, you get an error message from the linker
indicating that -fpic does not work; in that case, recompile with -fPIC instead.
(These maximums are 16 KB on the m88k, 8 KB on the SPARC, and 32 KB on
the m68k and RS/6000. The 386 has no such limit.) Position-independent code
requires special support, and therefore works only on certain machines. For the
386, GCC supports PIC for System V but not for the Sun 386i. Code generated
for the IBM RS/6000 is always position-independent.
Appendix C. C compiler options 581

-mpower, -mno-power,
-mpower2,
-mno-power2,
-mpowerpc,
-mno-powerpc,
-mpowerpc-gpopt,
-mno-powerpc-gpopt,
-mpowerpc-gfxopt,
-mno-powerpc-gfxopt,
-mpowerpc64, or
-mno-powerpc64

GCC supports two related instruction set architectures for the RS/6000 and
PowerPC. The POWER instruction set are those instructions supported by the
rios chip set used in the original RS/6000 systems. The PowerPC instruction set
is the architecture of the Motorola MPC5xx, MPC6xx, and MPC8xx
microprocessors, and the IBM 4xx microprocessors. Neither architecture is a
subset of the other. However, there is a large common subset of instructions
supported by both. An MQ register is included in processors supporting the
POWER architecture. You use these options to specify which instructions are
available on the processor you are using. The default value of these options is
determined when configuring GCC. Specifying -mcpu=cpu_type overrides the
specification of these options. We recommend you use the -mcpu=cpu_type
option rather than the options listed above. The -mpower option allows GCC to
generate instructions that are found only in the POWER architecture and to use
the MQ register. Specifying -mpower2 implies -power, and also allows GCC to
generate instructions that are present in the POWER2 architecture but not the
original POWER architecture. The -mpowerpc option allows GCC to generate
instructions that are found only in the 32-bit subset of the PowerPC architecture.
Specifying -mpowerpc-gpopt implies -mpowerpc and also allows GCC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root. Specifying -mpowerpc-gfxopt implies
-mpowerpc and also allows GCC to use the optional PowerPC architecture
instructions in the Graphics group, including floating-point select. The
-mpowerpc64 option allows GCC to generate the additional 64-bit instructions
that are found in the full PowerPC64 architecture and to treat GPRs as 64-bit,
doubleword quantities. GCC defaults to -mno-powerpc64. If you specify both
-mno-power and -mno-powerpc, GCC will use only the instructions in the
common subset of both architectures plus some special AIX common-mode
calls, and will not use the MQ register. Specifying both -mpower and -mpowerpc
permits GCC to use any instruction from either architecture and to allow use of
the MQ register; specify this for the Motorola MPC601.

-mnew-mnemonics or
-mold-mnemonics

Selects which mnemonics to use in the generated assembler code.
-mnew-mnemonics requests output that uses the assembler mnemonics defined
for the PowerPC architecture, while -mold-mnemonics requests the assembler
mnemonics defined for the POWER architecture. Instructions defined in only one
architecture have only one mnemonic; GCC uses that mnemonic irrespective of
which of these options is specified. GCC defaults to the mnemonics appropriate
for the architecture in use. Specifying -mcpu=cpu_type sometimes overrides the
value of these option. Unless you are building a cross-compiler, you should
normally not specify either -mnew-mnemonics or -mold-mnemonics' but should
instead accept the default.

Option Description
582 AIX 5L Porting Guide

-mcpu=cpu_type Sets architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type cpu_type. Supported values for
cpu_type are rios, rios1, rsc, rios2, rs64a, 601, 602, 603, 603e, 604, 604e, 620,
630, 740, 750, power, power2, powerpc, 403, 505, 801, 821, 823, and 860 and
common. -mcpu=power, -mcpu=power2, -mcpu=powerpc, and
-mcpu=powerpc64 specify generic POWER, POWER2, pure 32-bit PowerPC
(that is, not MPC601), and 64-bit PowerPC architecture machine types, with an
appropriate, generic processor model assumed for scheduling purposes.
Specifying any of the following options: -mcpu=rios1, -mcpu=rios2, -mcpu=rsc,
-mcpu=power, or -mcpu=power2 enables the -mpower option and disables the
-mpowerpc option; -mcpu=601 enables both the -mpower and -mpowerpc
options. All of -mcpu=rs64a, -mcpu=602, -mcpu=603, -mcpu=603e, -mcpu=604,
-mcpu=620, -mcpu=630, -mcpu=740, and -mcpu=750 enable the -mpowerpc
option and disable the -mpower option. Similarly, all of -mcpu=403, -mcpu=505,
-mcpu=821, -mcpu=860 and -mcpu=powerpc enable the -mpowerpc option and
disable the -mpower option. -mcpu=common disables both the -mpower and
-mpowerpc options. AIX Version 4 or greater selects -mcpu=common by default,
so that code will operate on all members of the RS/6000 POWER and PowerPC
families. In that case, GCC will use only the instructions in the common subset
of both architectures plus some special AIX common-mode calls, and will not
use the MQ register. GCC assumes a generic processor model for scheduling
purposes. Specifying any of the options -mcpu=rios1, -mcpu=rios2, -mcpu=rsc,
-mcpu=power, or -mcpu=power2 also disables the new-mnemonics option.
Specifying -mcpu=601, -mcpu=602, -mcpu=603, -mcpu=603e, -mcpu=604,
-mcpu=620, -mcpu=630, -mcpu=403, -mcpu=505, -mcpu=821, -mcpu=860 or
-mcpu=powerpc also enables the new-mnemonics option. Specifying
-mcpu=403, -mcpu=821, or -mcpu=860 also enables the -msoft-float option.

-mtune=cpu_type Sets the instruction scheduling parameters for machine type cpu_type, but does
not set the architecture type, register usage, choice of mnemonics like
-mcpu=cpu_type would. The same values for cpu_type are used for
-mtune=cpu_type as for -mcpu=cpu_type. The -mtune=cpu_type option
overrides the -mcpu=cpu_type option in terms of instruction scheduling
parameters.

Option Description
Appendix C. C compiler options 583

-mfull-toc,
-mno-fp-in-toc,
-mno-sum-in-toc, or
-mminimal-toc

Modifies generation of the TOC (Table Of Contents), which is created for every
executable file. The `-mfull-toc' option is selected by default. In that case, GCC
will allocate at least one TOC entry for each unique non-automatic variable
reference in your program. GCC will also place floating-point constants in the
TOC. However, only 16,384 entries are available in the TOC. If you receive a
linker error message saying that you have overflowed the available TOC space,
you can reduce the amount of TOC space used with the -mno-fp-in-toc and
-mno-sum-in-toc options. -mno-fp-in-toc prevents GCC from putting
floating-point constants in the TOC and -mno-sum-in-toc forces GCC to
generate code to calculate the sum of an address and a constant at run time,
instead of putting that sum into the TOC. You may specify one or both of these
options. Each causes GCC to produce very slightly slower and larger code at the
expense of conserving TOC space. If you still run out of space in the TOC even
when you specify both of these options, specify -mminimal-toc instead. This
option causes GCC to make only one TOC entry for every file. When you specify
this option, GCC will produce code that is slower and larger but which uses
extremely little TOC space. You may wish to use this option only on files that
contain less frequently executed code.

-maix64 or -maix32 Enables 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit long type,
and the infrastructure needed to support them. Specifying -maix64 implies
-mpowerpc64 and -mpowerpc, while -maix32 disables the 64-bit ABI and implies
-mno-powerpc64. GCC defaults to -maix32.

-mxl-call or
-mno-xl-call

On AIX, passes floating-point arguments to prototyped functions beyond the
register save area (RSA) on the stack in addition to argument FPRs. The AIX
calling convention was extended but not initially documented to handle an
obscure K&R C case of calling a function that takes the address of its arguments
with fewer arguments than declared. AIX XL compilers access floating point
arguments which do not fit in the RSA from the stack when a subroutine is
compiled without optimization. Because always storing floating-point arguments
on the stack is inefficient and rarely needed, this option is not enabled by default
and only is necessary when calling subroutines compiled by AIX XL compilers
without optimization.

-mpe Supports IBM RS/6000 SP Parallel Environment (PE). Links an application
written to use message passing with special startup code to enable the
application to run. The system must have PE installed in the standard location
(/usr/lpp/ppe.poe/), or the specs file must be overridden with the -specs= option
to specify the appropriate directory location. The Parallel Environment does not
support threads, so the -mpe option and the -mthreads option are incompatible.

-msoft-float or
-mhard-float

Generates code that does not use (uses) the floating-point register set. Software
floating point emulation is provided if you use the -msoft-float option, and passes
the option to GCC when linking.

Option Description
584 AIX 5L Porting Guide

-mmultiple or
-mno-multiple

Generates code that uses (does not use) the load multiple word instructions and
the store multiple word instructions. These instructions are generated by default
on POWER systems, and not generated on PowerPC systems. Do not use
-mmultiple on little endian PowerPC systems, since those instructions do not
work when the processor is in little endian mode. The exceptions are PPC740
and PPC750, which permit the instructions usage in little endian mode.

-mstring or -mno-string Generates code that uses (does not use) the load string instructions and the
store string word instructions to save multiple registers and do small block
moves. These instructions are generated by default on POWER systems, and
not generated on PowerPC systems. Do not use -mstring on little endian
PowerPC systems, since those instructions do not work when the processor is
in little endian mode. The exceptions are PPC740 and PPC750, which permit the
instructions usage in little endian mode.

-mupdate or
-mno-update

Generates code that uses (does not use) the load or store instructions that
update the base register to the address of the calculated memory location.
These instructions are generated by default. If you use -mno-update, there is a
small window between the time that the stack pointer is updated and the address
of the previous frame is stored, which means code that walks the stack frame
across interrupts or signals may get corrupted data.

-mfused-madd or
-mno-fused-madd

Generates code that uses (does not use) the floating point multiply and
accumulate instructions. These instructions are generated by default if hardware
floating is used.

-mno-bit-align or
-mbit-align

On System V.4 and embedded PowerPC systems, does not (does) force
structures and unions that contain bit fields to be aligned to the base type of the
bit field. For example, a structure containing nothing but eight unsigned bitfields
of length 1 would be, by default, aligned to a four byte boundary and have a size
of 4 bytes. By using -mno-bit-align, the structure would be aligned to a one byte
boundary and be one byte in size.

-mno-strict-align or
-mstrict-align

On System V.4 and embedded PowerPC systems, does not (does) assume that
unaligned memory references will be handled by the system.

-mrelocatable or
-mno-relocatable

On embedded PowerPC systems, generates code that allows (does not allow)
the program to be relocated to a different address at run time. If you use
-mrelocatable on any module, all objects linked together must be compiled with
-mrelocatable or -mrelocatable-lib.

-mrelocatable-lib or
-mno-relocatable-lib

On embedded PowerPC systems, generates code that allows (does not allow)
the program to be relocated to a different address at run time. Modules compiled
with -mrelocatable-lib can be linked with either modules compiled without
-mrelocatable and -mrelocatable-lib or with modules compiled with the
-mrelocatable options.

Option Description
Appendix C. C compiler options 585

-mno-toc or -mtoc On System V.4 and embedded PowerPC systems, does not (does) assume that
register 2 contains a pointer to a global area pointing to the addresses used in
the program.

-mlittle or
-mlittle-endian

On System V.4 and embedded PowerPC systems, compiles code for the
processor in little endian mode. The -mlittle-endian option is the same as -mlittle.

-mbig or -mbig-endian On System V.4 and embedded PowerPC systems, compiles code for the
processor in big endian mode. The -mbig-endian option is the same as -mbig.

-mcall-sysv On System V.4 and embedded PowerPC systems, compiles code using calling
conventions that adheres to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless you
configured GCC using powerpc-*-eabiaix.

-mcall-sysv-eabi Specifies both -mcall-sysv and -meabi options.

-mcall-sysv-noeabi Specifies both -mcall-sysv and -mno-eabi options.

-mcall-aix On System V.4 and embedded PowerPC systems, compiles code using calling
conventions that are similar to those used on AIX. This is the default if you
configured GCC using powerpc-*-eabiaix.

-mcall-solaris On System V.4 and embedded PowerPC systems, compiles code for the Solaris
operating system.

-mcall-linux On System V.4 and embedded PowerPC systems, compiles code for the
Linux-based GNU system.

-mprototype or
-mno-prototype

On System V.4 and embedded PowerPC systems, assumes that all calls to
variable argument functions are properly prototyped. Otherwise, the compiler
must insert an instruction before every non prototyped call to set or clear bit 6 of
the condition code register (CR) to indicate whether floating point values were
passed in the floating point registers in case the function takes a variable
arguments. With -mprototype, only calls to prototyped variable argument
functions will set or clear the bit.

-msim On embedded PowerPC systems, assumes that the startup module is called
sim-crt0.o and that the standard C libraries are libsim.a and libc.a. This is the
default for powerpc-*-eabisim configurations.

-mmvme On embedded PowerPC systems, assumes that the startup module is called
crt0.o and the standard C libraries are libmvme.a and libc.a.

-mads On embedded PowerPC systems, assumes that the startup module is called
crt0.o and the standard C libraries are libads.a and libc.a.

-myellowknife On embedded PowerPC systems, assumes that the startup module is called
crt0.o and the standard C libraries are libyk.a and libc.a.

Option Description
586 AIX 5L Porting Guide

-mvxworks On System V.4 and embedded PowerPC systems, specifies that you are
compiling for a VxWorks system.

-memb On embedded PowerPC systems, sets the PPC_EMB bit in the ELF flags
header to indicate that eabi extended relocations are used.

-meabi or -mno-eabi On System V.4 and embedded PowerPC systems, does (does not) adhere to the
Embedded Applications Binary Interface (eabi) which is a set of modifications to
the System V.4 specifications. Selecting @option{-meabi means that the stack
is aligned to an eight byte boundary, a function __eabi is called to from main to
set up the eabi environment, and the -msdata option can use both r2 and r13 to
point to two separate small data areas. Selecting @option{-mno-eabi means that
the stack is aligned to a 16 byte boundary, does not call an initialization function
from main, and the -msdata option will only use r13 to point to a single small data
area. The -meabi option is on by default if you configured GCC using one of the
powerpc*-*-eabi* options.

-msdata=eabi On System V.4 and embedded PowerPC systems, puts small initialized const
global and static data in the .sdata2 section, which is pointed to by register r2.
Puts small initialized non-const global and static data in the .sdata section, which
is pointed to by register r13. Put small uninitialized global and static data in the
.sbss section, which is adjacent to the .sdata section. The -msdata=eabi option
is incompatible with the -mrelocatable option. The -msdata=eabi option also sets
the -memb option.

-msdata=sysv On System V.4 and embedded PowerPC systems, puts small global and static
data in the .sdata section, which is pointed to by register r13. Put small
uninitialized global and static data in the .sbss section, which is adjacent to the
.sdata section. The -msdata=sysv option is incompatible with the -mrelocatable
option.

-msdata=default or
-msdata

On System V.4 and embedded PowerPC systems (if -meabi is used), compiles
code the same as -msdata=eabi, otherwise compiles code the same as
-msdata=sysv.

-msdata-data On System V.4 and embedded PowerPC systems, puts small global and static
data in the .sdata section. Put small uninitialized global and static data in the
.sbss section. Does not use register r13 to address small data. This is the default
behavior unless other -msdata options are used.

-msdata=none or
-mno-sdata

On embedded PowerPC systems, puts all initialized global and static data in the
.data section, and all uninitialized data in the .bss section.

-G num On embedded PowerPC systems, puts global and static items less than or equal
to num bytes into the small data or bss sections instead of the normal data or bss
section. By default, num is 8. The -G num switch is also passed to the linker. All
modules should be compiled with the same -G num value.

Option Description
Appendix C. C compiler options 587

d Linux.

he default.

fault.

 not position

r volatile asm

stacked

ay be useful

useful when

 is useful

m.

er debugging
C.14.3 Flags specific to Intel Itanium-based systems

The -m options defined for Intel Itanium-based systems are shown in
Table 145.

Table 145. Itanium specific options for GNU GCC

-mregnames or
-mno-regnames

On System V.4 and embedded PowerPC systems, does (does not) emit register
names in the assembly language output using symbolic forms.

Option Description

-mbig-endian Generates code for a big endian target. This is the default for HP-UX.

-mlittle-endian Generates code for a little endian target. This is the default for AIX 5L an

-mgnu-as
-mno-gnu-as

Generates (or does not generate) code for the GNU assembler. This is t

-mgnu-ld
-mno-gnu-ld

Generates (or does not generate) code for the GNU linker. This is the de

-mno-pic Generates code that does not use a global pointer register. The result is
independent code, and violates the IA-64 ABI.

-mvolatile-asm-stop
-mno-volatile-asm-stop

Generates (or does not generate) a stop bit immediately before and afte
statements.

-mb-step Generates code that works around Itanium B step errata.

-mregister-names
-mno-register-names

Generates (or does not generate) in, loc, and out register names for the
registers. This may make assembler output more readable.

-mno-sdata
-msdata

Disables (or enables) optimizations that use the small data section. This m
for working around optimizer bugs.

-mconstant-gp Generates code that uses a single constant global pointer value. This is
compiling kernel code.

-mauto-pic Generates code that is self-relocatable. This implies -mconstant-gp. This
when compiling firmware code.

-minline-divide-min-latency Generates code for inline divides using the minimum latency algorithm.

-minline-divide-max-throughput Generates code for inline divides using the maximum throughput algorith

-mno-dwarf2-asm
-mdwarf2-asm

Does (or does not) generate assembler code for the DWARF2 line numb
info. This may be useful when not using the GNU assembler.

Option Description
588 AIX 5L Porting Guide

ed register is
 kernel code.
le register
-mfixed-range
=register range

Generates code treating the given register range as fixed registers. A fix
one that the register allocator cannot use. This is useful when compiling
A register range is specified as two registers separated by a dash. Multip
ranges can be specified separated by a comma.

Option Description
Appendix C. C compiler options 589

590 AIX 5L Porting Guide

Appendix D. Using the additional material

The source code examples used in this redbook are available for download
from the Web.

D.1 Locating the additional material on the Internet

The source code examples associated with this redbook are available in
softcopy on the Internet from the IBM Redbooks Web server. Point your Web
browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246034/

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number.

D.2 Using the Web material

The additional Web material that accompanies this redbook includes the
following:

File name Description
6034samples.tar.Z Compressed tar archive of source code samples.

D.2.1 System requirements for downloading the Web material

The following system configuration is recommended for downloading the
additional Web material.

Hard disk space: 1 MB minimum

D.2.2 How to use the Web material

Create a subdirectory (folder) on your workstation and copy the contents of
the Web material into this folder. Extract the source code examples with the
following command:

zcat 6034samples.tar.Z | tar xvf -

Use the sample code to examine the features of AIX 5L.

The contents of the 6034samples.tar archive are listed below.
© Copyright IBM Corp. 2001 591

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

zcat 6034samples.tar.Z | tar tvf -
-rwxr-xr-x 0 1 1025 Jun 04 21:38:59 2001 find_internal_macro_aix.ksh
-rwxr-xr-x 0 1 1145 Jun 04 21:36:26 2001 find_predef_macro_aix.ksh
-rwxr-xr-x 0 1 1010 Jun 04 21:36:35 2001 find_predef_macro_gnu.ksh
-rwxr-xr-x 0 1 1130 Jun 04 21:36:41 2001 find_spec_targets_aix.ksh
-rwxr-xr-x 0 1 1124 Jun 04 21:36:52 2001 find_spec_targets_gnu.ksh
-rwxr-xr-x 0 1 1721 Jun 04 21:49:27 2001 cpu_bind.c
-rwxr-xr-x 0 1 3985 Jun 04 21:41:07 2001 hwinfo.c
-rwxr-xr-x 0 1 5325 Jun 04 21:42:28 2001 mandelbrot1.c
-rwxr-xr-x 0 1 2477 Jun 04 21:43:34 2001 mandelbrot2.c
-rwxr-xr-x 0 1 2995 Jun 04 21:44:52 2001 mandelbrot3.c
-rwxr-xr-x 0 1 4528 Jun 04 21:46:08 2001 mandelbrot4.c
-rwxr-xr-x 0 1 7415 Jun 04 21:47:52 2001 mandelbrot5.c
-rwxr-xr-x 0 1 1047 Jun 04 21:50:27 2001 mem_lock.c
-rwxr-xr-x 0 1 5198 Jun 04 21:43:54 2001 message.c
-rwxr-xr-x 0 1 9976 Jun 04 21:44:21 2001 semaphore1.c
-rwxr-xr-x 0 1 4742 Jun 04 21:52:17 2001 shared_mem.c
-rwxr-xr-x 0 1 6506 Jun 04 21:53:57 2001 signals1.c
-rwxr-xr-x 0 1 6841 Jun 04 21:56:33 2001 signals2.c
-rwxr-xr-x 0 1 3091 Jun 04 21:46:57 2001 timer.c
592 AIX 5L Porting Guide

Appendix E. Special notices

This publication is intended to help application developers port their
applications to the AIX 5L operating system. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by the AIX 5L operating system. See the PUBLICATIONS
section of the IBM Programming Announcement for the AIX 5L operating
system for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 2001 593

attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or
both. In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer
- Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, Itanium, LANDesk, MMX, Pentium and ProShare are
trademarks of Intel Corporation in the United States and/or other countries.

AIX
AS/400
e (logo)
Lotus
Open Class
PowerPC
Redbooks Logo
RS/6000
SP
VisualAge

Approach
DB2
IBM ®
Notes
PartnerWorld
Redbooks
RMF
SAA
System/390
XT
594 AIX 5L Porting Guide

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Intel and Itanium are trademarks of the Intel Corporation.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix E. Special notices 595

596 AIX 5L Porting Guide

Appendix F. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

F.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 601.

 • AIX 5L Workload Manager (WLM), SG24-5977

 • C and C++ Application Development on AIX, SG24-5674

 • IBM Certification Study Guide AIX Installation and System Recovery,
SG24-6183

 • Running Linux Applications on AIX, SG24-6033

F.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

F.3 Other resources

These publications are also relevant as further information sources of
information. They are subdivided by topic.

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2001 597

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

F.3.1 C and C++ language

 • Ellis, et al., The Annotated C++ Reference Manual, Addison Wesley
Longman, Inc., 1990, ISBN 0201514591

 • Kernighan, et al., The C Programming Language, Second Edition,
Prentice-Hall PTR, 1989. ISBN 0131103628

 • Lippman, et al., C++ Primer, Third Edition, Addison Wesley Longman,
Inc., 1998, ISBN 0201824701

 • Stroustrup, et al., The Design and Evolution of C++, Addison Wesley
Longman, Inc., 1994, ISBN 0201543303

 • Programming Languages - C (ANSI/ISO/IEC 9899-1999), found at:

http://web.ansi.org/public/std_info.html

 • Programming Languages - C++ (ANSI/ISO/IEC 14882-1998) found at:

http://web.ansi.org/public/std_info.html

F.3.2 C and C++ Development on AIX

 • AIX 5L Online Documentation - General Programming Concepts: Writing
and Debugging Programs

 • AIX 5L Online Documentation - System Management Concepts: Operating
System and Devices

 • AIX 5L Online Documentation - System Management Guide: Operating
System and Devices

 • AIX 5L Online Documentation - System's User Guide: Operating System
and Devices

These AIX 5L documents can be viewed online at:

http://www-1.ibm.com/servers/aix/library/index.html

under the section Technical Publications. The documentation is currently
available online in the following languages: English, Japanese, Korean,
Spanish, German, Portuguese, French, Traditional Chinese and Italian.

 • C for AIX User’s Guide - This can only be found in the AIX C compiler
online documentation.

 • Using License Use Management Guide Runtime for AIX, SH19-4346,
found at:

ftp://ftp.software.ibm.com/software/lum/aix/doc/V4.5.5/lumusgaix.pdf
598 AIX 5L Porting Guide

F.3.3 VisualAge C++ and C for AIX compilers

The support page for the VisualAge C++ Professional for AIX Version 5
compiler is:

http://www.ibm.com/software/ad/vacpp/support.html

The compiler documentation can be downloaded in PDF format from the
following URLs:

http://www.ibm.com/software/ad/vacpp/library.html
http://www.ibm.com/software/ad/vacpp/support.html

The support page for the C for AIX Version 5 compiler is:

http://www.ibm.com/software/ad/caix/support.html

AIX developer information, including white papers, sample code, and
technology articles, can be located on the Web at the following URL:

http://www.developer.ibm.com

F.3.4 Threads

The following references contain additional information on threads.

 • IEEE Standards Online Subscriptions, found at:

http://standards.ieee.org/catalog/olis/index.html

All IEEE Standards referred to in this book may be found there. This Web
site requires registration, which can be done online. Use search criteria,
such as 9945-1 or 1003.1.

 • The Single UNIX Specification, Version 2, found at:

http://www.opengroup.org/onlinepubs/7908799/toc.htm

 • Lewine, et al., Posix Programmer's Guide: Writing Portable Unix Programs
With the Posix.1 Standard, O'Reilly & Associates, Inc., 1992, ISBN
0937175730.

F.3.5 Standards

Standards can be found at:

 • http://standards.ieee.org

F.4 Web sites

The following Web sites may be useful sources of information:
Appendix F. Related publications 599

 • www.ibm.com/servers/eserver/linux - Linux for IBM ^ Web page

 • http://www-1.ibm.com/servers/aix/library/index.html - IBM AIX Library
Web page

 • www.kornshell.com - KornShell Web page

 • www.ibm.com/servers/aix/products/aixos/linux/ - AIX Toolbox for Linux
Applications Web page

 • http://www-frec.bull.com/pub - Bull's Large Freeware and Shareware
Archive for AIX Web page

 • http://ftp.univie.ac.at/aix - Bull's Large Freeware and Shareware
Archive for AIX mirror site

 • www.rge.com/pub/systems/aix/bull - Bull's Large Freeware and Shareware
Archive for AIX mirror site

 • ftp://ftp.rge.com/pub/systems/aix/bull - Bull's Large Freeware and
Shareware Archive for AIX mirror site

 • www.gnu.org - GNU home page

 • www.au.nedit.org - Nirvana Editor Web site
600 AIX 5L Porting Guide

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2001 601

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
602 AIX 5L Porting Guide

Abbreviations and acronyms

ANSI American National
Standards Institute

API Application
Programming Interface

CD Compact Disc

CD-ROM Compact Disc-Read
Only Memory

CMA Concert Multithread
Architecture

CPU Central Processing Unit

DCE Distributed Computing
Environment

HTTP Hypertext Transfer
Protocol

IA Intel Architecture

IBM International Business
Machines Corporation

ILP32 Integer Long Pointer 32

I/O Input/Output

IPC Inter-Process
Communication

ITSO International Technical
Support Organization

LP64 Long Pointer 64

LPP Licensed Program
Product

MP Multiprocessor

NFS Network File System

PCI Peripheral Component
Interconnect

POSIX Portable Operating
Interface for Computing
Environments

POWER Performance
Optimization with
Enhanced RISC
(Architecture)
© Copyright IBM Corp. 2001
SMIT System Management
Interface Tool

SMP Symmetric
Multiprocessor

TCP/IP Transmission Control
Protocol/Internet
Protocol

TSD Thread Specific Data

UP Uniprocessor

VA VisualAge

VMM Virtual Memory
Manager
603

604 AIX 5L Porting Guide

Index

Symbols
#! 266
#!. 270
#define 152
#pragma define 405
#pragma implementation 403
#pragma priority 294
$ 165
$$@ 166
$% 164
$(D) 166
$(F) 166
$+ 166
$? 165
$@ 164
$^ 166
-+ 251
.DEFAULT 161
.IGNORE 161
.INIT 161
.KEEP_STATE 161
.POSIX 162
.PRECIOUS 162
.SILENT 162
.SUFFIXES 162
/bin 111
/dev 112
/etc 111
/export 112
/home 112
/lib 112, 272, 284
/proc 26, 112
/sbin 111
/tftpboot 112
/tmp 112
/u 112
/usr 112
/usr/include 112
/usr/lib 272, 284
/var 112
<sys/types.h> 120, 126
@ 156
__64BIT__ 71, 118
__align 72
__cplusplus 255
__cptr64 121
© Copyright IBM Corp. 2001
__ptr32 121
__ptr64 121
_POSIX_REENTRANT_FUNCTIONS 364
_POSIX_THREADS 364

Numerics
0509-022 274
0509-023 275
0509-026 274
32-bit virtual address 23
64-bit addressing 22
64-bit applications 20
64-bit hardware 20
64-bit kernel 21
64-bit multiplication 46
64-bit UNIX 28

A
absolute pathname 271, 284
access permissions 286
accuracy 45
adapter memory endianness 38
adb 110
address arithmetic 49, 54, 125
address space 21
advantages of shared libraries 257
aggregate definition 72
AIX documentation 83
AIX shared object 262
AIX Toolbox for Linux Applications 2
AIXTHREAD_MINKTHREADS 369
AIXTHREAD_MNRATIO 368
AIXTHREAD_SCOPE 332, 367
AIXTHREAD_SLPRATIO 368
alarm 196, 356
algorithm adjustment 119
alignment 66
alignment investigation 70
alignment matching 67
alloca 139
ANSI C++ standard 397
ANSI/IEEE Std 754, 1985 44
ANSI/ISO C standard 28
ar format archive 258
archive library 272
array indexes 25
605

array references 25
assembler files 225
assembly code 152
assembly language 26
assignment operator 43
assignment rules 115
associative arrays 142
asynchronous cancelability 338
asynchronous event 356
atomic step 308
automatic padding 66
automatic template instantiation 405
automatic variables 163

B
base data types 32, 65
bash 93
batch compiler 98, 250
-bdynamic 276
-bE: 264, 293
BE_u32 16
benefits of 64-bit 21
-berok 277, 278
-bexpall 263, 279, 293
big-endian 9
binder 298
bindprocessor 186
-binitfini 270, 291
-bipath 284
bit fields 11, 12
bit masks 64
bit shifting 64
bitwise operators 52
-blazy 276
-bloadmap 298
-bM:SRE 264, 278
-bmap 298
-bnoautoexp 277
-bnoentry 264, 268, 279
-bnoexpall 293
-bnoipath 273, 274, 284, 285
-bnortllib 272, 277
bos.adt.include 102
bound thread scheduling 324
-brtl 261, 262, 277
bsh 93
-bstatic 276
-bsymbolic 277

built-in macros 163
built-in targets 160
built-in types 120
BUMP 298
busy/wait 346
byte ordering 9
BYTE_ORDER 14

C
C preprocessor 152
C++ code bloat 401
C++ export file 292
C++ standard 397
C++ symbol names 292
cache footprint 25
caddr_t 121
callable functions 152
calloc 139
cancellation points 338
canonical form 15
cardinality 33, 40, 74, 143
casting 12
CDE 98
CHAR_BIT 34, 126
CHAR_MAX 126
CHAR_MIN 126
checkpoint 4
class libraries 3
class templates 397
classes 115
clock_t 121
code address 287
Code Clean 117
code comments 151
Code example truncate.c 43
code layout 397
code path 15
code section 401
column order 143
command line 271
command line driver 99
commands

dbx 110
dump 264, 275, 283
find 275
genkld 281
grep 282
idebug 111
606 AIX 5L Porting Guide

irmtdbgc 111
ld 258
lint 109
lsps 223
make 155
rm 283
rtl_enable 280
sccshelp 96
slibclean 282
sort 282
strip 227
ulimit 298

comments 151
Common Desktop Environment 98
common type 46
Comparison 32
compilation model 39
compilation tools 19
compilation unit 398
compile time option 14
compiler commands 99
compiler configuration file 99
compiler configurations 104
compiler documentation 83, 104
compiler driver extensions 104
compiler filesets 101
compiler optimization 143
compiler options 29, 397

-qfuncsect 401, 402, 409
-qldbl128 33
-qlongdouble 33
-qmacpstr 235
-qmkshrobj 406
-qnokeyword 256
-qnoprint 228
-qnostaticinline 254
-qnotempinc 404
-qnotwolink 254
-qpriority 253, 294
-qstaticinline 254
-qtempinc 400, 403, 406
-qtwolink 254
-qupconv 235
-qwarn64 45

compiler padding 66
completion schedule 27
concurrent access 362
concurrent network license server 87
concurrent nodelock license server 87

condition variable 349
conditional compilation 9, 39, 151
conditional compile directives 14
conditional compile section 68
confstr 149
congruent 31
const 152
constant expression 57
constant qualifiers 57
constants 151
contention scope 328
controller endianness 38
conversion effort 25
conversion macros 16
conversion rules 31
cptr32 120
cptr64 121
cpu_bind.c 186
CreateExportList 269
CSECT 401
csh 93
current directory 271

D
data alignment 65, 66
data cache 22
data cardinality 74, 143
data endianness 38
data exchange 12
data interchange 40
data interpretation 69
data layout 66
data mining 21
data offset 74
data padding 66
data referencing 12
data reordering 67
data sets 24
data sharing 67
data storage types 19
data truncation 42
data type mismatch 12
data type promotion 78
data type size 38
database 3
DBL_DIG 35
DBL_EPSILON 35
DBL_MANT_DIG 35
 607

DBL_MAX 36
DBL_MAX_10_EXP 36
DBL_MAX_EXP 36
DBL_MIN 36
DBL_MIN_10_EXP 36
DBL_MIN_EXP 36
dbx command 110
DCE threads 312
deadlock 344, 348
deadlocks 308
debuggers

adb 110
dbx 110

decimal integer constants 57
default linker options 262
deferred cancelability 338
deferred loading of modules 276
definition of a port 3
dependent shared object 263
derived data type 120
determining alignment 70
dev_t 121
development activity 19
development environment 2, 83
device driver 9
device drivers 26
direct function calls 409
directory structure 273
disabled cancelability 337
diskless client 112
displacement 74
DISPLAY 106
distributed debugger 111
dlclose 289
dlerror 289
DLL 258
dlopen 262, 289
dlsym 289
documentation 83
double suffix 159
double-linked list 41
dtpad 95
dump command 264, 275, 283
duplicate symbols 397
dynamic binding 257
dynamic data structures 270
dynamic linking 258
dynamic macros 163

E
ed 95
editors

dtpad 95
ed 95
emacs 95
ex 95
nedit 95
vi 95

egrep 147
ELF 283
emacs 95
endian dependency 11
endian neutral 9, 12
endian sensitivity 12
endianness 9
endianness definition 9
endianness determination 14
entry point 264
entry-point routine 335
environment variables 142
equality operator 344
ex 95
exception 66
exchanging data 67, 309
exec(): 0509-036 274
executable file 227
execution environment 19
execution mode 41
exit 336
EXP 265
expansion operators 142
explicit cancellation point 338
explicit cast 43, 47
explicit size types 143
explicit truncation 43
explicitly sized data 122
export file 262
export file in C++ 292
exporting symbols from main 270
extended capacity 117
extended compile time 401
extended shmat capability 190
external data cache 22
external function declarations 75
external symbols 257
EXTSHM 190
608 AIX 5L Porting Guide

F
fetch 171
fgetpos 140
field rearrangement 74
field width 40
file permissions 142
file pointer 30
find command 275
fixed field width 40
float.h 35
flow of control 311
FLT_DIG 35
FLT_EPSILON 35
FLT_MANT_DIG 35
FLT_MAX 35
FLT_MAX_10_EXP 35
FLT_MAX_EXP 35
FLT_MIN 35
FLT_MIN_10_EXP 35
FLT_MIN_EXP 35
FLT_RADIX 35
formal parameters 75
fpos_t 121
freeware 20
fsetpos 140
ftok 190
function address 287
function prototypes 20
function replacement 280
function templates 397
functions returning pointers 48

G
-G 268, 278
g++ 109
gcc 109
generated function bodies 399
generic pointer 53
genkld command 281
getpri 184
getpriority 184
gid_t 121
global symbols 263
GNU compilers 109
GNU make 155
GNU software 2, 96
graceful exit 270
grep 147

grep command 282
gsignal 196

H
hardware exception 66
hardware fault 355
hardware-dependent 120
hash key distribution 119
header file 68
header files 112, 149
heap allocation 119
hexadecimal format 40
hexadecimal integer constants 57
high availability 2
high order bit 60
high-order bit 31
holes 68
HP-UX make 155
htonl 17
htons 17

I
I/O bound 24
i4blt 91
i4gdb 90
i4glbcd 90
i4lmd 90
IDE 98
idebug debugger 111
identical function definitions 401
identifiers 151
IEEE Standard 44
iFOR/LS 86
ILP32 19, 28
ILP32 data types 32, 65
IMEX 265
IMP 265
IMPid 265
implementation defined 307, 313
implementation specific 120
implicit conversions 75
implicit function declaration 48
import file 262
Import File Strings 283
import make rules 181
importing symbols from main 270
incremental compiler 98
incrementing a pointer 49
 609

indirect function calls 409
indirection 191
industry standards 1
inference rules 156
initial thread 336
initialization priority 293
initialization routines 270
in-line assembler 152
inline member functions 399
inline virtual functions 409
installation layout 273
installing software 84
instruction set 19
INT_MAX 34, 126
INT_MIN 34, 126
int16_t 123
int32_t 123
int64_t 123
int8_t 123
integer conversion rules 31
integral conversions 43
integral operands 46
integral promotion 235
integral to pointer 50
Integrated Development Environment 98
intended platform 15
interchangeable pointers 55
interdependent shared objects 265
interface limitations 25
internal linkage 399, 409
internal macros 163
intmax_t 125
intptr_t 125
inttypes.h 41
IPC 308
IPv4 17
irmtdbgc command 111
Itanium 22
Itanium-based systems 2

J
JFS2 2

K
kernel extension 21
kernel memory 26
kernel scheduler 324
kernel thread 324

kill 196
killpg 196
KornShell 93
ksh 93
ksh93 93

L
-L 272
-l 272
L suffix 59
large code size 407
large executable size 401
large files 25, 30
large shared memory region 190
lazy loading 276
ld command 258
LD_LIBRARY_PATH 274
LDBL_DIG 36, 37
LDBL_EPSILON 36, 37
LDBL_MANT_DIG 36, 37
LDBL_MAX 37
LDBL_MAX_10_EXP 37
LDBL_MAX_EXP 37
LDBL_MIN 36, 37
LDBL_MIN_10_EX 36, 37
LDBL_MIN_EXP 36, 37
LDR_CNTRL 299
leading zeros 40, 59
least significant bits 75
least significant byte 9
left shift expressions 60
libdl.a library 291
LIBPATH 274, 284
library cleanup 270
library initialization 270
library permissions 275
library scheduler 323
license server types 87
limits.h 34
link time 258
linker 300, 407
linker error 298
linker options 271
lint 27, 143
lint command 109
Linux 2, 8
Linux affinity 2
Linux API 8
610 AIX 5L Porting Guide

Linux header files 8
little-endian 9
load balancing 186
load time 277
loader section 258, 281
long double data type 33, 66
LONG_BIT 127
LONG_MAX 34, 127
LONG_MIN 34, 127
longjmp 356
loss of precision 45
LP64 20, 28
LP64 data types 32, 65
lseek 30, 140
lseek64 30, 140
lsps command 223
LUM 86
LUM daemons 88
LUM server 87

M
M:1 model 325
M:N thread model 327
machine independent 12
macro definitions 156
macros 151

offsetof 69
madvise 190
main function 264
maintainability 117
maintenance 151
maintenance cycle 27
make command 155
make macros

$ 165
$$@ 166
$% 164
$(D) 166
$(F) 166
$+ 166
$? 165
$@ 164
$^ 166
AR 168
AS 168
CC 168
CPP 168

make search 170

makeC++SharedLib 406
makefile 156
makefiles 14
malloc 139, 152
malloc replacement 280
mangled 292
mantissa 44
mapped memory 189
mem_lock.c 189
memcpy 147
memory endianness 38
memory footprint 74
memory layout 13
memory segment 150
message queue 30
Method A 4
Method B 4
Method C 5
Microsoft Windows 1
mincore 190
mixed assignment 42
mixed sign arithmetic 80
mixing objects 260
mmap 190
mode_t 121
model 19
module interdependencies 280
most significant byte 9
mprotect 190
msync 190
multibyte data 9
multiheap malloc 369
multiple #include protection 400
multiple definitions 400
multiple read operations 66
multiple source trees 27
multiple symbol definition 401
multiplexed thread scheduling 325
multi-task 308
multi-threaded 23
munmap 190
mutex 347
mutual compatibility 110
mutual exclusion lock 347

N
naming scheme 118
narrowing assignment 43
 611

narrowing casts 47
native applications 8
native endianness 17
natural boundaries 147
nedit 95
negative number 31
Net/LS 86
new style shared object 262, 267, 285
nice 184
nlist64 30
 279
Non-uniform data referencing 12
ntohl 17
ntohs 17

O
O_LARGEFILE 30
octal integer constants 57
off_t 121
offsetof macro 69
online compiler documentation 104
online documentation 83
opaque object 344
open source 96
OpenMP 98
optimization 223
order of initialization 294
overall structure size 67
overflow 31

P
padding 66
padding types 69
paging-space problems 223
parallel programming 98
parent process 308
PartnerWorld for Developers 83
Pascal string literals 235
PATH 100
pathconf 149
PCI bus 12
pending signals 308
performance degradation 66
performance penalty 15
physical memory 22
pid_t 120, 121
pipes 308
plock 188

pointer arithmetic 49, 54
pointer assignments 56
pointer corruption 48
pointer incompatiblities 55
pointer manipulation 12
pointer offset 74
pointer to integral 50
port 3
portable bit masks 150
porting C++ code 397
POSIX 71
POSIX.1 1
power systems 2
precision 118
preprocessor 152
preprocessor directive 39
preprocessor macros 400
primitive types 120
printf field width 40
printf format string 40
priority levels 183
Priority range 183
priority values 294
PRIORITY_MAX 183
PRIORITY_MIN 183
priority1.c 185
private address space 308
private shared object 286
process contention model 323
process data space 22
process environment 69
process private segment 286
process scope 326
production code 27
program address space 69
programming

model 19
programming models 19
prototyped declaration 75
pthread_atfork 315
pthread_attr_destroy 314
pthread_attr_getdetachstate 314
pthread_attr_getguardsize 321
pthread_attr_getinheritsched 316
pthread_attr_getschedparam 316
pthread_attr_getschedpolicy 316
pthread_attr_getscope 316
pthread_attr_getstackaddr 314
pthread_attr_getstacksize 314
612 AIX 5L Porting Guide

pthread_attr_init 314
pthread_attr_setdetachstate 314
pthread_attr_setguardsize 321
pthread_attr_setinheritsched 316
pthread_attr_setschedparam 316
pthread_attr_setschedpolicy 316
pthread_attr_setscope 316
pthread_attr_setstackaddr 314
pthread_attr_setstacksize 314
pthread_attr_t 333
pthread_cancel 315
pthread_cleanup_pop 320, 341
pthread_cleanup_push 320, 341
pthread_cond_broadcast 319
pthread_cond_destroy 319
pthread_cond_init 319
pthread_cond_signal 319
pthread_cond_timedwait 319
pthread_cond_wait 319
pthread_condattr_destroy 318
pthread_condattr_getpshared 319
pthread_condattr_init 318
pthread_condattr_setpshared 319
pthread_continue 322
pthread_create 312, 315, 335
PTHREAD_CREATE_DETACHED 334
PTHREAD_CREATE_JOINABLE 334
pthread_detach 315
pthread_equal 315, 344
pthread_exit 312, 315, 336
pthread_getconcurrency 321
pthread_getschedparam 317, 332
pthread_getspecific 320
pthread_join 312, 315, 343
pthread_key_create 319
pthread_key_delete 320
pthread_kill 196, 312, 315, 356
pthread_mutex_destroy 318
pthread_mutex_getprioceiling 318
pthread_mutex_init 318
pthread_mutex_lock 318
pthread_mutex_setprioceiling 318
pthread_mutex_trylock 318
pthread_mutex_unlock 318
pthread_mutexattr_destroy 318
pthread_mutexattr_getprioceiling 318
pthread_mutexattr_getprotocol 318
pthread_mutexattr_getpshared 318
pthread_mutexattr_gettype 322

pthread_mutexattr_init 318
pthread_mutexattr_setprioceiling 318
pthread_mutexattr_setprotocol 318
pthread_mutexattr_setpshared 318
pthread_mutexattr_settype 321
pthread_once 315
pthread_rwlock_destroy 321
pthread_rwlock_init 320
pthread_rwlock_rdlock 321
pthread_rwlock_tryrdlock 321
pthread_rwlock_trywrlock 321
pthread_rwlock_unlock 321
pthread_rwlock_wrlock 321
pthread_rwlockattr_destroy 320
pthread_rwlockattr_getpshared 320
pthread_rwlockattr_init 320
pthread_rwlockattr_setpshared 320
pthread_self 312, 315, 356
pthread_setcancelstate 314
pthread_setcanceltype 314
pthread_setconcurrency 321
pthread_setschedparam 317, 332
pthread_setspecific 320
pthread_sigmask 312
pthread_suspend 322
pthread_testcancel 314, 338
ptr32 121
ptr64 121
ptrdiff_t 121

Q
-qfuncsect 401, 402, 409
-qldbl128 33
-qlongdouble 33
-qmacpstr 235
-qmkshrobj 406
-qnokeyword 256
-qnoprint 228
-qnostaticinline 254
-qnotempinc 404
-qnotwolink 254
-qpriority 253, 294
-qstaticinline 254
-qtempinc 400, 403, 406
-qtwolink 254
qualifiers 57
-qupconv 235
-qwarn64 45
 613

R
race condition 345
radix 57
raise 196
RAS 3
RCS 96, 170
read operation 38
realloc 139
redundant code 401
reentrant function 362
reference source 4
referenced shared libraries 258
register layout 10
relative order of initialization 294
relative pathname 271
reliability 117
reordering 67
replaceCSET 100
reserved bit fields 147
restoreCSET 100
risk 5
rm command 283
RPM 2
rtl_enable command 280
RTLD_LAZY 290
RTLD_MEMBER 290
RTLD_NOW 290
rules 156
run-time linker 263, 280

S
sample code 84
saving disk space 259
scalability 21
scalable masks 150
scanf 40
SCCS 95, 170
sccshelp 96
SCHAR_MAX 34, 126
SCHAR_MIN 34, 126
SCHED_FIFO 329
SCHED_OTHER 329
SCHED_RR 329
sched_yield 312
scheduling hierarchy 184
scheduling policy 328
scheduling priority 328
search engine 21

segment register 191
segmentation faults 146
self-modifying code 141
semaphores 308
setgid programs 274
setjmp 356
setpri 184
setpriority 184
setuid 141
setuid programs 274
sh 93
shared libraries 257
shared library 260
shared memory 30, 150, 189, 308
shared memory architectures 98
shared object 260, 262
shared object data segment 286
shared object text 286
shared reusable object 264
shared_mem.c 191
shareware 20
sharing structures 71
shmat 190
shmctl 190
shmdt 190
shmget 190
SHRT_MAX 34, 126
SHRT_MIN 34, 126
side-effects 40
sigaction 196
sigaddset 196
sigblock 196
sigdelset 196
sigemptyset 196
sigfillset 196
sighold 196
sigignore 196
siginterrupt 196
sigismember 196
siglongjmp 196, 356
sign extension 25, 78
signal 145, 196
signal delivery 358
signal handler 356
signal mask 308
significant bits 119
sigpause 196
sigpending 196
sigprocmask 196
614 AIX 5L Porting Guide

sigrelse 196
sigset 196
sigsetjmp 196, 356
sigsetmask 196
sigstack 196
sigsuspend 196
sigvec 196
simple nodelock license 87
simple template method 407
single header file 400
single source 149
single source tree 397
single suffix 159
size of integer constants 59
size polymorphism 119
size_t 39, 121
sizeof() 39, 74
sleep/wait 346
slibclean command 282
slower compile times 407
sockets 308
software compatibility 2
software debugging 151
software installation 84
software update 5
Solaris make 155
sort command 282
source code control 95
source code structure 403
source Platform 1
source tree 5, 27
special targets 160
SPINLOOPTIME 367
sprintf 40
SRE 260
sscanf 40
ssignal 196
ssize_t 121
stack space 25
standard header files 112
static libraries 229
static library 258
stdarg.h header 153
stddef.h header 39
storage models 11
storage requirements 74
strip command 227
structure layout 66
structure padding 66

structure reordering 67
suppress absolute pathname 285
symbol information 285
symbol name 69
symbol resolution 280
symbolic constants 60
symbols 30
synchronization event 331
synchronization primitives 346
sysconf 149, 186, 189, 364
system contention model 322
system group 282
system header files 20
system layer 8
system loader 258, 274, 276, 281, 286
system shared object segment 281, 286
system vendors 28
system-derived data types 20

T
tabs 143
target 155
target Platform 1
target rules 156
TCP/IP 12
TCP/IP protocol 16
tcsh 93
tempinc directory 403, 407
template code generation 404
template declaration 398
template definition 398
template definition file 403
template implementation file 405
template implementation method 397
template instance 398
template instantiation information 404
templates 397
templates with shared libraries 406
terminal activity 356
termination routines 270
test cycle 5
testing 4
thread models 323
thread specific data 359
thread-safe function 362
time_t 121
timestamp 405
TLB 24
 615

Toolbox for Linux 2
tools 83
traditional AIX shared object 262
Tru64 make 155
truncated pointers 48
truncation 43
truncation dependency 62
tsh 93
twos-complement 31, 62
type alignment 65
type casting 12
type checking 12
type consistency 27
type promotion 78
type size 38
typedef 120

U
U suffix 59
u32_BE 16
UCHAR_MAX 34, 126
UINT_MAX 34, 126
uint16_t 123
uint32_t 123
uint64_t 123
uint8_t 123
uintmax_t 125
uintptr_t 49, 125
UL suffix 59
ulimit command 298
ULONG_MAX 35, 127
undef 279
undefined bits 75
undefined symbols 258
unions 12, 42
unique symbol name 69
UNIX 95 1
UNIX 98 1, 26
unload shared objects 282
unreferenced symbols 263
unresolved symbols 278, 298
unsupported linker options 301
untyped integral constants 59
use count 281
user defined malloc 280
user-defined padding 68
USHRT_MAX 34, 126

V
va_arg 153
va_list 153
va_start 153
valloc 140
varargs functions 152
variable argument function 152
variable names 151
vi 95
virtual address space 22
virtual function table 409
virtual functions 409
virtual memory 298
virtual processor 324
visible padding 69
void* pointer 56
volatile 143

W
well defined interface 262
which 171
wint_t 121
WLM 115
WORD_BIT 126
words 9
wrapper 8

X
XCOFF 227
XDR 15
XPG 71

Y
YIELDLOOPTIME 367
616 AIX 5L Porting Guide

© Copyright IBM Corp. 2001 617

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

 • Use the online Contact us review redbook form found at ibm.com/redbooks
 • Fax this form to: USA International Access Code + 1 845 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6034-00
AIX 5L Porting Guide

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

AIX 5L Porting Guide

®

SG24-6034-00 ISBN 0738422053

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

AIX 5L Porting Guide

Practical advice and
guidance when
porting to AIX 5L

Common problems
explained and
solutions
documented

Written by
developers for
developers

This redbook details the types of problems most likely to be
encountered when porting applications from other
UNIX-based platforms to the AIX 5L Operating System.

When porting an application to a new operating system there
are things you have to know and questions you have to ask,
such as:

- What programming models are available?
- How are threads implemented?
- What link options do I need?
- Why do my makefiles not work any more?

We have tried to condense all of these questions (and
answers) into one document, and this redbook is the result. It
has been designed to provide guidance and reference
material for system and application programmers who have
been given the task of porting applications written in C and/or
C++ to the AIX 5L operating system. This redbook assumes
the reader is familiar with the C and/or C++ programming
languages and UNIX operating systems.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 Helpful terms and definitions
	1.2 AIX 5L benefits and features
	1.3 Approaches to porting
	1.3.1 Porting steps

	1.4 Coding practices

	Chapter 2. Endianness - byte ordering
	2.1 Endianness neutrality
	2.1.1 Endianness - byte ordering

	2.2 Dealing with endianness
	2.2.1 General solution guideline
	2.2.2 Nonuniform data referencing
	2.2.3 Exchanging and sharing data

	Chapter 3. Issues regarding 32-bit and 64-bit
	3.1 Overview of programming models
	3.1.1 Available programming models
	3.1.2 Porting your code

	3.2 32-bit versus 64-bit computing
	3.2.1 Large virtual address space beyond the 4�GB barrier
	3.2.2 Beyond large address space
	3.2.3 64-bit performance considerations
	3.2.4 Port to 64-bit or leave your application 32-bit
	3.2.5 Applications requiring porting

	3.3 Migrating from 32-bit to 64-bit
	3.4 Conversion of 32-bit applications
	3.4.1 ILP32 and LP64 programming models
	3.4.2 32-bit and 64-bit application interoperability

	3.5 ANSI�C integer conversion rules
	3.6 C and C++ data type size issues
	3.6.1 C and C++ data type sizes in AIX�5L
	3.6.2 Different sizes for int and long in LP64 mode
	3.6.3 The sizeof() operator
	3.6.4 Data type specifications in (s)printf/(s)scanf
	3.6.5 Structures and unions may change size

	3.7 Data truncation
	3.7.1 Assignment of long to a smaller type
	3.7.2 Assignment of long to double
	3.7.3 Integer expression with potential overflow
	3.7.4 Explicit cast improperly applied

	3.8 Pointer assignment and arithmetic
	3.8.1 Different byte sizes for int and pointers in LP64 mode
	3.8.2 Assignment of 64-bit pointer value to a smaller integral type
	3.8.3 Assumption about pointers and int in arithmetic context
	3.8.4 Address arithmetic and pointer arithmetic
	3.8.5 Pointer to int is incompatible with pointer to long

	3.9 Integer constants
	3.9.1 ANSI�C rules for integer constants
	3.9.2 Untyped integral constants are int by default
	3.9.3 General guidelines
	3.9.4 Integer expression with overflow in 64-bit expression
	3.9.5 Hexadecimal constants
	3.9.6 Code depending on truncation at 32�bits on overflow
	3.9.7 Wrong assumption about size of long integers
	3.9.8 Bit shifts and bit masks

	3.10 C and C++ data type alignment issues
	3.10.1 C and C++ data type alignment in AIX�5L
	3.10.2 Data alignment
	3.10.3 Data reordering
	3.10.4 User-defined padding
	3.10.5 Determining structure alignment
	3.10.6 Objects change size
	3.10.7 __align specifier
	3.10.8 Data inflation

	3.11 Lack of function prototypes
	3.11.1 Lack of prototyped function declaration
	3.11.2 Pointer return or argument types without function prototype

	3.12 Data type promotion
	3.12.1 Sign extension
	3.12.2 Arithmetic between signed and unsigned numbers

	Chapter 4. Setting up the development environment
	4.1 Your development environment
	4.2 Online documentation
	4.2.1 AIX 5L online documentation
	4.2.2 Compiler product information
	4.2.3 PartnerWorld for Developers

	4.3 Installing software on AIX
	4.3.1 Installing software using Web-based System Manager
	4.3.2 Installing software using SMIT
	4.3.3 Installation with the command line interface (installp)

	4.4 The License Use Manager
	4.4.1 Configuring LUM
	4.4.2 Activating the LUM server
	4.4.3 Enrolling a product license
	4.4.4 Enrolling a concurrent license
	4.4.5 Enrolling a simple nodelock license

	4.5 Shells available on AIX 5L
	4.6 Editors available on AIX 5L
	4.7 Source Code Control products under AIX 5L
	4.8 Where to get GNU and other useful software for AIX 5L
	4.8.1 AIX Toolbox for Linux Applications
	4.8.2 Other locations for GNU software for AIX 5L
	4.8.3 Downloading Nedit for AIX 5L

	4.9 Compilers available on AIX 5L for Power
	4.9.1 IBM C for AIX Version 5.0.2
	4.9.2 IBM VisualAge C++ Professional for AIX Version 5.0.2
	4.9.3 Multiple command line drivers
	4.9.4 Installation directory
	4.9.5 Installation of compiler products
	4.9.6 Activating the IBM compilers

	4.10 Invoking the IBM compilers
	4.10.1 Default compiler drivers

	4.11 Online compiler documentation
	4.11.1 Viewing locally
	4.11.2 Viewing remotely

	4.12 The GNU compilers
	4.13 The lint code checker
	4.14 Debuggers available on AIX 5L
	4.14.1 Included debuggers
	4.14.2 idebug and irmtdbgc

	4.15 AIX 5L directories
	4.16 Header files
	4.16.1 Maximums and minimums
	4.16.2 Limiting resource usage with WLM

	Chapter 5. Porting
	5.1 Code clean - preparing your source code
	5.1.1 Appropriate porting model
	5.1.2 API revisions
	5.1.3 Data type agreement
	5.1.4 Algorithm updates
	5.1.5 Software correctness

	5.2 System derived data types
	5.2.1 Data types defined by <sys/types.h>
	5.2.2 Data types defined by <inttypes.h>

	5.3 System derived constants and macros
	5.3.1 Constants and macros defined by <limits.h>
	5.3.2 Constants and macros defined by <inttypes.h>

	5.4 System specific differences
	5.4.1 System derived data types
	5.4.2 Application Programming Interfaces
	5.4.3 Threads
	5.4.4 The sizeof() operator
	5.4.5 Self-modifying code
	5.4.6 System specific commands

	5.5 AIX 5L porting programming tips
	5.5.1 General tips
	5.5.2 Int, long, and pointer
	5.5.3 Sign extension
	5.5.4 Data truncation
	5.5.5 Data type promotion
	5.5.6 Pointer truncation
	5.5.7 Structures
	5.5.8 Hardcoded constants

	5.6 AIX 5L porting guidelines
	5.6.1 Identify potential problems using grep commands
	5.6.2 Identify potential problems using lint
	5.6.3 Compile and link the code and fix the discovered problems
	5.6.4 Fix alignment and padding problems
	5.6.5 C programming

	Chapter 6. Makefiles and the make command
	6.1 Makefiles
	6.1.1 Command prefixes
	6.1.2 Default inference rules
	6.1.3 Single suffix default inference rules
	6.1.4 Double suffix default inference rules
	6.1.5 Special targets (the .targets)
	6.1.6 Using the .POSIX special target
	6.1.7 Internal macros
	6.1.8 Predefined macros

	6.2 The make command
	6.2.1 Environment variables
	6.2.2 Command line options to the make command
	6.2.3 The MAKERULES macro on make for AIX 5L
	6.2.4 Exit values from the make command

	Chapter 7. System functions
	7.1 Priority manipulation
	7.2 CPU manipulation
	7.3 Memory locking/pinning
	7.4 How to determine system configuration
	7.5 Shared or mapped memory
	7.6 Signals
	7.7 Threads
	7.8 Semaphores
	7.9 Message queues
	7.10 Timers and cyclic signals

	Chapter 8. The compilers
	8.1 The C compiler
	8.1.1 C for AIX 5L compiler limits
	8.1.2 Environment variables affecting the compilers
	8.1.3 Types of input files
	8.1.4 Output files
	8.1.5 Type conversions
	8.1.6 C compiler files and directories
	8.1.7 Command line arguments
	8.1.8 Predefined preprocessor macros

	8.2 GNU GCC for AIX 5L
	8.3 The C++ compiler
	8.3.1 Introduction
	8.3.2 Types of input files
	8.3.3 VisualAge C++ compiler files and directories
	8.3.4 Command line arguments
	8.3.5 Predefined preprocessor macros

	8.4 Migrating to VisualAge C++ Version 5
	8.4.1 New keywords
	8.4.2 Changes to digraphs in the C++ language

	Chapter 9. AIX shared objects and libraries
	9.1 Terminology
	9.1.1 Static library
	9.1.2 Shared library
	9.1.3 Itanium-based system differences

	9.2 Creating a shared library on Power systems
	9.2.1 Traditional AIX shared object
	9.2.2 New style shared object
	9.2.3 Importing symbols from the main program
	9.2.4 Initialization and termination routines

	9.3 Creating a shared object on Itanium-based systems
	9.4 Using a shared library
	9.4.1 On the compile line
	9.4.2 Searching at run time
	9.4.3 Shared or non-shared
	9.4.4 Lazy loading

	9.5 Run-time linking
	9.5.1 Rebinding system defined symbols

	9.6 Developing shared libraries
	9.6.1 The genkld command (Power only)
	9.6.2 The slibclean command
	9.6.3 The dump command
	9.6.4 Using a private shared object
	9.6.5 The ldd and nm commands

	9.7 Programatic control of loading shared objects
	9.7.1 The dlopen subroutine
	9.7.2 The dlsym subroutine
	9.7.3 The dlclose subroutine
	9.7.4 The dlerror subroutine
	9.7.5 Using dynamic loading subroutines
	9.7.6 Advantages of dynamic loading

	9.8 Shared objects and C++
	9.8.1 Generating an exports file on Power
	9.8.2 The -qmkshrobj option
	9.8.3 Mixing C and C++ object files

	9.9 Order of initialization
	9.9.1 Priority values

	9.10 Troubleshooting
	9.10.1 Link failures on Power
	9.10.2 Run time tips

	9.11 Linker differences on Itanium-based systems
	9.11.1 libelf.so instead of libld.a
	9.11.2 Mixed mode linking no longer valid
	9.11.3 Symbol resolution performed by run-time linker
	9.11.4 AIX system calls for binding
	9.11.5 Linker options
	9.11.6 Import/export file support
	9.11.7 Shared library

	Chapter 10. POSIX threads
	10.1 Introduction to threads
	10.1.1 Threads versus processes
	10.1.2 Thread library versions

	10.2 Thread scheduling
	10.2.1 Lightweight processes
	10.2.2 Bound thread scheduling
	10.2.3 Multiplexed thread scheduling
	10.2.4 Comparing bound and multiplexed threads
	10.2.5 Scheduling scope, policy, and priority
	10.2.6 Porting issues

	10.3 Thread creation, termination, and synchronization
	10.3.1 Creating threads
	10.3.2 Termination of threads
	10.3.3 Joining threads
	10.3.4 Porting issues

	10.4 Synchronized access to data objects
	10.4.1 Synchronization
	10.4.2 Mutex
	10.4.3 Condition variables
	10.4.4 Semaphore
	10.4.5 Porting issues

	10.5 Threads and signals
	10.5.1 Signals
	10.5.2 Signal handlers and signal masks
	10.5.3 Signal generation
	10.5.4 Handling signals
	10.5.5 Signal delivery
	10.5.6 Porting issues

	10.6 Thread specific data
	10.6.1 Keys
	10.6.2 Porting issues

	10.7 Compiling and linking
	10.7.1 Reentrant functions and thread safe functions
	10.7.2 Compiling and linking
	10.7.3 Porting issues

	10.8 Tuning
	10.9 Multiheap malloc
	10.9.1 Using multiheap malloc
	10.9.2 Parameters of malloc multiheap

	10.10 Quick reference
	10.10.1 AIX implementations of threads
	10.10.2 POSIX interfaces
	10.10.3 X/Open UNIX 98 thread interfaces
	10.10.4 POSIX options
	10.10.5 Supported thread models
	10.10.6 Mappings to POSIX/UNIX 98 threads
	10.10.7 Limits and default values
	10.10.8 Inspecting a process and its kernel threads

	10.11 Example: The Mandelbrot set
	10.11.1 References

	Chapter 11. C++ templates
	11.1 Using C++ templates
	11.2 AIX 5L template implementations
	11.2.1 Generated function bodies

	11.3 Simple code layout method
	11.3.1 Disadvantages of the simple method

	11.4 Preferred template method
	11.4.1 The -qtempinc option
	11.4.2 Contents of the tempinc directory
	11.4.3 Forcing template instantiation

	11.5 Shared objects with templates
	11.5.1 Templates and makeC++SharedLib
	11.5.2 Templates and -qmkshrobj

	11.6 Virtual functions

	Chapter 12. Test and debug
	12.1 dbx
	12.1.1 Small example

	12.2 debug_message.c and dbx
	12.2.1 Endianness and 32-bit/64-bit problem

	12.3 idebug

	Appendix A. Sample programs
	A.1 Makefile sample programs
	A.1.1 The find_spec_targets_aix.ksh sample program
	A.1.2 The find_spec_targets_gnu.ksh sample program
	A.1.3 The find_predef_macro_aix.ksh sample program
	A.1.4 The find_predef_macro_gnu.ksh sample program
	A.1.5 The find_internal_macro_aix.ksh sample program
	A.1.6 The hwinfo.c sample program

	A.2 POSIX threads sample programs
	A.2.1 mandelbrot1.c
	A.2.2 mandelbrot2.c
	A.2.3 mandelbrot3.c
	A.2.4 mandelbrot4.c
	A.2.5 mandelbrot5.c

	Appendix B. Default inference rules for the make commands
	B.1 Single suffix inference rules
	B.2 Double suffix inference rules

	Appendix C. C compiler options
	C.1 Licensing compiler options
	C.2 Standards compliance compiler options
	C.3 Optimization and performance compiler options
	C.3.1 Aliasing
	C.3.2 Inlining
	C.3.3 Side effects
	C.3.4 Code size reduction
	C.3.5 Compile time optimization
	C.3.6 Performance data collection
	C.3.7 Loop optimization
	C.3.8 Processor and architectural optimization
	C.3.9 Optimization spreading across several files
	C.3.10 Optimization flags (-O and family)
	C.3.11 Limiting of optimization options
	C.3.12 Other optimization options

	C.4 Data alignment compiler options
	C.5 Floating point and numeric compiler options
	C.5.1 Sizes
	C.5.2 Rounding of floating points
	C.5.3 Traps
	C.5.4 Single precision
	C.5.5 Other options

	C.6 Parallelization compiler options
	C.7 Source Code compiler options
	C.8 Compiled code compiler options
	C.9 Compilation mode compiler options
	C.10 Diagnostics compiler options
	C.11 Debugging compiler options
	C.12 Linking and libraries compiler options
	C.12.1 Placing string literals and constants
	C.12.2 Static and dynamic linking and libraries
	C.12.3 Directories
	C.12.4 Other linker options

	C.13 Target platform compiler options
	C.14 GCC options specific for AIX 5L
	C.14.1 AIX options
	C.14.2 Power and PowerPC options
	C.14.3 Flags specific to Intel Itanium-based systems

	Appendix D. Using the additional material
	D.1 Locating the additional material on the Internet
	D.2 Using the Web material
	D.2.1 System requirements for downloading the Web material
	D.2.2 How to use the Web material

	Appendix E. Special notices
	Appendix F. Related publications
	F.1 IBM Redbooks
	F.2 IBM Redbooks collections
	F.3 Other resources
	F.3.1 C and C++ language
	F.3.2 C and C++ Development on AIX
	F.3.3 VisualAge C++ and C for AIX compilers
	F.3.4 Threads
	F.3.5 Standards

	F.4 Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Abbreviations and acronyms
	Index
	IBM Redbooks review

